
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Fine-Grained Dynamic Instrumentation
of Commodity Operating System Kernels

Ariel Tamches, Barton P. Miller
University of Wisconsin, Madison

Fine-Grained Dynamic Instrumentation of

Commodity Operating System Kernels1

Abstract
We have developed a technology, fine-grained

dynamic instrumentation of commodity kernels, which
can splice (insert) dynamically generated code before
almost any machine code instruction of a completely
unmodified running commodity operating system kernel.
This technology is well-suited to performance profiling,
debugging, code coverage, security auditing, runtime
code optimizations, and kernel extensions. We have
designed and implemented a tool called KernInst that
performs dynamic instrumentation on a stock produc-
tion Solaris kernel running on an UltraSPARC. On top
of KernInst, we have implemented a kernel performance
profiling tool, and used it to understand kernel and
application performance under a Web proxy server
workload. We used this information to make two
changes (one to the kernel, one to the proxy) that cumu-
latively reduce the percentage of elapsed time that the
proxy spends opening disk cache files from 40% to 7%.

1 Introduction
Operating system kernels are complex entities whose
internals often are difficult to understand, much less
measure and optimize. Recently, extensible kernels,
such as SPIN, Exokernel, and VINO, have been
designed to allow applications to extend functionality
and specify kernel policies [4,6,17]. Synthetix allows
specialized versions of certain kernel functions to be
installed at runtime, providing dynamic optimization
[16]. A design has even been proposed for a self-mea-
suring and self-adapting extensible kernel [18]. All of
the above work has been performed on customized ker-
nels, so it is difficult to evaluate or use with real-world
programs and workloads. This paper introducesfine-
grained dynamic kernel instrumentation, a low-level
technology that allows arbitrary code to bespliced
(inserted) at almost any kernel machine code location
during runtime. Dynamic kernel instrumentation allows
runtime measurements, optimizations, and extensions to

be performed on unmodified commodity kernels. In this
paper, we provide a motivation for fine-grained dynamic
kernel instrumentation and describe how to dynamically
instrument an unmodified commodity kernel. We show a
kernel profiler that, using dynamic instrumentation, pro-
vides a two-way benefit: insight into both kernel and
application performance. We show how this information
was used to optimize a web proxy server. We also dis-
cuss safety and security issues introduced by fine-
grained dynamic kernel instrumentation.

Dynamic instrumentation supports monitoring
functionality, such as debugging and profiling, alongside
mechanisms for extensibility and adaptability,in a sin-
gle infrastructure. Kernels become evolving entities,
able to measure and adapt themselves to accommodate
real-world runtime usage patterns.

The main contribution of our work is the design and
implementation of a fine-grained splicing mechanism
for a stock commodity kernel. The contents of the
inserted code—whether performance profiling annota-
tions, optimized versions of functions, or process-spe-
cific kernel extensions—are orthogonal to the issue of
how to splice it into a commodity kernel.

We have implementedKernInst, an instrumentation
tool for the Solaris kernel. Its main features are:

Fully dynamic. KernInst is loaded and instruments
a running kernel, without any need to recompile, reboot,
or even pause the kernel.

Fine-grained. Instrumentation points(locations
where code can be spliced) can be almost any machine
code instruction in the kernel. This contrasts with ker-
nels that allow coarser-grained code changes, such as at
function granularity (e.g., VINO [17] and Synthetix
[16]), or only allow entire kernel modules to be changed
(which many commodity kernels allow).

Runs on a commodity kernel.This allows us to
immediately run real-world programs.

Runs on anunmodifiedkernel. Any UltraSPARC
system running Solaris can immediately use KernInst.

Ariel Tamches and Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, WI 53706-1685
{tamches,bart}@cs.wisc.edu

1. This work is supported in part by Department of Energy Grant DE-FG02-93ER25176, NSF grants EIA-9870684 and CDA-9623632,
and DARPA contract N66001-97-C-8532. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

2 Applications of Dynamic Kernel
Instrumentation
This section describes several applications for fine-
grained dynamic instrumentation of unmodified com-
modity kernels.

Performance profilers can use dynamic instrumen-
tation to insert performance-gathering code annotations,
such as incrementing a counter at the start of a function
or basic block. Annotation code also can start and stop
timers or access hardware performance counters. More
complex code sequences and control structures can be
used to predicate measurements on kernel state, such as
the currently running process. More detail on using
dynamic kernel instrumentation for performance profil-
ing is presented in Section 4.

Dynamic instrumentation can also be used for ker-
nel tracing, by splicing logging code at the desired ker-
nel code locations during runtime. When the desired
trace is collected, kernel code can be restored to its orig-
inal contents, so overhead is incurred only when tracing
is desired. This contrasts with a static kernel instrumen-
tation system (such as a binary rewriter), which would
insert code lasting for the entire run of the kernel.

Code coverage can be measured by splicing code
that sets a flag (one per basic block) indicating that code
has been reached. Instrumentation for a basic block can
be removed as soon as the flag is set; thus, the overhead
of code coverage actuallydecreasesover time. Basic
block coverage demonstrates the need for instrumenta-
tion to be fine-grained.

Kernel debuggers can be implemented using fine-
grained dynamic instrumentation. Breakpoints can be
inserted at any machine code instruction by splicing
code that displays kernel state and (optionally) pauses
the executing thread and informs the debugger. Condi-
tional breakpoints are easily accommodated by predicat-
ing the breakpoint with the appropriate condition.

Security auditing annotations can be installed using
dynamic instrumentation. Solaris can audit thread cre-
ation and deletion, file system pathname lookups, file
systemvnode creation, successful and unsuccessful cre-
dential checks for super-user access, process forks, core
dumps, stream device operations, file opens, closes, and
chdirs, and many more. However, auditing code is
turned off by default; turning it on requires a kernel
recompile and reboot. With dynamic instrumentation,
the auditing package can be distributed as an indepen-
dent kernel add-on, and installed onto a running system.
This requires a fine-grained splicing mechanism, since
auditing checks often take place in the middle of kernel
functions.

Dynamic instrumentation enables automated run-
time code optimization, based on performance feedback

gathered by dynamic profiling annotations. One exam-
ple is function specialization [16] on an input parameter.
A function can be dynamically instrumented to collect a
histogram of the desired parameter, which is later exam-
ined for a frequent value. Annotation code is then
removed, and a specialized version of the function’s
machine code is generated, with constant propagation
applied to the specialized parameter. The function then
has the following code spliced at its entry: “if the input
parameter equals the common value, then jump to the
optimized version; else, fall through to the original ver-
sion”. A further optimization can sometimes bypass this
check: sites where the function is called can be exam-
ined for an actual parameter that always equals the spe-
cialized value. If so, the call site is altered to directly
call the optimized version of the function.

Moving seldom-executed basic blocks out of line to
improve instruction-cache behavior [13] can be per-
formed using fine-grained dynamic instrumentation. A
function’s entry and exit point(s) can be annotated to
measure the number of icache misses it incurs. If the
value is high, the function’s basic blocks can be instru-
mented to count execution frequency. An optimized ver-
sion of the function, with infrequently executed blocks
moved out of line, is then installed by splicing in code at
the entry of the original function to unconditionally
jump to the optimized version. As with parameter spe-
cialization, the extra jump overhead can often be elimi-
nated by altering sites where the function is called.

Dynamic kernel instrumentation also may be used
to change kernel functionality, such as installing a pro-
cess-specific version of a kernel policy. Extensible oper-
ating systems that download process-specific code into
the kernel for improved performance [3,6,14,17] per-
form this kind of adaptation. Dynamic instrumentation
can easily provide a similar operation in a commodity
kernel by splicing the following code at a desired kernel
function: “if currently executing process id equalscus-
tomized pidthen jump to customized version in the
patch area; else, fall through”.

Applications using dynamic kernel instrumentation
have varying requirements for kernel source code. Kern-
Inst provides the kernel’s runtime symbol table (func-
tion names and their starting locations in memory) and a
control flow graph of basic blocks at the machine code
level. With this information, applications can readily
identify the machine code locations of function entries,
exits, and function calls. A benefit of working with
machine code is that the effect of compiler optimiza-
tions, which can reorder and remove code, are visible.
Certain applications require more information about the
kernel. A kernel developer using dynamic kernel instru-
mentation to trace a specific source code line needs the

compiler’s debugging line number information to map
line numbers into kernel addresses. (Fortunately, kernel
developers are likely to have access to this information.)
Other applications may require knowing only the names
of specific kernel functions. An application wanting to
profile file system pathname-to-vnode translation in
Solaris needs to know that the relevant function islook-
uppn. (End users of such an application donot need to
know this.) Other applications will work solely with the
information KernInst provides; for example, an opti-
mizer that moves seldom-executed basic blocks out of
line at run-time works at the machine code level.

3 Mechanisms
Dynamic kernel instrumentation is the process of splic-
ing dynamically generated code sequences into speci-
fied points in the kernel code space. Splicing overwrites
the machine code instruction at aninstrumentation point
with a jump to patch code. KernInst is fine-grained;
instrumentation points can be almost any machine code
instruction in the kernel (we will discuss the exceptions
in Section 3.3 and Section 3.4.1). The code patch con-
tains the dynamically generated code being inserted, the
overwritten instruction, and a jump back to the instruc-
tion following the instrumentation point. The net effect
of splicing is to insert dynamically generated code
before a given kernel machine code instruction.

An important feature of our dynamic instrumenta-
tion is that splicing is independent of code generation.
KernInst can splice machine code that has been created
from code generation packages such as VCODE [7], an
interpreter performing just-in-time compilation, or from
precompiled position-independent code.

The structure of the KernInst system is shown in

Figure 1. Applications that wish to instrument the kernel
interact with kerninstd, a user-level daemon. There is

also a small runtime-loaded KernInst driver/dev/kern-
inst, a run-time allocated patch area heap, and a runtime-
allocated heap of timers and counters (used when the
instrumentation code contains performance-gathering
annotations). Kerninstd maps both heaps into its address
space usingmmap on /dev/kmem. To minimize our
tool’s presence in the kernel, most functionality is in
kerninstd. When it needs to perform actions in the ker-
nel’s address space, kerninstd enlists the assistance of
/dev/kerninst.

This section discusses how KernInst performs fine-
grained dynamic instrumentation of a commodity oper-
ating system kernel. We present specific examples from
our current Solaris implementation; however, we believe
that dynamic kernel instrumentation is possible on most
modern operating systems.

3.1 Bootstrapping KernInst onto the Kernel

To instrument a running kernel, kerninstd needs to allo-
cate the patch area heap, parse the kernel’s runtime sym-
bol table, and obtain permission to write to any portion
of the kernel’s address space.

Code patches, which hold the dynamically gener-
ated code being inserted, are allocated from the patch
area heap in the kernel’s address space. Kerninstd can-
not allocate kernel memory, so it has/dev/kerninst per-
form the necessarykmem_alloc via anioctl.

To instrument, kerninstd needs to know where func-
tions reside in memory. Thus, it needs access to the ker-
nel’s runtime symbol table. The symbol table on disk
(/kernel/unix) is insufficient because it is incomplete;
most of the kernel is contained in runtime-loaded mod-
ules. /dev/kerninst reads the kernel’s runtime symbol
table directly from kernel memory on behalf of kern-
instd. Solaris provides a similar interface through a
driver /dev/ksyms, but it does not label all functions with
their associated kernel module.

Both emitting code into the patch area and splicing
require write permission to the kernel’s address space.
Kerninstd writes to the patch area heap directly since it
is mapped into its address space (mmap of /dev/kmem).
Splicing into existing kernel code is more difficult,
because Solaris (like most operating systems) does not
allow certain parts of the kernel code to be modified,
even from within the kernel. Specifically, the first three
Solaris kernel modules, collectively termed the kernel

nucleus2, cannot be written on UltraSPARC platforms
because they are mapped only into the I-TLB, and with
read-only permission. To write to code in the nucleus,
/dev/kerninst maps the appropriate page (using

Figure 1: KernInst System Architecture
Kerninstd acts as an instrumentation server, performing kernel

instrumentation requests that arrive from applications.

/dev/kerninst

kerninstd

Kernel Address Space

Timers and

Heap

Patch Area
Heap

Countersioctl()

Application(s) of Dynamic
Kernel Instrumentation

(kernel profiler, tracer, optimizer, etc.)

instrumentation request

2. In Solaris 2.x, the first three kernel modules are: unix, the archi-
tecture-specific part of the kernel; krtld, the kernel’s runtime link-
er; and genunix, the architecture-independent part of the kernel.

segkmem_mapin), performs the write, and then unmaps
it (usingsegkmem_mapout).

3.2 Structural Analysis

Dynamic code generators perform many of the machine
code transformations a compiler does, only at runtime.
As such, they would benefit greatly from information
that compilers and linkers unfortunately discard in
whole or part, such as symbol tables, control flow
graphs, and live register analysis. Kerninstd constructs
similar information by analyzing the kernel’s in-core
machine code, creating an interprocedural control-flow
graph of basic blocks, and finding live registers at each
basic block.

Kerninstd builds a control flow graph of the kernel’s
machine code by partitioning its functions into basic
blocks. This graph is needed for performing live register
analysis during dynamic code generation and during
splicing. No source code or debugging information is
used in this process. First, the runtime symbol table is
parsed to determine the in-memory start of all kernel
functions. Each function’s machine code is then read
from memory and parsed into basic blocks. A basic
block ends when an instruction that potentially inter-
rupts the program’s control flow (except function call) is
encountered. Jump tables and jumps to constant
addresses are determined from a backwards slice on the
register(s) used in the jump. Other register-relative
jumps are marked as unanalyzable. KernInst’s control-
flow graph construction is similar to that done by binary
rewriters for user programs, such as EEL [12] and
ATOM [20]. However, since KernInst performs its pro-
cessing at runtime, all code is available, including run-
time-loaded modules. Furthermore, since our control-
flow graph is interprocedural, more aggressive data-flow
analyses are possible.

Next, kerninstd performs an interprocedural live
register analysis of the kernel code. For each basic
block, the set of live registers at its entry is calculated
and stored for later use in code generation and splicing.
To conserve storage, kerninstd does not store the live
registers for every kernel machine code instruction; such
fine-grained analysis is performed during instrumenta-
tion as needed.

Figure 2 summarizes the code components of
Solaris 2.5.1 running on an UltraSparc. KernInst per-
forms its one-time structural analysis efficiently, as
shown in Figure 3. Structural analysis could be opti-
mized by making the results persistent; they only need
to be recalculated when a kernel module is loaded or
unloaded. However, since the start-up processing time is
only about 15 seconds, we have not pursued this optimi-
zation.

3.3 Code Generation Issues

The code generation and splicing phases of dynamic
instrumentation are decoupled; kerninstd can splice in
code generated from any runtime code generator that
can coordinate with kerninstd to overwrite only registers
which kerninstd says are free at the instrumentation
point, and emit machine code directly to memory at a
location specified by kerninstd. The VCODE code gen-
erator [7] fits this model well, but many interpreters and
runtime compilers do not. Statically generated position-
independent code can also be used for instrumentation;
at runtime, kerninstd resolves procedure calls, and
brackets the code with register spills to ensure that no
free registers are overwritten.

Unlike a compiler, KernInst is concerned with
inserting (splicing) generated code in the midst of exist-
ing kernel code. For safety, dynamically generated code
must only write to registers that are free (i.e., do not
contain live information) at the instrumentation point. If
more registers are required than are free, kerninstd
brackets the code with stack frame set-up and tear-down
to free up additional registers. On the SPARC, this
involves emittingsave andrestore instructions. Because
these instructions cannot safely be executed within the
trap handlers for register window overflow and under-

flow, kerninstd cannot instrument these routines3.
Figure 4 lists kerninstd’s dynamic instrumentation

steps. This section describes the first three: live register
analysis, allocating a patch to hold the generated code,
and code generation.

The first step, live register analysis, determines reg-
isters that are available for scratch use at the instrumen-
tation point. Finding live registers is a classic backwards
data-flow problem operating on a control-flow graph.
Since the set of live registers at the top of each basic

Kernel Component Number
Modules 77
Functions 8,457
Basic blocks 107,976
Instruction bytes 2.59 MB

Figure 2: Solaris 2.5 Kernel Overview

Structural Analysis Step Time
Get kernel runtime symbol table from /dev/kerninst 0.5 sec

Parse functions into basic blocks (create CFG) 6.5 sec
Perform live register analysis on each basic block 8.5 sec
Total 15.5 sec

Figure 3: Structural Analysis One-Time Start-up Costs

3. We could instrument those routines by explicitly saving live
registers to the stack without making use of the SPARC’s regis-
ter window save and restore instructions. We plan to add this
feature in a future version of kerninstd.

block was calculated and stored during kerninstd’s
structural analysis start-up phase, finding live registers
at a given instruction within the basic block can be done
quickly. The free registers at that point are those that are
not live. Live register analysis averages 221µs in our
current implementation.

The second step in code generation allocates patch
space that will hold the dynamically generated code.
The patch size is the sum of: the size of the machine
code being inserted, extra instructions to spill some reg-
isters to the stack (if more scratch registers are needed
than are available), space for the original instruction at
the instrumentation point, and space for a jump back to
the instruction following the instrumentation point. If
several pieces of instrumentation are inserted at the
same instrumentation point, kerninstd simply com-
pounds them in the same code patch. As a rule, there is
one code patch for each spliced instrumentation point.

There are usually several possible code sequences
(with varying number of instructions) for the returning
jump, depending on the required displacement. Thus,
the number of instruction bytes required for the code
patch cannot be determined until it has been allocated.
The circular dependency is broken by assuming the
maximum number of instructions needed to perform a
jump (4 instructions on SPARC, assuming 32-bit
addresses). Space for the code patch is then allocated
from the patch heap. Calculating the patch size and allo-
cating it typically takes 30µs.

Once patch space is allocated, dynamically gener-
ated code is emitted. This step could not take place
before patch allocation because the machine code repre-
sentation of PC-relative instructions (such as SPARC’s
call instruction) depend on their instruction addresses.
Because the entire patch area heap was mapped into
kerninstd space for writing, generated code is written
directly into the patch. For a simple annotation—incre-
menting a 64-bit integer counter—code generation takes
79 µs. Most of this cost is due to the kernel’s policy of
deferring page mapping until the first time it is written.
Thus, although no explicit kernel calls were made to
write to the mapped kernel memory, the kernel was per-
forming noticeable work during the write. Subsequent
“warm” writes do not require mapping, and complete in
just 7µs. However, since patches are typically written
only once, times will normally fall under the slower
“cold” value.

3.4 Code Splicing

Fast fine-grained code splicing is KernInst’s major tech-
nology contribution. Splicing is the action of inserting
runtime generated code before a desired kernel code
location (the instrumentation point). KernInst’s splicing
is fine-grained; instrumentation points can be almost
any kernel machine code instruction.

Kerninstd splices by overwriting the instrumenta-
tion point instruction with a branch to patch code. The
code patch contains the dynamically generated code, the

Instrumentation Step Cost When Described
1. Finding free registers before and after instrumentation point The first time

code is spliced
at this instru-

mentation
point; results

are cached
thereafter

Section 3.3

Retrieve live registers at the bottom of the basic block (calculated at startup) 66 µs
Calculate live registers before and after the instrumentation point machine
code instruction. Cost is 19 µs per machine code instruction following the
instrumentation point in the basic block. (Cost assumes 5 instructions.)

95 µs

Return result 60 µs

2. Calculate size of patch & allocate 30 µs

Each instrumen-
tation request

3. Generate and emit code into patch (add 1 to counter in this example) 79 µs
4. Emit relocated instruction and (if necessary) jump to instruction following the

instrumentation point
27 µs Section 3.4.1

5. Creating & installing splice to patch (assuming a springboard is required). Unlike
the patch area, springboards are not mapped into kerninstd for quick writing.

Allocate springboard 13 µs

Section 3.4.3
Generate springboard code 26 µs
Write springboard contents to kernel (if springboard is nucleus) 135 µs
Write springboard contents to kernel (if springboard is not nucleus) 40 µs
Overwrite 1 instruction at the instrumentation point (if in nucleus) 74 µs

Section 3.4.2
Overwrite 1 instruction at the instrumentation point (if not in nucleus) 35 µs

Total (worst case: both instrumentation point and springboard in nucleus) 600 µs
Total (both instrumentation point and springboard not in nucleus) 471 µs

Total (best case: no springboard needed, instrumentation point not in nucleus) 392 µs

Figure 4: Dynamic Kernel Instrumentation Main Steps.
Timing measurements taken on a 167MHz UltraSPARC 1 running Solaris 2.5.1.

original overwritten instruction, and a jump back to the
instruction stream after the instrumentation point.
Figure 5 illustrates this basic design.

Ideally, a runtime code splicer should: be fine-
grained, able to splice code at any machine code instruc-
tion; splice quickly, without the need to pause or syn-
chronize with executing threads; splice without the need
for customized code at the instrumentation point (i.e.,
unmodified kernels); work on multi-threaded kernels;
and allow splicing to safely occur at any time, even with
threads potentially executing at or near the instrumenta-
tion point during splicing. Kerninstd fulfills all of these
goals.

Splicing a multi-threaded kernel without pausing
requires replacingonly onemachine code instruction at
the instrumentation point (with a branch to the code
patch). Section 3.4.2 discusses the safety motivation
behind single-instruction splicing. Displacement is an
issue with single-instruction splicing; branch instruc-
tions often have insufficient range to reach a code patch
from an instrumentation point. Section 3.4.3 discusses
springboards, our solution to this problem. But first, we
discuss the contents of a code patch.

3.4.1 Code Patch Contents

Following the dynamically generated code being
inserted, a code patch ends with the original instrumen-
tation point instruction and a jump back to the instruc-
tion after the instrumentation point. Because the original
instruction at the instrumentation point is overwritten, it
needs to be relocated to the code patch. The relocated
instruction is placed after the generated code, so instru-
mentation code is effectively insertedbefore that
machine code instruction. Note that instructions whose
semantics are PC-dependent, such as branches, cannot
be relocated verbatim to the code patch. In these cases,
kerninstd emits a sequence of instructions with com-
bined semantics equivalent to the original instruction.

Patch code ends with a jump back to the instruction
following the instrumentation point. If the instrumenta-

tion point instruction is an unconditional branch or
jump, this step is skipped. If a single branch instruction
does not have sufficient range, a scratch register is writ-
ten with the destination address and then used for the
jump. Since this jump executes after the relocated
instruction, an available scratch register must be found
from the set of registers free after the instrumentation
point. This contrasts with instrumentation code, which
executes in a context of free registers before the instru-
mentation point. If no integer registers are available,
Kerninstd makes one available by spilling it to the

stack4. Kerninstd generates the relocated instrumenta-
tion point instruction and the returning jump in 36µs.

Splicing at control transfer instructions having a
delay slot requires an extra step. Both the control trans-
fer instruction and its successor (the delay slot instruc-
tion) are copied to the code patch. This ensures that the
delay slot instruction is executed with the proper seman-
tics (i.e., before the control transfer instruction has
changed the PC). An example is shown in Figure 6.

Note that when the code patch completes, it returns to
the instruction after the delay slot, to ensure that it is not
executed twice. As before, if the control transfer instruc-
tion was unconditional, there is no need to emit a jump
back to the instruction stream, because it would never be
executed.

Splicing at the delay slot of a control transfer
instruction is difficult because the branch to the code
patch will occur before the control transfer instruction

Figure 5: Code Splicing
One machine code instruction is overwritten with a branch to patch

code, which contains the desired instrumentation code, the overwritten
instruction, and a branch back to the instruction stream.

Kernel Code code patch

branch

dynamically generated

branch back to insn after

overwritten instruction,
or equivalent sequence

code being inserted

instrumentation point

Instrumentation
point

4. A cheaper alternative to spilling an integer register is to store
it in an available floating point register. Unfortunately, the
SPARC architecture has no instructions for a raw (non-convert-
ing) integer-to-floating point register move.

Code Before Splicing
tcp_err_ack:
...
0x60060518 call 0x6015b818
0x6006051c mov %i3, %o2
0x60060520 ...

Code After Splicing
tcp_err_ack:
...
0x60060518 ba,a <patch addr>
0x6006051c mov %i3, %o2
0x60060520 ...

Code Patch
...dynamically generated code omitted...
call 0x6015b818 // relocated overwritten instruction
mov %i3, %o2 // relocated delay slot instruction
jump to 0x60060520 // return to instruc. after the delay slot

Figure 6: Splicing Delayed Control Transfer Instructions.
Both the overwritten instruction (call) and its delay slot instruction

(mov) are relocated to the patch. The delay slot instruction left behind
will no longer be executed.

has changed the PC. When the code patch completes, it
cannot jump to the instruction following the delay slot;
the effects of the control transfer instruction still need to
be executed. Unfortunately, there can be two valid return
locations if the control transfer instruction is a condi-
tional branch (taken and fall-through). The solution is to
effectively relocate the control transfer instruction to the
end of the code patch. If this instruction falls through,
the code patch returns to the instruction following the
delay slot (as usual). This approach works if the instru-
mentation point instruction is always executed as the
delay slot of the preceding control transfer instruction.
However, on rare occasions (nine in the Solaris kernel),
a delay slot instruction is the target of a branch, and thus
is not always executed as the delay slot of the preceding
control transfer instruction. Kerninstd does not instru-
ment these cases since a code patch would have to
choose from two different instruction sequences for
returning. This case is detected by noticing a delay slot
instruction at the start of a basic block.

3.4.2 Overwriting a Single Instruction at the
Instrumentation Point: Why and How

For safety, kerninstd always splices by overwriting
a single instruction at the instrumentation point with a
branch to the code patch. After the code patch is written
to kernel memory, the instruction at the instrumentation
point is overwritten with a branch. It will take time for
the new instruction to make its way to the instruction
cache; until it does and is fetched from the icache,
threads will continue to (safely) execute the original
code sequence. Since either the pre-instrumentation or
post-instrumentation code sequence is executed (never a
mix of both), single-instruction splicing is hazard-free.

Fine-grained splicing by replacing more than a sin-
gle instruction is inherently unsafe on an unmodified
commodity kernel, because a thread can execute a mix
of the pre-slice and post-splice sequences. Figure 7a
shows the first three instructions of the kernel routine
kmem_alloc. The PC of a kernel thread is located before
the third instruction, when a two-instruction splice
replaces its second and third instructions. (The instru-
mentation point is the second instruction ofkmem_alloc;
since two instructions are used in the splice, the third
instruction of the function is also replaced.) Since the
thread has already executed thesub instruction but not
its successor (sra) when the splice occurs, an unsafe
sequence of instructions will be executed, as shown in
Figure 7b. Note that this problem occurs even in an
architecture that can write the two instructions atomi-
cally.

In theory, this hazard could be avoided by pausing
and performing a backtrace on all kernel threads to
check whether execution is currently within, or will

return to, one of the instructions being replaced. If a
hazard is detected, then splicing is deferred. This strat-
egy is currently used by the Paradyn instrumentation
system for user programs [9, 10]. However, it does not
work in a kernel, for several reasons. First, pausing the
kernel it is not allowed; even if it were, this would
involve freezing all of the kernel threads (except, pre-
sumably, for the kerninstd thread, which is performing
the splice), possibly disrupting critical background
activities. Second, performing the necessary backtrace
on all threads (of which there are thousands in the
Solaris kernel) would be expensive. Third, even if paus-
ing were possible and practical, a jump with an unana-
lyzable destination (such as alongjmp) may jump to the
middle of a splice sequence, resulting in the execution
of an inconsistent code sequence. A fourth problem with
multiple-instruction splicing occurs when the instru-
mentation point is at the end of a basic blockB1. Some
of the splice sequence spills over into the next basic
blockB2. If B2 is reachable from another block (say, by a
branch from blockB3), then code taking the path (B3,
B2) will execute the second half of a splice sequence, an
inconsistent code sequence which can crash the kernel.
For these reasons, we conclude that fine-grained
dynamic instrumentation is unsafe when using multiple-
instruction splicing.

Single-instruction splicing is difficult on architec-
tures whose branch instructions always have a delay
slot, such as MIPS. This forces us to use a delayed
branch instruction for splicing, resulting in an unusual
execution sequence when jumping to patch code. The
instruction following the instrumentation point implic-
itly becomes the delay slot of the splice branch instruc-
tion, and thus is executed before the code patch is
reached. In particular, the instruction after the instru-
mentation point is executed before the instruction origi-

Code Before Splicing
kmem_alloc:
0x1006e768 save %sp, -0x60, %sp
0x1006e76c sub %i0, 0x1, %l2
0x1006e770 sra %l2, 3, %i5

Code After Splicing
kmem_alloc:
0x1006e768 save %sp, -0x60, %sp
0x1006e76c call <code patch>
0x1006e770 nop

(a) Dual-Instruction Splicing: Before and After

Executed Sequence
save %sp, -0x60, %sp
sub %i0, 0x1, %l2
nop

(b) Inconsistent Instruction Sequence

Figure 7: Why Multiple-Instruction Splicing is Hazardous

PC

PC

nally at the instrumentation point, which gets relocated
to the code patch. Thus, the execution ordering of the
instruction originally at the instrumentation point and its
successor are reversed. In some cases, this can be
worked around. If the instrumentation point instruction
and its successor are mutually independent, then revers-
ing their execution order is safe. If not, but the instru-
mentation point instruction is independent of its
successor, and if the successor instruction is idempotent,
then both the instrumentation point instruction and its
successor can be placed in the code patch. The resulting
execution sequence is (1) successor, (2) original instru-
mentation point instruction, (3) successor. Under the
mentioned constraints, step (1) is equivalent to a nop. Of
course, the independence and idempotency constraints
will not always be met, making single-instruction splic-
ing on always-delayed-branch architectures difficult. A
final possibility is to splice by replacing the instrumen-
tation point instruction with a trap or illegal instruction.
This will immediately jump to a trap handler, which, if it
can be safely instrumented, can check the offending
instruction’s PC and perform a long jump to the appro-
priate code patch. Note that the current implementation
of kerninstd is on the SPARC v9 architecture, which has
a non-delayed branch instruction (ba,a) that we always
use for splicing, thus avoiding these difficulties.

Single-instruction splicing on variable-instruction-
length architectures such as x86 is challenging; depend-
ing on the existing code at the instrumentation point, a
jump instruction used in splicing (5 bytes on x86) may
not overwrite exactly one instruction. If the jump
instruction is smaller than the instruction being over-
written, then the new instruction stream will contain the
newly written jump instruction, followed by the tail end
of the original instruction (which will never be exe-
cuted). On the other hand, when the instrumentation
point contains an instruction that is smaller than the
jump instruction, splicing overwrites more than one
instruction. This can cause problems because the next
instruction will also be overwritten; if that instruction is
the destination of a branch, a corrupted instruction
stream can be executed. This case can be handled by
splicing using a one-byte trap or other illegal instruc-
tion. This will transfer control to a trap handler, which,
if it can be instrumented using the more conventional
jump instruction, can be made to look up the address of
the offending instruction in a hash table, undo any pro-
cessor-state side effects of the trap, and transfer control
to the appropriate code patch. Since there are single-
byte trap instructions, it is always possible to overwrite
just one instruction, and is thus hazard-free.

Our current implementation of KernInst on the
UltraSPARC splices instrumentation points outside the
kernel nucleus in 35µs, via apwrite to /dev/kmem. If the

instrumentation point is within the nucleus, kerninstd
has/dev/kerninst perform the necessary map, write, and
unmap sequence (see Section 3.1), which completes in
74 µs.

3.4.3 Springboards: Why and How

We have seen that safety requires single-instruction
splicing, but RISC architectures do not provide an ideal
instruction to branch from any instrumentation point to
a code patch. An ideal splicing instruction is one which:
has enough displacement to reach the patch from the
instrumentation point; has no delay slot, which would
cause a second instruction to be executed before the
code patch is reached; has no side effects other than
changing the PC; and is absolute or PC-relative, but not
register relative. (Although register relative jumps can
reach any part of an address space, they require a regis-
ter to be set before use. This leads to hazardous multi-
ple-instruction splicing.) Figure 8 reviews the features
of branch and jump instructions for several architectures
that are best suited for single-instruction splicing.

Unfortunately, none of the RISC architectures has an
instruction that is always suitable. The key limitation is
displacement. The patch area heap is allocated arbi-
trarily far from the code of most kernel modules. Thus,
we need a means for reaching a patch, no matter the
required displacement, while still splicing with a single
instruction (for safety).

KernInst implements a general solution to the dis-
placement problem calledspringboards. A springboard
is a scratch area that is reachable from the instrumenta-
tion point by a suitable jump instruction. The idea is for
the splice instruction to merely branch to an available
nearby springboard, which in turn takes as many
instructions as needed to jump to the code patch.
Figure 9 shows an example of code splicing in the pres-
ence of springboards. Like the code patch, the spring-
board is written before the branch instruction is written

Arch Instruction Range
Delay
Slot?

Side
Effects

SPARC
v9

call PC ± 2 GB yes writes o7

ba,a PC ± 8 MB no none
jump register ± 16K yes none

PowerPC b PC ± 32 MB no none

MIPS IV
j

current 256MB
aligned region

yes none

b<cond> PC ± 128K yes none

Alpha
branch PC ± 4MB no none

jmp register ± 16K no none
x86 jmp PC ± 2 GB no none

Figure 8: Suitability of Various Instructions for Single-
Instruction Splicing.

None of the RISC architectures has an ideal splicing instruction

at the instrumentation point, so no kernel thread will
execute springboard code until the splice has completed.
Thus, the safety properties of single-instruction splicing
are maintained.

The springboard approach requires chunks of
scratch space (collectively, thespringboard heap) to be
conveniently located at various spots in the kernel, so
that every kernel instruction can reach the nearest chunk
when using one of the suitable jumps of Figure 8. Fortu-
nately, UNIX SVR4.2-based kernels (including Solaris),
Linux, and Windows NT all have ideally suited avail-
able scratch space: the initialization and termination
routines for dynamically loaded kernel modules.

In a kernel that allows modules to be loaded at run-
time (and unloaded, when memory is tight), each mod-
ule has initialization and termination routines that are
called just after the module is loaded, and just before it

is unloaded, respectively5. Kerninstd locks kernel mod-
ules in memory, which guarantees that the initialization
and termination routines will no longer be called; this

makes them free to use as springboard space. In addi-
tion, preventing module unloading and reloading obvi-
ates the need to re-insert splicing code changes that
would be lost when and if a module gets re-loaded. In
practice, no single kernel module approaches one mega-
byte in size, so even a jump instruction with a modest
range, such as SPARC’sba,a, can easily reach the near-
est springboard.

In Solaris, the first three kernel modules (the
nucleus) are not subject to runtime loading or unloading,
and thus do not have initialization and termination rou-
tines. Furthermore, in practice, the nucleus modules are
loaded into kernel virtual memory far from the dynami-
cally loaded ones, and thus cannot reach the latter’s ini-
tialization and termination routines as potential
springboard space. However, two routines within the
nucleus,_start andmain, are invoked only while the ker-
nel is booting. Since they are never again executed,
kerninstd adds these routines to the springboard heap.
Figure 10 summarizes the springboard space set aside
by our current Solaris 2.5.1/UltraSPARC implementa-
tion of kerninstd.

While the springboard technique may seem ad-hoc,
it is applicable to most kernels with which we have
experience. Furthermore, with 64-bit operating systems
running on an architecture with 32-bit instructions, there
is no possibility of finding a single branch instruction
with 64 bits of displacement. Because they are not lim-
ited to a single instruction, springboard code can have
arbitrary displacement, making them a general solution
to the problem of reaching patches.

If a springboard is needed, kerninstd allocates it and
generates its contents in 39µs. Its contents are then cop-
ied to kernel space. If the springboard does not reside
within the kernel nucleus, kerninstd fills it with a single
pwrite to /dev/kmem in 40 µs. If the springboard is
within the nucleus, kerninstd invokes/dev/kerninst to
perform the write (see Section 3.1) in 135µs.

4 Using Dynamic Instrumentation for
Performance Profiling
This section presents a case study using KernInst to
locate performance bottlenecks in the kernel and in an
application, using a Web proxy server as the workload.

Original Code
kmem_alloc:
0x1006e768 save %sp, -0x60, %sp
0x1006e76c sub %i0, 0x1, %l2
0x1006e770 sra %l2, 3, %i5

(a) Code Before Splicing

Spliced Code
kmem_alloc:
0x1006e768 save %sp, -0x60, %sp
0x1006e76c ba,a 0x10075cb4
0x1006e770 sra %l2, 3, %i5

Springboard
0x10075cb4 call 0x60022b7c

call overwrites %o7, which is free at 0x1006e76c.
0x10075cb8 nop

Code Patch
0x60022b7c ...inserted code omitted...
0x60022b9c sub %i0, 0x1, %l2
0x60022ba0 call 0x1006e770
0x60022ba4 nop

(b) Code After Splicing

Figure 9: Code Splicing Using a Springboard
The instrumentation point (at 0x1006e76c) is too far from the code

patch (at 0x60022b7c) to be reached with a branch, so kerninstd
instead places a branch to a nearby springboard (at 0x10075cb4),
which in turn performs a multi-instruction long jump to the code

patch.

5. In Solaris 2.x, these routines are called _init and _fini in each
module. In the SVR4.2 UNIX standard, these routines are called
<module>_load and <module>_unload. In Linux, they are called
init_<module> and cleanup_<module>. In Windows NT, device
drivers have a DriverEntry routine which also installs a pointer to
a cleanup routine.

Instrumentation
point

Location Size (bytes)
Nucleus (_start and main) 884
Outside nucleus (initialization & termination
routines of kernel modules)

7128

Figure 10: Available Springboard Space in Solaris 2.5.1

4.1 Kernel Metrics

We used KernInst to implement a kernel profiling tool.
Due to space constraints, we discuss only a representa-
tive sample of its performance primitives. These include
basic counters, cycle timers, accumulators, and average-
over-time (AOT) accumulators. The primitives are non-
blocking (and thus safe in a multi-threaded environ-
ment) by using the compare-and-swap instruction when
changing their values. These primitives can be com-
bined and used with more complex control flow code.
Basic counters are implemented by inserting increment
operations at the appropriate point. Cycle timers insert
start and stop operations in the code, often at function or
basic block entries and exits. Accumulators collect val-
ues from kernel variables or hardware counters (such as
icache misses) to calculate a total. AOT accumulators
calculate the average value of some counter or variable
over time, such as the average number of threads execut-
ing in a given function, or the average number of threads
waiting for a condition variable. They use instrumenta-
tion code to calculate the area under the curve of the
value being averaged. The area is calculated by instru-
mentation code that sums rectangles each time the event
value changes.

Performancemetrics are formed by applying the
primitives. Four metrics in our tool-kit library are call
counts, average number of executing threads, average
number of waiting threads, and virtual timers. Call
counts simply record the number of times a function is
called. The “calls made to” curve in Figure 11 shows an
example of the number of calls to the kernel function
copen. Average number of executing threads uses a
counter to record the number of threads in a section of
code (incremented at entry to the block and decre-
mented at exit) and a value recording the last time the
value being averaged has changed; the AOT is calcu-
lated using these values. The “concurrency” curve in
Figure 11 shows an example of the average number of
threads in functioncopen. Average waiting threads
counts the number of threads waiting on a kernel mutex
variable (kmutex_t), by instrumentingmutex_enter; the
AOT primitive is applied to this counter. The underlying
processor cycle counters used by KernInst measure
elapsed (wall) time. Virtual (processor) time can be
important in trying to isolate bottlenecks. KernInst mea-
sures virtual time by instrumenting the context switch
handler; we can detect when a kernel thread is dis-
patched, and stop and re-start the timer primitive at the
appropriate times.

Metrics can be constrained to a given process or
kernel thread by predicating the primitives. To find the
average number of kernel threads belonging to process P
executing within function F over time, the AOT primi-

tives spliced into the entry and exit points of F are predi-
cated with “if current pid equals P then...”.

SPARC compilers make instrumenting before a
function’s return challenging. If a function B (called
from A) ends by calling C, then B is (tail call) optimized
to unwind its stack frame in the delay slot of the call to
C; this makes C return directly to A. To instrument at
the exit point of B, KernInst first splices in a code
sequence that de-optimizes the tail call sequence. This
was first done by Paradyn [10].

4.2 Web Proxy Server Benchmark

We used KernInst to study the performance of Solaris
running version 1.1.22 of Squid, a Web proxy server. We
used version 1.0 of the Wisconsin Proxy Benchmark [1]
running 30 client processes to drive Squid. All Squid
files were stored on the local disk running the Unix File
System (UFS). KernInst and Squid were run on the
same machine, an UltraSPARC 1 with 128 MB of RAM
running Solaris 2.5.1. Because KernInst instruments
entirely at runtime, gathering kernel performance infor-
mation was an interactive process.

Previous studies of proxy servers have shown file
opens to be a common bottleneck, so we first measured

the kernel functioncopen, which handles both file open
and file creation. As shown in Figure 11, it is called 20-
25 times per second, and averages about 0.4 threads exe-
cuting within this code at any given time. Since Squid is
a single-threaded program, this means that on average,
40% of Squid’s elapsed time was spent either opening
existing files for reading, or creating new files for writ-
ing.

copen performs two major calls:falloc to allocate an
entry in the process’s file descriptor table, thenvn_open
for file system-specific opening. Because Squid main-
tains one disk file per cached HTTP object, we expected
falloc to be a bottleneck because it performs a linear
search to find an available table entry. However, we

Figure 11: Squid file creation
Although called only 20-25 times/second, copen is a clear bottleneck

found falloc to consume negligible run time; most of
copen’s time was spent invn_open.

vn_open has two paths, one for creating files (where
it calls vn_create), and one for opening files. We found
that thevn_create path, although called only 8 times per
second, accounted for almost all ofvn_open’s bottle-
neck. Thus, file creation (which, in Squid’s case, is a call
to open() with theO_CREAT flag) is the bottleneck.

vn_create calls two important routines:lookuppn
andufs_create. lookuppn translates a full path name into
a vnode structure.ufs_create creates a UFS file when
given a vnode. Measurements for these routines are
shown in Figure 12; it shows thatboth are bottlenecks.

lookuppn, better known asnamei, obtains avnode
by parsing path components one by one and calling the
file system’s lookup routine (ufs_lookup for UFS) for
each. In the general case,ufs_lookup must go to disk to
obtain aninode location from a directory file, and to
read theinode contents. To optimize path name lookup,
Solaris uses adirectory name lookup cache, or DNLC,
which hashes path name components to entries in an
inode cache[5]. A DNLC hit bypasses both reading the
directory file (ufs_dirlook) and reading the inode
(ufs_iget). By dynamically instrumenting the kernel to
count calls toufs_dirlook and tolookuppn, we found that
the DNLC hit rate was about 90%. Nevertheless, the
miss penalty (execution ofufs_dirlook) was high enough
to account for theufs_lookup bottleneck, as shown in
Figure 13.

Squid’s preponderance of small cache files (over
6,000 in our benchmark) overwhelmed the DNLC,
which contains 2,181 entries by default. To address the
bottleneck, we increased the DNLC size to the maxi-
mum allowed value of 17,498. As shown in Figure 14,
this eliminates theufs_lookup bottleneck; it now
accounts for just 1% of Squid’s elapsed time. Two per-
manent solutions suggest themselves. First, the DNLC
should grow when needed, to avoid conflict misses. A

flip side argument is that Squid simply uses too many
small files, and should be redesigned to use one large
fixed-size file for its disk cache.

Recall from Figure 12 thatufs_create was the sec-
ond bottleneck invn_create, accounting for 20% of
Squid’s elapsed time. Almost all ofufs_create’s time is
spent in ufs_itrunc, which is invoked because Squid
passes theO_TRUNC flag to theopen system call. Thus,
about 20% of Squid’s time is spent truncating existing
cache files to zero size when opening them. Most of
ufs_itrunc’s time is spent inufs_iupdat, which synchro-
nizes updates toinodes. Thus, truncation is slow because
UFS synchronizes changes to meta-data. Squid reuses
obsolete disk cache files rather than deleting the obso-
lete file and creating the new one from scratch. The
motivation is to avoid expensive meta-data operations
required in file deletion (updating the parent directory
file and freeinginodes). But theufs_itrunc bottleneck
shows that Squid’s strategy is backfiring.

To address this bottleneck, we note that after delet-
ing all of the file’s inodes in truncation, some will be
added (again, synchronously) as the new version of the

Figure 12: vn_create and its components
Both lookuppn and ufs_create are (distinct) bottlenecks

Figure 13: ufs_lookup
ufs_dirlook, called on a DNLC miss, accounts for the ufs_lookup

bottleneck (the curves almost entirely overlap). Note that dnlc_lookup
time is essentially zero.

Figure 14: The effect of increasing DNLC size
The miss penalty routine (ufs_dirlook) is now called so infrequently that

it now accounts for just 1% of Squid’s elapsed time.

file is written. If the new file size is at least equal to the
old size, then theinode deletions and creations amount
to a very expensive no-op. If the new file size is less than
the original size, a (lesser) optimization is to only delete
the inodes at the file’s end that are no longer needed. We
modified Squid to implement these changes; their effect
is shown in Figure 15. The time spent synchronously

updatinginodes has been reduced from 20% of Squid’s
run time to about 6%.

The combined effect of the two optimizations are
shown in Figure 16. The open system call, which once

consumed 40% of Squid’s run time, now takes only 1%.
To this must be added the time spent truncating cache
files (which is now done explicitly instead of through
the O_TRUNC flag to open); from Figure 15, this is
about 6%. Thus, what once took 40% of Squid’s elapsed
time now takes 7%.

5 Safety and Security Issues
Splicing code into a running kernel can introduce race
conditions when kernel threads are executing at an

instrumentation point being spliced (splicing hazards),
adversely disrupt kernel execution (safety violations), or
introduce undesirable information flows (security viola-
tions). Single-instruction splicing (Section 3.4.2) solves
the splicing hazard problem. We plan to harness the rich
body of existing work in safety and security, but in a
commodity kernel (that wasnot written with extensibil-
ity in mind) with fine-grained patching, these issues
become more complex. Below we summarize the issues
and outline our initial directions.

Trusted code.In this approach, an authority certi-
fies code as well-behaved. The certification may be that
the generator of the code or the code itself lies in a spe-
cially protected directory that only a system administra-
tor can update. Alternatively, the code may come from a
trusted party on the network with a digital signature.
This strategy is the fall-back position in our current
work; kerninstd currently requires that applications writ-
ten on top of it have super-user privileges.

Dynamically safe code. Two safety issues must be
addressed when executing inserted code. First, safety
violations must be detected, by inserting extra instruc-
tions into the dynamic code. Second, corrective action
must be taken after a violation is detected. This action
might be as simple as exiting from the dynamic code or
killing the kernel thread that executed the offending
code, or it might be much more complex. If the dynamic
code islocal, executing on behalf of a single user or pro-
cess and not modifying any shared kernel data struc-
tures, then exiting the dynamic code is sufficient.
Software fault isolation (SFI) techniques [21] augment
the dynamic code with run-time checks to insure the
code stays within a local space. VINO [17] and Exoker-
nel [6] are two systems that use this technique. The
dynamic code might beglobal, in common parts of the
kernel and accessing data structures shared by other ker-
nel threads. In this case, terminating the offending code
may leave locks held or shared data structures in an
inconsistent state. SFI techniques would need to be sig-
nificantly extended to handle shared resources. Using a
kernel whose data structures have transaction semantics
(such as in VINO) might simplify constructing a recov-
ery mechanism.

Statically safe code.Code that can be identified
statically as safe has two advantages. First, the code is
potentially more efficient since no run-time checks are
needed. Second, since the code can never misbehave, no
recovery scheme is needed. Proof carrying code (PCC)
[14] is an example of this approach. However, PCC
requires a safety policy to be formally defined for all
resources accessed by the extension. Thus, inserted code
can only access kernel data structures and call kernel

Figure 15: The effect of improving Squid’s truncation
ufs_itrunc now accounts for less than 10% of Squid’s elapsed time

Figure 16: vn_create performance with both optimizations
The lookuppn component has been reduced via a larger DNLC; the

ufs_create component has been reduced because the open system call no
longer uses the O_TRUNC flag. Note that ufs_create time is essentially

zero.

functions that have gone through the rigor of a formally
defined safety policy.

Combined approaches.A combination of static
and dynamic checking, such as done with “safe” lan-
guages such as Java and Modula-3 in SPIN [3], poten-
tially requires fewer run-time checks, but still needs a
recovery strategy.

Extension code can be classified by its interaction
with the underlying kernel.Annotations, such as perfor-
mance measurement and debugging code, are orthogo-
nal to the underlying computation. If an annotation only
writes to its own data, does not transfer control outside
of the annotations code, and is bounded in its time and
resource requirements, a recovery strategy is easy: the
annotation can be removed. Annotations that call other
kernel functions (such as locking routines) may tempo-
rarily modify system state. Safety in such annotations
requires a specification of the semantics of the kernel
routines that the dynamic code calls [15]. We plan to
design specifications that cover common synchroniza-
tion scenarios. Recovery in a commodity operating sys-
tem after an open annotation fault is an area we are
actively researching.

Codeadaptationsintentionally change the behavior
of the underlying system in some way. Examples
include on-the-fly optimizations such as specialization
[16] and outlining [13]. An adaptation may take some
part of the kernel and replace it with code that accom-
plishes the same task, but in a more efficient or reliable
manner. We are currently developing the mechanisms
for closed-looped dynamic measurement and optimiza-
tion. Adaptations may also include adding new func-
tionality into the kernel. The safety and recovery issues
for fine-grained adaptations are more complex than for
open annotations.

Security issues are distinct from safety issues.
Security is restricting information flows and authenticat-
ing data modifications. Annotations and adaptations
may be efficient and safe without being secure. For
example, sensitive kernel structures or process address
spaces could be copied into a file quickly and safely, but
open large security holes. Security can be addressed
much like safety, by verifying that formally-defined pol-
icies for all resources accessed by inserted code are
respected.

6 Related Work
Extensible operating systems such as SPIN [4], Exoker-
nel [6], and VINO [17] allow processes to download
code into a kernel, but differ from our approach in sev-
eral ways. First, they are not unmodified commodity
kernels. Second, they perform coarse-grained instru-
mentation; for example, VINO, allows C++ classes to

customize object methods [19]. Third, the limited num-
ber of instrumentation points are pre-coded in a way that
allows easy instrumentation; for example, Synthetix
[16] replaces a function that is called through a pre-
existing level of indirection by overwriting the appropri-
ate function pointer. Requiring special code where pro-
cess-specific customizationmight take place incurs a
small overhead on methods that are not customized. It
also limits the granularity of instrumentation because it
would be impractical to place the level of indirection in
every kernel basic block. We note that KernInst is com-
plementary to, and could be used with these research
kernels to provide additional splicing capabilities.

Digital’s Continuous Profiling system (dcpi) [2]
measures detailed performance metrics (such as cycles
and icache misses) at the instruction level of a commod-
ity kernel. Unlike KernInst, dcpi does not instrument
kernel code in any way; this precludes metrics that can-
not be readily sampled. KernInst could be used in con-
cert with continuous profiling to create additional
metrics in software.

Paradyn [10] dynamically instruments user pro-
grams. Our work differs from Paradyn in several ways:
it applies to kernels; instrumentation is fine-grained,
whereas Paradyn limits instrumentation points to func-
tion entries, exits, and calls sites; and KernInst instru-
ments without pausing, whereas Paradyn incurs
substantial overhead by pausing the application and
walking the stack to ensure safe splicing for each instru-
mentation request.

Static binary rewriters such as EEL [12] and ATOM
[20] are fine-grained and allow arbitrary code to be
inserted into user programs (and potentially to kernels).
Because static rewriting requires the program to be
taken off-line during instrumentation, one must instru-
ment everything in case it may turn out to be of interest.
By contrast, dynamic instrumentation allows the user to
refine, at runtime, what instrumentation is of interest.

Kitrace [11] traces kernel code locations. It replaces
instructions being traced with a trap, which transfers
control to a custom handler. This handler appends an
entry to the trace log and resumes execution. Because
trap instructions can be inserted at most kernel instruc-
tions, kitrace is fine-grained. Kitrace differs from our
work in several ways: it requires a kernel recompile; it
does not insert general code into the kernel; and its
method of resuming execution after a trap is more
expensive than in dynamic instrumentation. Fine-
grained dynamic instrumentation subsumes kitrace
because it can insert arbitrary code, not just trace-gath-
ering code.

SLIC [8] provides extensibility in commodity oper-
ating systems by rerouting events crossing certain kernel

interfaces (system calls, signals, and virtual memory
routines) to extensions that have either been downloaded
into the kernel, or run in a user-level process. SLIC
interposes extensions on kernel interfaces by rewriting
jump tables or through binary patching of kernel rou-
tines. When it performs binary patching, SLIC replaces
several instructions at the start of a kernel function; as
we have seen in Section 3.4.2, multiple-instruction
patching is unsafe. In addition, SLIC is not fine-grained;
for example, interposing system calls provides for only
a few dozen kernel instrumentation points.

7 Conclusion and Future Work
Fine-grained dynamic kernel instrumentation has many
uses, including performance profiling, debugging, test-
ing, optimizing, and extending the kernel. In this paper,
we have shown a design and implementation of dynamic
kernel instrumentation, which combines fine-grained
splicing with dynamic code generation. We have shown
this technology to be feasible by implementing it on
Solaris 2.5.1 running on an UltraSPARC, and we are
investigating ports to other architecture/OS combina-
tions, including x86.

While KernInst opens up many areas of opportu-
nity, for general use, it creates safety and security con-
cerns. We are currently formulating a formal access and
control model, with the goal of automating much of the
checking the dynamic code.

Acknowledgments
We thank Pei Cao and Kevin Beach of the WisWeb
group for supplying the Wisconsin Proxy Benchmark;
Stephen Chessin and Madhusudhan Talluri of Sun
Microsystems for technical assistance and suggestions;
and Matt Cheyney, Carlos Figueira, Karen Karavanic,
Tia Newhall, Brian Wylie, and Zhichen Xu for their
comments on this manuscript.

References
[1] J. Almeida and P. Cao. Wisconsin Proxy Benchmark 1.0.

http://www.cs.wisc.edu/~cao/wpb1.0.html .

[2] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R.
Henzinger, S.-T.A. Leung, R.L. Sites, M.T. Vandervoorde, C.A.
Waldspurger, and W.E. Weihl. Continuous Profiling: Where
Have All the Cycles Gone?16th ACM Symposium on Operating
Systems Principles (SOSP), Saint-Malo, France, Oct. 1997.

[3] J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B.N.
Bershad. Fast, Effective Dynamic Compilation.ACM SIGPLAN
1996 Conference on Programming Language Design and
Implementation (PLDI),Philadelphia, PA, May 1996.

[4] B.N. Bershad, S.Savage, P. Pardyak, E. Sirer, M. Fiucynski, D.
Becker, C. Chambers, and S.N. Eggers. Extensibility, Safety and
Performance in the SPIN Operating System.15th ACM
Symposium on Operating Systems Principles (SOSP), Copper
Mountain, CO, Dec. 1995.

[5] A. Cockcroft and R. Pettit.Sun Performance and Tuning: Java
and the Internet.Sun Soft Press, 1998.

[6] D.R. Engler, M.F. Kaashoek, and J. O’Toole Jr. Exokernel: An
Operating System Architecture for Application-Level Resource
Management.15th ACM Symposium on Operating Systems
Principles (SOSP), Copper Mountain, CO, Dec. 1995.

[7] D.R. Engler. VCODE: a Retargetable, Extensible, Very Fast
Dynamic Code Generation System.SIGPLAN 1996 Conference
on Programming Language Design and Implementation (PLDI),
Philadelphia, PA, May 1996.

[8] D. Ghormley, S. Rodrigues, D. Petrou, and T. Anderson. SLIC:
An Extensibility System for Commodity Operating Systems,
1998 USENIX Technical Conference,New Orleans, June 1998.

[9] J.K. Hollingsworth, B.P. Miller and J. Cargille. Dynamic
Program Instrumentation for Scalable Performance Tools,
Scalable High Performance Computing Conference,Knoxville,
May 1994.

[10] J.K. Hollingsworth, B.P. Miller, M.J.R. Gonçalves, O. Naim, Z.
Xu and L. Zheng. MDL: A Language and Compiler for Dynamic
Program Instrumentation.International Conference on Parallel
Architectures and Compilation Techniques,San Francisco, Nov.
1997.

[11] G. H. Kuenning. Precise Interactive Measurement of Operating
Systems Kernels,Software—Practice & Experience25, 1
(January 1995).

[12] J.R. Larus and E. Schnarr. EEL: Machine-Independent
Executable Editing.ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation (PLDI),La
Jolla, CA, June 1995.

[13] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Malley.
Analysis of Techniques to Improve Protocol Processing Latency.
ACM SIGCOMM 1996,Stanford, CA, Aug. 1996.

[14] G.C. Necula and P. Lee. Safe Kernel Extensions Without Run-
Time Checking.2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Seattle, WA, Oct. 1996.

[15] G.C. Necula and P. Lee. The Design and Implementation of a
Certifying Compiler. ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation (PLDI),
Montreal, Canada, June 1998.

[16] C. Pu, T. Audrey, A. Black, C. Consel, C. Cowan, J. Inouye, L.
Kethana, J. Walpole, and K. Zhang. Optimistic Incremental
Specialization: Streamlining a Commercial Operating System.
15th ACM Symposium on Operating Systems Principles (SOSP),
Copper Mountain, CO. Dec., 1995.

[17] M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing With
Disaster: Surviving Misbehaved Kernel Extensions.2nd USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, Oct. 1996.

[18] M.I. Seltzer and C. Small. Self-monitoring and Self-adapting
Operating Systems.6th Workshop on Hot Topics in Operating
Systems,Cape Cod, MA, May 1997.

[19] C. Small. A Tool for Constructing Safe Extensible C++ Systems.
4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS), Santa Fe, NM, April 1998.

[20] A. Srivastava and A. Eustace. ATOM: A System for Building
Customized Program Analysis Tools.ACM SIGPLAN 1994
Conference on Programming Language Design and
Implementation (PLDI),Orlando, FL, June 1994.

[21] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient
Software-based Fault Isolation.14th ACM Symposium on
Operating Systems Principles (SOSP), Asheville, NC, Dec 1993.

