
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Interface and Execution Models in the Fluke Kernel

Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, Patrick Tullmann
University of Utah

Interface and Execution Models in the Fluke Kernel

Bryan Ford Mike Hibler Jay Lepreau Roland McGrath Patrick Tullmann

Department of Computer Science, University of Utah

Abstract
We have defined and implemented a kernel API that

makes every exported operation fully interruptible and
restartable, thereby appearing atomic to the user. To
achieve interruptibility, all possible kernel states in which
a thread may become blocked for a “long” time are repre-
sented as kernel system calls, without requiring the kernel
to retain any unexposable internal state.

Since all kernel operations appear atomic, services
such as transparent checkpointing and process migration
that need access to the complete and consistent state of a
process can be implemented by ordinary user-mode pro-
cesses. Atomic operations also enable applications to
provide reliability in a more straightforward manner.

This API also allows us to explore novel kernel im-
plementation techniques and to evaluate existing tech-
niques. The Fluke kernel’s single source implements ei-
ther the “process” or the “interrupt” execution model on
both uniprocessors and multiprocessors, depending on a
configuration option affecting a small amount of code.

We report preliminary measurements comparing fully,
partially and non-preemptible configurations of both pro-
cess and interrupt model implementations. We find that
the interrupt model has a modest performance advan-
tage in some benchmarks, maximum preemption latency
varies nearly three orders of magnitude, average preemp-
tion latency varies by a factor of six, and memory use
favors the interrupt model as expected, but not by a large
amount. We find that the overhead for restarting the most
costly kernel operation ranges from 2–8% of the cost of
the operation.

1 Introduction
An essential issue of operating system design and im-

plementation is when and how one thread can block and
relinquish control to another, and how the state of a thread
suspended by blocking or preemption is represented in
the system. This crucially affects both the kernel inter-
face that represents these states to user code, and the fun-

This research was largely supported by the Defense Advanced Re-
search Projects Agency, monitored by the Dept. of the Army under
contract DABT63–94–C–0058, and the Air Force Research Laboratory,
Rome Research Site, USAF, under agreement F30602–96–2–0269.

Contact information: lepreau@cs.utah.edu, Dept. of Computer Sci-
ence, 50 Central Campus Drive, Rm. 3190, University of Utah, SLC,
UT 84112-9205. http://www.cs.utah.edu/projects/flux/.

damental internal organization of the kernel implemen-
tation. A central aspect of this internal structure is the
execution model in which the kernel handles in-kernel
events such as processor traps, hardware interrupts, and
system calls. In theprocess model, which is used by tra-
ditional monolithic kernels such as BSD, Linux, and Win-
dows NT, each thread of control in the system has its own
kernel stack—the complete state of a thread is implicitly
encoded its stack. In theinterrupt model, used by systems
such as V [8], QNX [19], and the exokernel implementa-
tions [13, 22], the kernel uses only one kernel stack per
processor—thus for typical uniprocessor configurations,
only one kernel stack. A thread in a process-model ker-
nel retains its kernel stack state when it sleeps, whereas
in an interrupt-model kernel threads must explicitly save
any important kernel state before sleeping, since there is
no stack implicitly encoding the state. This saved kernel
state is often known as acontinuation[11], since it allows
the thread to “continue” where it left off.

In this paper we draw attention to the distinction be-
tween an interrupt-modelkernel implementation—a ker-
nel that uses only one kernel stack per processor, explic-
itly saving important kernel state before sleeping—and
an “atomic”kernel API—a system call API designed to
eliminate implicit kernel state. These two kernel prop-
erties are related but fall on orthogonal dimensions, as
illustrated in Figure 1. In a purely atomic API,all pos-
sible states in which a thread may sleep for a noticeable
amount of time are cleanly visible as a kernel entrypoint.
For example, the state of a thread involved in any sys-
tem call is always well-defined, complete, and immedi-
ately available for examination or modification by other
threads; this is true even if the system call is long-running
and consists of many stages. In general, this requires
all system calls and exception handling mechanisms to
be cleanlyinterruptibleandrestartable, in the same way
that the instruction sets of modern processor architectures
are cleanly interruptible and restartable. For purposes of
readability, in the rest of this paper we will refer to an
API with these properties as “atomic.” We use this term
because, from the user’s perspective, no thread is ever in
the middle of any system call.

We have developed a kernel, Fluke [16], which ex-
ports a purely atomic API. This API allows the com-
plete state of any user-mode thread to be examined and
modified by other user-mode threads without being arbi-

Fluke

(Draves)

Mach
(original)

Mach

A
P

I M
od

el
A

to
m

ic
C

on
ve

nt
io

na
l

Interrupt Process

BSD

(original)

V V

(interrupt-model)

Execution Model

Fluke

(Carter)

(process-model)

Figure 1: The kernel execution and API model continuums.
V was originally a pure interrupt-model kernel but was later
modified to be partly process-model; Mach was a pure process-
model kernel later modified to be partly interrupt-model. Fluke
supports either execution model via compile time options.

trarily delayed. Supporting a purely atomic API slightly
increases the width and complexity of the kernel inter-
face but provides important benefits to user-level applica-
tions in terms of the power, flexibility, and predictability
of system calls.

In addition, Fluke supportsboth the interrupt and pro-
cess execution models through a build-time configuration
option affecting only a small fraction of the source, en-
abling a comparison between them. Fluke demonstrates
that the two models are not necessarily as different as they
have been considered to be in the past; however, they each
have strengths and weaknesses. Some processor archi-
tectures inherently favor the process model and process
model kernels are easier to make fully preemptible. Al-
though full preemptibility comes at a cost, this cost is as-
sociated with preemptibility, not with the process model
itself. Process model kernels use more per-thread ker-
nel memory, but this is unlikely to be a problem in prac-
tice except for power-constrained systems. We show that
while an atomic API is beneficial, the kernel’s internal
execution model is less important: an interrupt-based or-
ganization has a slight size advantage, whereas a process-
based organization has somewhat more flexibility.

Finally, contrary to conventional wisdom, our kernel
demonstrates that it is practical to use legacy process-
model code even within interrupt-model kernels. The key
is to run the legacy code inuser modebut in thekernel’s
address space.

Our key contributions in this work are: (i) To present a
kernel supporting a pure atomic API and demonstrate the
advantages and drawbacks of this approach. (ii) To ex-
plore the relationship between an “atomic API” and the

kernel’s execution model. (iii) To present the first com-
parison between the two kernelimplementationmodels
using a kernel that supports both in pure form, revealing
that the models are not necessarily as different as com-
monly believed. (iv) To show that it is practical to use
process-model legacy code in an interrupt-model kernel,
and to present several techniques for doing so.

The rest of the paper is organized as follows. In Section
2 we look at other systems, both in terms of the “atom-
icity” their API and in terms their execution models. In
Section 3 we define the two models more precisely, and
examine the implementation issues in each, looking at the
strengths and weaknesses each model brings to a kernel.
Fluke’s atomic API is detailed in Section 4. In the fol-
lowing section, we present six issues of importance to the
execution model of a kernel, with measurements based
on different configurations of the same kernel. The final
section summarizes our analysis.

2 Related Work
Related work is grouped into kernels with atomic or

near-atomic system call APIs and work related to kernel
execution models.

2.1 Atomic System Call API
The clean interruptibility and restartability ofinstruc-

tions is now recognized as a vital property of all mod-
ern processor architectures. However, this has not always
been the case; as Hennessy and Patterson state:

This last requirement is so difficult that com-
puters are awarded the titlerestartableif they
pass that test. That supercomputers and many
early microprocessors do not earn that badge of
honor illustrates both the difficulty of interrupts
and the potential cost in hardware complexity
and execution speed. [18]

Since kernel system calls appear to user-mode code es-
sentially as an extension of the processor architecture,
the OS clearly faces a similar challenge. However, few
operating systems have met this challenge nearly as thor-
oughly as processor architectures have.

For example, the Unix API [20] distinguishes between
“short” and “long” operations. “Short” operations such
as disk reads are made non-interruptible on the assump-
tion that they will complete quickly enough that the delay
will not be noticeable to the application, whereas “long”
operations are interruptible but, if interrupted, must be
restarted manually by the application. This distinction is
arbitrary and has historically been the source of numer-
ous practical problems. The case of disk reads from an
NFS server that has gone down is a well-known instance
of this problem: the arbitrarily long delays caused by the
network makes it inappropriate to treat the read operation

as “short,” but on the other hand these operations can-
not simply be changed to “long” and made interruptible
because existing applications are not written with the ex-
pectation of having to restart file reads.

The Mach API [1] implements I/O operations using
IPC; each operation is divided into an RPC-style request
and reply stage, and the API is designed so that the op-
eration can be cleanly interrupted after the request has
been sent but before the reply has been received. This
design reduces but does not eliminate the number of situ-
ations in which threads can get stuck in states that are not
cleanly interruptible and restartable. For example, a com-
mon remaining case is when a page fault occurs while
the kernel is copying the IPC message into or out of the
user’s address space; the IPC operation cannot be cleanly
interrupted and restarted at this point, but handling the
page fault may involve arbitrary delays due to communi-
cation with other user-mode servers or even across a net-
work. KeyKOS [6] comes very close to solving this prob-
lem by limiting all IPC operations to transfer at most one
page of data and performing this data transfer atomically;
however, in certain corner-case situations it gains prompt-
ness by sacrificing correctness.1 Amoeba [26] allows one
user-mode process (orcluster in Amoeba terminology)
to “freeze” another process for debugging purposes, but
processes cannot be frozen in certain situations such as
while waiting for an acknowledgement from another net-
work node. V [8, 32] allows one process to examine and
modify the state of another, but the retrieved state is in-
complete, and state modification is only allowed if the
target process is awaiting an IPC reply from the modify-
ing process.

In scheduler activations [2], user threads have no ker-
nel state at all when they are neither running on a proces-
sor in user-mode, nor blocked in the kernel on a system
call or page fault. However, threads blocked in system
calls have complex state that is represented by a “sched-
uler activation” kernel object just as it would be by a ker-
nel thread object; that state is not available to the user.

The Cache Kernel [9] and the Aegis [13] and Xok [22]
exokernels implement atomic kernel interfaces by re-
stricting the kernel API to managing extremely low-level
abstractions so that none of the kernel system calls ever
have any reason to block, and therefore they avoid the
need for handling restarts or interruptions. Although this
is a perfectly reasonable and compelling design strategy,
the somewhat higher-level Fluke API demonstrates that
strict atomicity can be implemented even in the pres-

1If the client’s data buffer into which an IPC reply is to be received
is paged out by a user-mode memory manager at the time the reply is
made, the kernel simply discards the reply message rather than allow-
ing the operation to be delayed arbitrarily long by a potentially unco-
operative user-mode pager. This usually was not a problem in practice
because most paging in the system is handled by the kernel, which is
trusted to service paging requests promptly.

ence of more complex operations which are not inher-
ently idempotent.

On the other side of the spectrum, the Incompatible
Time Sharing (ITS) operating system [12], developed in
the 1960s and 1970s at MIT for the DEC PDP-6 and PDP-
10 computers, demonstrated the feasibility of implement-
ing a fully atomic API at a much higher levels of abstrac-
tion than Fluke, implementing facilities such as process
control, file systems, and networking. ITS allowed all
system calls to be cleanly interrupted and restarted, rep-
resenting all aspects of a suspended computation in the
contents of a thread’s user-mode registers: in fact, this
property was a central principle of the system’s design
and substantial effort was made in the implementation to
achieve it. An unpublished memo [4] describes the de-
sign and implementation in detail, though to our knowl-
edge no formally published work has previously identi-
fied the benefits of an atomic API and explored the im-
plementation issues.

There are several systems which use concepts similar
to Fluke’s atomic system call API in different areas of
operating systems. Quicksilver [17] and Nonstop [3] are
transactional operating systems; in both of these systems,
the kernel provides primitives for maintaining transac-
tional semantics in a distributed system. In this way,
transactional semantics are provided for high-level ser-
vices such as file operations even though the basic ker-
nel operations on which they are built may not be. The
VINO [29] kernel uses transactions to maintain system
integrity when executing untrusted software extensions
downloaded into the kernel. These transactions make
graft invocations appear atomic, even though invocations
of the basic kernel API are not wrapped in transactions.

2.2 Kernel Execution Models
Many existing kernels have been built using either the

interrupt or the process model internally: for example,
most Unix systems use the process model exclusively,
whereas QNX [19], the Cache Kenrel, and the exokernels
use the interrupt model exclusively. Other systems such
as Firefly’s Taos [25, 28] were designed with a hybrid
model where threads often give up their kernel stacks in
particular situations but can retain them as needed to sim-
plify the kernel’s implementation. Minix [30] used kernel
threads to run process-model kernel activities such as de-
vice driver code, even though the kernel “core” used the
interrupt model. The V kernel was originally organized
around a pure interrupt model, but was later adapted by
Carter [7] to allow multiple kernel stacks while handling
page faults. The Mach 3.0 kernel [1] was taken in the
opposite direction: it was originally created in the pro-
cess model, but Draves [10, 11] later adapted it to use a
partial interrupt model by adding continuations in key lo-
cations in the kernel and by introducing a “stack handoff”
mechanism. However, not all kernel stacks for suspended

threads were eliminated. Draves et. al. also identified the
optimization ofcontinuation recognition, which exploits
explicit continuations to recognize the computation a sus-
pended thread will perform when resumed, and do part
or all of that work by mutating the thread’s state with-
out transferring control to the suspended thread’s context.
Though it was used to good effect within the kernel, user-
mode code could not take advantage of this optimization
technique because the continuation information was not
available to the user. In Fluke, the continuation is explicit
in the user-mode thread state, giving the user a full, well-
defined picture of the thread’s state.

The ITS system used the process model of execution,
each thread always having a private kernel stack that the
kernel switched to and from for normal blocking and pre-
emption. To ensure the API’s atomicity guarantee, im-
plementations of system calls were required to explicitly
update the user register state to reflect partial completion
of the operation, or to register special cleanup handlers to
do so for a system call interrupted during a block. Once
a system call blocked, an interruption would discard all
context except the user registers,2 and run these special
cleanup handlers. The implementation burden of these
requirements was eased by the policy that each user mem-
ory page touched by system call code was locked in core
until the system call completed or was cleaned up and
discarded.

We are not aware of any previous kernel that simul-
taneously supported both the “pure” interrupt model and
the “pure” process model through a compile-time config-
uration option.

3 The Interrupt and Process Models

An essential feature of operating systems is managing
many computations on a smaller number of processors,
typically just one. Each computation is represented in the
OS by a thread of control. When a thread is suspended
either because it blocks awaiting some event or is pre-
empted when the scheduler policy chooses another thread
to run, the system must record the suspended thread’s
state so that it can continue operation later. The way an
OS kernel represents the state of suspended threads is a
fundamental aspect of its internal structure.

In theprocess modeleach thread of control in the sys-
tem has its own kernel stack. When a thread makes a
system call or is interrupted, the processor switches to
the thread’s assigned kernel stack and executes an appro-
priate handler in the kernel’s address space. This handler
may at times cause the thread to go to sleep waiting for
some event, such as the completion of an I/O request;

2Each ITS thread (or “job”) also had a small set of “user variables”
that acted as extra “pseudo-registers” containing additional parameters
for certain system calls. Fluke uses a similar mechanism on the x86
because it has so few registers.

at these times the kernel may switch to a different thread
having its own separate kernel stack state, and then switch
back later when the first thread’s wait condition is satis-
fied. The important point is that each thread retains its
kernel stack state even while it is sleeping, and therefore
has an implicit “execution context” describing what op-
eration it is currently performing. Threads may even hold
kernel resources, such as locks or allocated memory re-
gions, as part of this implicit state they retain while sleep-
ing.

An interrupt modelkernel, on the other hand, uses only
one kernel stack per processor—for typical uniproces-
sor kernels, just one kernel stack. This stack only holds
state related to thecurrently runningthread; no state is
stored for sleeping threads other than the state explicitly
encoded in its thread control block or equivalent kernel
data structure. Context switching from one thread to an-
other involves “unwinding” the kernel stack to the begin-
ning and starting over with an empty stack to service the
new thread. In practice, putting a thread to sleep often in-
volves explicitly saving state relating to the thread’s oper-
ation, such as information about the progress it has made
in an I/O operation, in acontinuationstructure. This con-
tinuation information allows the thread to continue where
it left off once it is again awakened. By saving the re-
quired portions of the thread’s state, it essentially per-
forms the function of the per-thread kernel stack in the
process model but without the overhead of a full kernel
stack.

3.1 Kernel Structure vs. Kernel API
The internal thread handling model employed by the

kernel is not the only factor in choosing a kernel design.
There tends to be a strong correlation between the ker-
nel’s execution model and thekinds of operations pre-
sented by the kernel to application code in the kernel’s
API. Interrupt-model kernels tend to export short, simple,
atomic operations that don’t require large, complicated
continuations to be saved to keep track of a long running
operation’s kernel state. Process-model kernels tend to
export longer operations with more stages because they
are easy to implement given a separate per-thread stack
and they allow the kernel to get more work done in one
system call. There are exceptions, however; in particular,
ITS used one small (40 word) stack per thread despite its
provision of an atomic API. [5]

Thus, in addition to the execution model of the ker-
nel itself, a distinction can be drawn between an atomic
API, in which kernel operations are designed to be short
and simple so that the state associated with long-running
activities can be maintained mostly by the application
process itself, and a conventional API, in which opera-
tions tend to be longer and more complex and their state
is maintained by the kernel invisibly to the application.
This stylistic difference between kernel API designs is

analogous to the “CISC to RISC” shift in processor ar-
chitecture design, in which complex, powerful operations
are broken into a series of simpler instructions with more
state exposed through a wider register file.

Fluke exports a fully interruptible and restartable
(“atomic”) API, in which there are no implicit thread
states relevant to, but not visible and exportable to appli-
cation code. Furthermore, Fluke’s implementation can be
configured at compile-time to use either execution model
in its pure form (i.e., either exactly one stack per proces-
sor or exactly one stack per thread); to our knowledge it
is the first kernel to do so. In fact, it is Fluke’s atomic API
that makes it relatively simple for the kernel to run using
either organization: the difference in the kernel code for
the two models amounts to only about two hundred as-
sembly language instructions in the system call entry and
exit code, and about fifty lines of C in the context switch-
ing, exception frame layout, and thread startup code. This
code deals almost exclusively with stack handling. The
configuration option to select between the two models
has no impact on the functionality of the API. Note that
the current implementation of Fluke is not highly opti-
mized, and more extensive optimization would naturally
tend to interfere with this configurability since many ob-
vious optimizations depend on one execution model or
the other: e.g., the process model implementation could
avoid rolling back and restarting in certain cases, whereas
the interrupt model implementation could avoid returning
through layers of function calls by simply truncating the
stack on context switches. However, similar optimiza-
tions generally apply in either case even though they may
manifest differently depending on the model, so we be-
lieve that despite this caveat, Fluke still provides a valu-
able testbed for analyzing these models. The API and
implementation model properties of the Fluke kernel and
their relationships are discussed in detail in the following
sections.

4 Properties of an Atomic API
An atomic API provides four important and desirable

properties: prompt and correct exportability of thread
state, and fullinterruptibility andrestartabilityof system
calls and other kernel operations. To illustrate these basic
properties, we will contrast the Fluke API with the more
conventional APIs of the Mach and Unix kernels.

4.1 Promptness and Correctness
The Fluke system call API supports the extraction, ex-

amination, and modification of the state of any thread by
any other thread (assuming the requisite access checks
are satisfied). The Fluke API requires the kernel to ensure
that one thread always be able to manipulate the state of
another thread in this way without being held up indef-
initely as a result of the target thread’s activities or its

interactions with other threads in the system. Such state
manipulation operations can be delayed in some cases,
but only by activities internal to the kernel that do not
depend on the promptness of other untrusted application
threads; this is the API’spromptnessrequirement. For
example, if a thread is performing an RPC to a server
and is waiting for the server’s reply, its state must still be
promptly accessible to other threads without delaying the
operation until the reply is received.

In addition, the Fluke API requires that, if the state of
an application thread is extracted at an arbitrary time by
another application thread, and then the target thread is
destroyed, re-created from scratch, and reinitialized with
the previously extracted state, the new thread must be-
have indistinguishably from the original, as if it had never
been touched in the first place. This is the API’scorrect-
nessrequirement.

Fulfilling only one of the promptness and correctness
requirements is fairly easy for a kernel to do, but strictly
satisfying both is more difficult. For example, if prompt-
ness is not a requirement, and the target thread is blocked
in a system call, then thread manipulation operations on
that target can simply be delayed until the system call is
completed. This is the approach generally taken by de-
bugging interfaces such as Unix’sptrace and /proc
facilities [20], for which promptness is not a primary
concern—e.g., if users are unable to stop or debug a pro-
cess because it is involved in a non-interruptible NFS
read, they will either just wait for the read to complete
or do something to cause it to complete sooner—such as
rebooting the NFS server.

Similarly, if correctness is not an absolute requirement,
then if one thread tries to extract the state of another
thread at an inconvenient time, the kernel can simply re-
turn the target thread’s “last known” state in hopes that it
will be “good enough.” This is the approach taken by the
Mach 3.0 API, which provides athread abort sys-
tem call to forcibly break a thread out of a system call in
order to make its state accessible; this operation is guar-
anteed to be prompt, but in some cases may affect the
state of the target thread so that it will not behave prop-
erly if it is ever resumed. To support process migration,
the OSF later added athread abort safely system
call [27] which provides correctness, but at the expense
of promptness.

Prompt and correct state exportability are required to
varying degrees in different situations. For process con-
trol or debugging, correctness is critical since the target
thread’s state must not be damaged or lost; promptness
is not as vital since the debugger and target process are
under the user’s direct control, but a lack of promptness
is often perceptible and causes confusion and annoyance
to the user. For conservative garbage collectors which
must check an application thread’s stack and registers for

pointers, correctness is not critical as long as the “last-
known” register state of the target thread is available.
Promptness, on the other hand, is important because with-
out it the garbage collector could be blocked for an arbi-
trary length of time, causing resource shortages for other
threads or even deadlock. User-level checkpointing, pro-
cess migration, and similar services clearly require cor-
rectness, since without it the state of re-created threads
may be invalid; promptness is also highly desirable and
possibly critical if the risk of being unable to checkpoint
or migrate an application for arbitrarily long periods of
time is unacceptable. Mission critical systems often em-
ploy an “auditor” daemon which periodically wakes up
and tests each of the system’s critical threads and data
structures for integrity, which is clearly only possible if a
correct snapshot of the system’s state is available without
unbounded delay. Common user-mode deadlock detec-
tion and recovery mechanisms similarly depend on ex-
amination of the state of other threads. In short, although
real operating systems often get away with providing un-
predictable or not-quite-correct thread control semantics,
in general promptness and correctness are highly desir-
able properties.

4.2 Atomicity and Interruptibility
One natural implication of the Fluke API’s prompt-

ness and correctness requirements for thread control is
that all system calls a thread may make must either ap-
pear completelyatomic, or must be cleanly divisible into
user-visible atomic stages.

An atomic system call is one that always completes
“instantaneously” as far as user code is concerned. If a
thread’s state is extracted by another thread while the tar-
get thread is engaged in an atomic system call, the kernel
will either allow the system call to complete, or will trans-
parently abort the system call and roll the target thread
back to its original state just before the system call was
started. (This contrasts with the Unix and Mach APIs,
for example, where user code is responsible for restarting
interrupted system calls. In Mach, the restart code is part
of the Mach library that normally wraps kernel calls; but
there are intermediate states in which system calls cannot
be interrupted and restarted, as discussed below.)

Because of the promptness requirement, the Fluke ker-
nel can only allow a system call to complete if the tar-
get thread is not waiting for any event produced by some
other user-level activity; the system call must be cur-
rently running (i.e., on another processor) or it must be
waiting on some kernel-internal condition that is guar-
anteed to be satisfied “soon” without any user-mode in-
volvement. For example, a short, simple operation such
as Fluke’s equivalent ofgetpid will always be allowed
to run to completion; whereas sleeping operations such
asmutex lock are interrupted and rolled back.

While many Fluke system calls can easily be made

atomic in this way, others fundamentally require the pres-
ence of intermediate states. For example, there is an IPC
system call that a thread can use to send a request mes-
sage and then wait for a reply. Another thread may at-
tempt to access the thread’s state after the request has
been sent but before the reply is received; if this hap-
pens, the request clearly cannot be “un-sent” because it
has probably already been seen by the server; however,
the kernel can’t wait for the reply either since the server
may take arbitrarily long to reply. Mach addressed this
scenario by allowing an IPC operation to be interrupted
between the send (request) and receive (reply) operations,
later restarting the receive operation from user mode.

A more subtle problem is page faults that may occur
while transferring IPC messages. Since Fluke IPC does
not arbitrarily limit the size of IPC messages, faulting IPC
operations cannot simply be rolled back to the beginning.
Additionally, the kernel cannot hold off all accesses to the
faulting thread’s state, since page faults may be handled
by user-mode servers. In Mach, a page fault during an
IPC transfer can cause the system call to block until the
fault is satisfied (an arbitrarily long period).

Fluke’s atomic API allows the kernel to update system
call parameters in place in the user-mode registers to re-
flect the data transferred prior to the fault. Thus, while
waiting for the fault to be satisfied both threads are left
in the well-defined state of having transferred some data
and about to start an IPC to transfer more. The API for
Fluke system calls is directly analogous to the interface
of machine instructions that operate on large ranges of
memory, such as the block-move and string instructions
on machines such as the Intel x86 [21]. The buffer ad-
dresses and sizes used by these instructions are stored in
registers, and the instructions advance the values in these
registers as they work. When the processor takes an inter-
rupt or page fault during a string instruction, the param-
eter registers in the interrupted processor state have been
updated to indicate the memory about to be operated on,
and the program counter remains at the faulting string in-
struction. When the fault is resolved, simply jumping to
that program counter with that register state resumes the
string operation in the exact spot it left off.

Table 1 breaks the Fluke system call API into four
categories, based on the potential length of each system
call. “Trivial” system calls are those that will always run
to completion without putting the thread to sleep. For
example, Fluke’sthread self (analogous to Unix’s
getpid) will always fetch the current thread’s identi-
fier without blocking. “Short” system calls usually run to
completion immediately, but may encounter page faults
or other exceptions during processing. If an exception
happens then the system call will roll back and restart.
“Long” system calls are those that can be expected to
sleep for an extended period of time (e.g., waiting on a

Type Examples Count Percent

Trivial thread self 8 7%
Short mutex trylock 68 64%
Long mutex lock 8 7%
Multi-stage cond wait , IPC 23 22%

Total 107 100%

Table 1:Breakdown of the number and types of system calls in
the Fluke API. “Trivial” system calls always run to completion.
“Short” system calls usually run to completion immediately, but
may roll back. “Long” system calls can be expected to sleep
indefinitely. “Multi-stage” system calls can be interrupted at
intermediate points in the operation.

condition variable). “Multi-stage” system calls are those
that can cause the calling thread to sleep indefinitely and
can be interrupted at various intermediate points in the
operation.

Except for cond wait and region search —a
system call which can be passed an arbitrarily large re-
gion of memory—all of the multi-stage calls in the Fluke
API are IPC-related. Most of these calls simply repre-
sent different options and combinations of the basic send
and receive primitives. Although all of these entrypoints
could easily be rolled into one, as is done in Mach, the
Fluke API’s design gives preference to exporting several
simple, narrow entrypoints with few parameters rather
than one large, complex entrypoint with many parame-
ters. This approach enables the kernel’s critical paths to
be streamlined by eliminating the need to test for vari-
ous options. However, the issue of whether system call
options are represented as additional parameters or as
separate entrypoints is orthogonal to the issue of atom-
icity and interruptibility; the only difference is that if a
multi-stage IPC operation in Fluke is interrupted, the ker-
nel may occasionally modify the user-mode instruction
pointer to refer to a different system call entrypoint in
addition to updating the other user-mode registers to in-
dicate the amount of data remaining to be transferred.

In [31] we more fully discuss the consequences of pro-
viding an atomic API. In summary, the purely atomic
API greatly facilitates the job of user-level checkpoint-
ers, process migrators, and distributed memory systems.
The correct, prompt access to all relevant kernel state of
any thread in a system makes user-level managers them-
selves correct and prompt. Additionally, the clean, uni-
form management of thread state in an atomic API frees
the managers from having to detect and handle obscure
corner cases. Finally, such an API simplifies the kernel
itself and is fundamental to allowing the kernel imple-
mentation easily to use either the process or the interrupt
model; this factor will be discussed in Section 5.

Object Description

Mutex A kernel-supported mutex which is safe for
sharing between processes.

Cond A kernel-supported condition variable.
Mapping Encapsulates an imported region of mem-

ory; associated with a Space (destination)
and Region (source).

Region Encapsulates an exportable region of mem-
ory; associated with a Space.

Port Server-side endpoint of an IPC.
Portset A set of Ports on which a server thread waits.
Space Associates memory and threads.
Thread A thread of control, associated with a Space.
Reference A cross-process handle on a Mapping, Re-

gion, Port, Thread or Space. Most often used
as a handle on a Port that is used for initiat-
ing client-side IPC.

Table 2:The primitive object types exported by the Fluke ker-
nel.

4.3 Examples from Fluke
The Fluke kernel directly supports nine primitive ob-

ject types, listed in Table 2. All types support a common
set of operations including create, destroy, “rename,”
“point-a-reference-at,” “getobjstate,” and “setobjstate.”
Obviously, each type also supports operations specific
to its nature; for example, a Mutex supports lock and
unlock operations (the complete API is documented
in [15]). The majority of kernel operations are trans-
parently restartable. For example,port reference ,
a “short” system call, takes a Port object and a Reference
object and “points” the reference at the port. If either ob-
ject is not currently mapped into memory3, a page fault
IPC will be generated by the kernel after which the ref-
erence extraction will be restarted. In all such cases page
faults are generated very early in the system call, so little
work is thrown away and redone.

Simple operations that restart after an error are fairly
uninteresting. The more interesting ones are those that
update their parameters, or even the system call entry
point, to record partial success of the operation. The sim-
plest example of this is thecond wait operation which
atomically blocks on a condition variable, releasing the
associated mutex, and, when the calling thread is wo-
ken, reacquires the mutex. In Fluke, this operation is
broken into two stages: thecond wait portion and the
mutex lock . To represent this, before a thread sleeps
on the condition variable, the thread’s user-mode instruc-
tion pointer is adjusted to point at themutex lock entry
point, and the mutex argument is put into the appropriate

3In Fluke, kernel objects are mapped into the address space of an
application with the virtual address serving as the “handle” and memory
protections providing access control.

register for the new entrypoint. Thus, if the thread is in-
terrupted or awoken it will automatically retry the mutex
lock and not the whole condition variable wait.

An example of a system call that updates its parame-
ters is theipc client send system call, which sends
data on an already established IPC connection to a wait-
ing server thread. The call might either be the result
of an explicit invocation by user code, or its invocation
could have been caused implicitly by the kernel due to the
earlier interruption of a longer operation such asipc -
client connect send , which establishes a new IPC
connection and then sends data across it. Regardless of
how ipc client send was called, at the time of entry
one well-defined processor register contains the number
of words to transfer and another register contains the ad-
dress of the data buffer. As the data are transferred, the
pointer register is incremented and the word count reg-
ister decremented to reflect the new start of the data to
transfer and the new amount of data to send. For exam-
ple, if an IPC tries to send 8,192 bytes starting from ad-
dress0x08001800 and successfully transfers the first
6,144 bytes and then causes a page fault, the registers
will be updated to reflect a 2,048 byte transfer starting
at address0x08003000 . Thus, the system call can
be cleanly restarted without redoing any transfers. The
IPC connection state itself is stored as part of the current
thread’s control block in the kernel so it is not passed as
an explicit parameter, though that state too is cleanly ex-
portable through a different mechanism. Interfaces of this
type are relatively common in Fluke, and the majority of
the IPC interfaces exploit both parameter and program
counter manipulation.

4.4 Disadvantages of an Atomic API
This discussion reveals several potential disadvantages

of an atomic API:

Design effort required: The API must be carefully de-
signed so that all intermediate kernel states in which a
thread may have to wait indefinitely can be represented
in the explicit user-accessible thread state. Although the
Fluke API demonstrates that this can be done, in our ex-
perience it does take considerable effort. As a simple
example, consider the requirement that updatable sys-
tem call parameters be passed in registers. If instead
parameters were passed on the user-mode stack, modi-
fying one might cause a page fault—an indefinite wait—
potentially exposing an inconsistent intermediate state.

API width : Additional system call entrypoints (or ad-
ditional options to existing system calls) may be re-
quired to represent these intermediate states, effectively
widening the kernel’s API. For example, in the Fluke
API, there are five system calls that are rarely called di-
rectly from user-mode programs, and are instead usu-
ally only used as “restart points” for interrupted kernel

Actual Cause of Exception Cost to Cost to
Remedy Rollback

Client-side soft page fault 18.9 none
Client-side hard page fault 118 2.2
Server-side soft page fault 29.3 2.5
Server-side hard page fault 135 6.8

Table 3:Breakdown of restart costs in microseconds for pos-
sible kernel-internal exceptions during a reliable IPC trans-
fer, the area of the kernel with the most internal syn-
chronization (specifically,ipc client connect send -
over receive). “Actual Cause” describes the reason the ex-
ception was raised: either a “soft” page fault (one for which the
kernel can derive a page table entry based on an entry higher
in the memory mapping hierarchy) or a “hard” page fault (re-
quiring an RPC to a user-level memory manager) in either the
client or server side of the IPC. “Cost to Rollback” is roughly
the amount of work thrown away and redone, while “Cost to
Remedy” approximates the amount of work needed to service
the fault. Results were obtained on a 200-Mhz Pentium Pro
with the Fluke kernel configured using a process model without
kernel thread preemption.

operations. However, we have found in practice that
although these seldom-used entrypoints are mandated
by the fully-interruptible API design, they are also di-
rectly useful to some applications; there are no Fluke
entrypoints whose purpose is solely to provide a pure
interrupt-model API.

Thread state size: Additional user-visible thread state
may be required. For example, in Fluke on the x86,
due to the shortage of processor registers, two 32-bit
“pseudo-registers” implemented by the kernel are in-
cluded in the user-visible thread state frame to hold in-
termediate IPC state. These pseudo-registers add a little
more complexity to the API, but they never need to be
accessed directly by user code except when saving and
restoring thread state, so they do not in practice cause a
performance burden.

Overhead from Restarting Operations: During some
system calls, various events can cause the thread’s state
to be rolled back, requiring a certain amount of work to
be re-done later. Our measurements, summarized in Ta-
ble 3, show this not to be a significant cost. Application
threads rarely access each other’s state (e.g., only during
the occasional checkpoint or migration), so although it
is important for this to be possible, it is not the com-
mon case. The only other situation in which threads are
rolled back is when an exception such as a page fault oc-
curs, and in such cases, the time required to handle the
exception invariably dwarfs the time spent re-executing
a small piece of system call code later.

Architectural bias : Certain older processor architec-
tures make it impossible for the kernel to provide cor-

rect and prompt state exportability, because the proces-
sor itself does not do so. For example, the Motorola
68020/030 saved state frame includes some undocu-
mented fields whose contents must be kept unmodified
by the kernel; these fields cannot safely be made acces-
sible and modifiable by user-mode software, and there-
fore a thread’s state can never be fully exportable when
certain floating-point operations are in progress. How-
ever, most other architectures, including the x86 and
even other 68000-class processors, such as the 68040,
do not have this problem.

In practice, none of these disadvantages has caused us
significant problems in comparison to the benefits of cor-
rect, prompt state exportability.

5 Kernel Execution Models
We now return to the issue of the execution model used

in a kernel’simplementation. While there is typically a
strong correlation between a kernel’s API and its internal
execution model, in many ways these issues are indepen-
dent. In this section we report our experiments with Fluke
and, previously, with Mach, that demonstrate the follow-
ing findings.

Exported API : A process-model kernel can easily im-
plement either style of API, but an interrupt-model ker-
nel has a strong “preference” for an atomic API.

Preemptibility : It is easier to make a process-model
kernel preemptible, regardless of the API it exports;
however, it is easy to make interrupt-model kernels
partly preemptible by adding preemption points.

Performance: Depending on the application running
on the kernel, either a process-model or interrupt-model
kernel can be faster, but not by much. In terms of pre-
emption latency, an interrupt-model kernel can perform
as well as an equivalently configured process-model ker-
nel, but a fully-preemptible process-model kernel pro-
vides the lowest latency.

Memory use: Naturally, process-model kernels use
more memory because of the larger number of kernel
stacks in the system; on the other hand, the size of ker-
nel stacks sometimes can be reduced to minimize this
disadvantage.

Architectural bias : Some CISC architectures that insist
on providing automatic stack handling, such as the x86,
are fundamentally biased towards the process model,
whereas most RISC architectures support both models
equally well.

Legacy code: Since most existing, robust, easily avail-
able OS code, such as device drivers and file systems,
is written for the process model, it is easiest to use this
legacy code in process-model kernels. However, it is
also possible to use this code in interrupt-model kernels
with a slight performance penalty.

msg_send_rcv(msg, option,
send_size, rcv_size, ...) {

rc = msg_send(msg, option,
send_size, ...);

if (rc != SUCCESS)
return rc;

rc = msg_rcv(msg, option, rcv_size, ...);
return rc;

}

Figure 2:An example IPC send and receive path in a process
model kernel. Any waiting or fault handling during the opera-
tion must keep the kernel stack bound to the current thread.

The following sections discuss these issues in detail and
provide concrete measurement results where possible.

5.1 Exported API
In kernels with medium-to-high level API’s, one of

the most common objections to the interrupt-based ex-
ecution model is that it requires the kernel to maintain
explicit continuations. Our observation is that contin-
uations are not a fundamental property of an interrupt-
model kernel, but instead are the symptom of the mis-
match between the kernel’s API and its implementation.
In brief, an interrupt-model kernel only requires contin-
uations when implementing a conventional API; when
an interrupt-model kernel serves an atomic API,explicit
user-visible register state of a thread acts as the “continu-
ation.”

Continuations
To illustrate this difference, consider the IPC pseu-

docode fragments in Figures 2, 3, and 4. The first shows a
very simplified version of a combined IPC message send-
and-receive system call similar to themach msg trap
system call inside the original process-model Mach 3.0
kernel. The code first calls a subroutine to send a mes-
sage; if that succeeds, it then calls a second routine to
receive a message. If an error occurs in either stage, the
entire operation is aborted and the system call finishes by
passing a return code back to the user-mode caller. This
structure implies that any exceptional conditions that oc-
cur along the IPC path that should not cause the operation
to be completely aborted, such as the need to wait for an
incoming message or service a page fault, must be han-
dled completely within these subroutines by blocking the
current thread while retaining its kernel stack. Once the
msg send rcv call returns, the system call is complete.

Figure 3 shows pseudocode for the same IPC path
modified to use a partial interrupt-style execution envi-
ronment, as was done by Draves in the Mach 3.0 contin-
uations work [10, 11]. The first stage of the operation,
msg send , is expected to retain the current kernel stack,
as above; any page faults or other temporary conditions

msg_send_rcv(msg, option,
send_size, rcv_size, ...) {

rc = msg_send(msg, option,
send_size, ...);

if (rc != SUCCESS)
return rc;

cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;
...

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);

return rc;
}

msg_rcv_continue(cur_thread) {
msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;
...

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue);

return rc;
}

Figure 3:Example interrupt model IPC send and receive path.
State defining the “middle” of the send-receive is saved away
by the kernel aftermsg send in the case that themsg rcv is
interrupted. Special code,msg rcv continue , is needed to
handle restart from a continuation.

during this stage must be handled in process-model fash-
ion, without discarding the stack. However, in the com-
mon case where the subsequent receive operation must
wait for an incoming message, themsg rcv function can
discard the kernel stack while waiting. When the wait is
satisfied or interrupted, the thread will be given a new
kernel stack and themsg rcv continue function will
be called to finish processing themsg send rcv system
call. The original parameters to the system call must be
saved explicitly in a continuation structure in the current
thread, since they are not retained on the kernel stack.

Note that although this modification partly changes the
system call to have an interrupt modelimplementation,
it still retains its conventionalAPI semanticsas seen by
user code. For example, if another thread attempts to ex-
amine this thread’s state while it is waiting continuation-
style for an incoming message, the other thread will ei-
ther have to wait until the system call is completed, or
the system call will have to be aborted, causing loss of
state.4 This is because the thread’s continuation structure,

4In this particular situation in Mach, themach msg trap opera-
tion gets aborted with a special return code; standard library user-mode
code can detect this situation and manually restart the IPC. However,
there are many other situations, such as page faults occurring along
the IPC path while copying data, which, if aborted, cannot be reliably
restarted in this way.

msg_send_rcv(cur_thread) {
rc = msg_send(cur_thread);
if (rc != SUCCESS)

return rc;

set_pc(cur_thread, msg_rcv_entry);
rc = msg_rcv(cur_thread);

if (rc != SUCCESS)
return rc;

return SUCCESS;
}

Figure 4: Example IPC send and receive path for a kernel
exporting an atomic API. Theset pc operation effectively
serves the same purpose as saving a continuation, using the
user-visible register state as the storage area for the continua-
tion. Exposing this state to user mode as part of the API pro-
vides the benefits of a purely atomic API and eliminates much
of the traditional complexity of continuations. The kernel never
needs to save parameters or other continuation state on entry
because it is already in the thread’s user-mode register state.

including the continuation function pointer itself (point-
ing tomsg rcv continue), is part of the thread’s log-
ical state but is inaccessible to user code.

Interrupt-Model Kernels Without Continuations
Finally, contrast these two examples with correspond-

ing code in the style used throughout the Fluke kernel,
shown in Figure 4. Although this code at first appears
very similar to the code in Figure 2, it has several fun-
damental differences. First, system call parameters are
passed in registers rather than on the user stack. The sys-
tem call entry and exit code saves the appropriate reg-
isters into the thread’s control block in a standard for-
mat, where the kernel can read and update the parame-
ters. Second, since the system call parameters are stored
in the register save area of the thread’s control block,
no unique, per-system call continuation state is needed.
Third, when an internal system call handler returns a
nonzero result code, the system call exit layer doesnot
simply complete the system call and pass this result code
back to the user. Return values in the kernel are only
used forkernel-internalexception processing; results in-
tended to be seen by user code are returned by modify-
ing the thread’s saved user-mode register state. Finally,
if the msg send stage inmsg send rcv completes
successfully, the kernel updates the user-mode program
counter to point to the user-mode system call entrypoint
for msg rcv before proceeding with themsg rcv stage.
Thus, if themsg rcv must wait or encounters a page
fault, it can simply return an appropriate (kernel-internal)
result code. The thread’s user-mode register state will
be left so that when normal processing is eventually re-
sumed, themsg rcv system call will automatically be
invoked with the appropriate parameters to finish the IPC

operation.

The upshot of this is that in the Fluke kernel, the
thread’s explicit user-mode register state acts as the “con-
tinuation,” allowing the kernel stack to be thrown away
or reused by another thread if the system call must wait
or handle an exception. Since a thread’s user-mode reg-
ister state isexplicit and fully visible to user-mode code,
it can be exported at any time to other threads, thereby
providing the promptness and correctness properties re-
quired by the atomic API. Furthermore, this atomic API
in turn simplifies the interrupt model kernel implementa-
tion to the point of being almost as simple and clear as
the original process model code in Figure 2.

5.2 Preemptibility

Although the use of an atomic API greatly reduces the
kernel complexity and the burden traditionally associated
with interrupt-model kernels, there are other relevant fac-
tors as well, such as kernel preemptibility. Low preemp-
tion latency is a desirable kernel characteristic, and is
critical in real-time systems and in microkernels such as
L3 [23] and VSTa [33] that dispatch hardware interrupts
to device drivers running as ordinary threads (in which
case preemption latency effectively becomes interrupt-
handling latency). Since preemption can generally occur
at any time while running in user mode, it is the kernel it-
self that causes preemption latencies that are greater than
the hardware minimum.

In a process-model kernel that already supports multi-
processors, it is often relatively straightforward to make
most of the kernel preemptible by changing spin locks
into blocking locks (e.g., mutexes). Of course, a cer-
tain core component of the kernel, which implements
scheduling and preemption itself, must still remain non-
preemptible. Implementing kernel preemptibility in this
manner fundamentally relies on kernel stacks being re-
tained by preempted threads, so it clearly would not work
in a pure interrupt-model kernel. The Fluke kernel can be
configured to support this form of kernel preemptibility
in the process model.

Even in an interrupt model kernel, important parts of
the kernel can often be made preemptible as long as pre-
emption is carefully controlled. For example, in micro-
kernels that rely heavily on IPC, many long-running ker-
nel operations tend to be IPCs that copy data from one
process to another. It is relatively easy to support par-
tial preemptibility in a kernel by introducingpreemption
pointsin select locations, such as on the data copy path.
Besides supporting full kernel preemptibility in the pro-
cess model, the Fluke kernel also supports partial pre-
emptibility in both execution models. QNX [19] is an ex-
ample of another existing interrupt model kernel whose
IPC path is made preemptible in this fashion.

Configuration Description

Process NP Process model with no kernel preemption.
Requires no kernel-internal locking. Com-
parable to a uniprocessor Unix system.

Process PP Process model with “partial” kernel pre-
emption. A single explicit preemption
point is added on the IPC data copy path,
checked after every 8k of data is trans-
ferred. Requires no kernel locking.

Process FP Process model with full kernel preemp-
tion. Requires blocking mutex locks for
kernel locking.

Interrupt NP Interrupt model with no kernel preemp-
tion. Requires no kernel locking.

Interrupt PP Interrupt model with partial preemption.
Uses the same IPC preemption point as in
Process PP. Requires no kernel locking.

Table 4:Labels and characteristics for the different Fluke ker-
nel configurations used in test results.

5.3 Performance
The Fluke kernel supports a variety of build-time con-

figuration options that control the execution model of
the kernel; by comparing different configurations of the
same kernel, we can analyze the properties of these dif-
ferent execution models. We explore kernel configura-
tions along two axes: interrupt versus process model and
full versus partial (explicit preemption points) versus no
preemption. Since full kernel preemptibility requires the
ability to block within the kernel and is therefore incom-
patible with the interrupt model, there are five possible
configurations, summarized in Table 4.

Table 5 shows the relative performance of three appli-
cations on the Fluke kernel under various kernel config-
urations. For each application, the execution times for
all kernel configurations are normalized to the execution
time of that application on the “base” configuration: pro-
cess model with no kernel preemption. For calibration,
the raw execution time is given for the base configura-
tion. The non-fully-preemptible kernels were run both
with and without partial preemption support on the IPC
path. All tests were run on a 200MHz Pentium Pro PC
with 256KB L2 cache and 64MB of memory. The appli-
cations measured are:

Flukeperf: A series of tests to time various synchro-
nization and IPC primitives. It performs a large number
of kernel calls and context switches.

Memtest: Accesses 16MB of memory one byte at a time
sequentially. Memtest runs under a memory manager
which allocates memory on demand, exercising kernel
fault handling and the exception IPC facility.

Gcc: Compile a single .c file. This test include running
the front end, the C preprocessor, C compiler, assembler

Configuration memtest flukeperf gcc

Process NP
1.00 1.00 1.00

(2884ms) (7120ms) (7150ms)
Process PP 1.00 1.01 1.03
Process FP 1.11 1.20 1.05
Interrupt NP 1.00 0.94 1.03
Interrupt PP 1.00 0.94 1.03

Table 5: Performance of three applications on various config-
urations of Fluke kernel. Execution time is normalized to the
performance of the process-model kernel without kernel pre-
emption (Process NP) for which absolute times are also given.

and linker to produce a runnable Fluke binary.

As expected, performance of a fully-preemptible kernel
is somewhat worse than the other configurations due to
the need for kernel locking. The extent of the degrada-
tion varies from 20% for the kernel-intensiveflukeperf
test to only 5% for the more user-mode orientedgcc.
Otherwise, the interrupt and process model kernels are
nearly identical in performance except for theflukeperf
case. Influkeperfwe are seeing a positive effect of an
interrupt model kernel implementation. Since a thread
will restart an operation after blocking rather than resum-
ing from where it slept in the kernel, there is no need to
save the thread’s kernel-mode register state on a context
switch. In Fluke this translates to eliminating six 32-bit
memory reads and writes on every context switch.

Because the applications shown are all single-threaded,
the results in Table 5 do not realistically reflect the im-
pact of preemption. To measure the effect of the execu-
tion model on preemption latency, we introduce a sec-
ond, high-priority kernel thread which is scheduled every
millisecond, and record its observed preemption latencies
during a run offlukeperf. The flukeperf application is
used because it performs a number of large, long running
IPC operations ideal for inducing preemption latencies.

Table 6 summarizes the experiment. The first two
columns are the average and maximum observed latency
in microseconds. The last two columns of the table show
the number of times the high-priority kernel thread ran
over the course of the application and the number of times
it could not be scheduled because it was still running or
queued from the previous interval. As expected, the fully-
preemptible (FP) kernel permits much smaller and pre-
dictable latencies and allowed the high-priority thread to
run without missing an event. The non-preemptible (NP)
kernel configuration exhibits highly variable latency for
both the process and interrupt model causing a large num-
ber of missed events. Though we implement only a sin-
gle explicit preemption point on the IPC data copy path,
the partial preemption (PP) configuration fares well on
this benchmark. This result is not surprising given that
the benchmark performs a number of large IPC opera-

flukeperf
Configuration latency schedules

avg max run miss
Process NP 28.9 7430 7594 132
Process PP 18.0 1200 7805 5
Process FP 5.14 19.6 9212 0
Interrupt NP 30.4 7356 7348 141
Interrupt PP 18.7 1272 7531 7

Table 6: Effect of execution model on preemption latency.
We measure the average and maximum time (�s) required for
a periodic high-priority kernel thread to start running after be-
ing scheduled, while competing with lower-priority application
threads. Also shown is the number of times the kernel thread
runs during the lifetime of the application and the number of
times it failed to complete before the next scheduling interval.

tions, but it illustrates that a few well-placed preemption
points can greatly reduce preemption latency in an other-
wise nonpreemptible kernel.

5.4 Memory Use
One of the perceived benefits of the interrupt model

is the memory saved by having only one kernel stack
per processor rather than one per thread. For example,
Mach’s average per-thread kernel memory overhead was
reduced by 85% when the kernel was changed to use a
partial interrupt model [10, 11]. Of course, the overall
memory used in a system for thread management over-
head depends not only on whether each thread has its own
kernel stack, but also on how big these kernel stacks are
and how many threads are generally used in a realistic
system.

To provide an idea of how these factors add up in prac-
tice, we show in Table 7 memory usage measurements
gathered from a number of different systems and con-
figurations. The Mach figures are as reported in [10]:
the process-model numbers are from MK32, an earlier
version of the Mach kernel, whereas the interrupt-model
numbers are from MK40. The L3 figures are as reported
in [24]. For Fluke, we show three different rows: two for
the process model using two different stack sizes, and one
for the interrupt model.

The two process-model stack sizes for Fluke bear spe-
cial attention. The smaller 1K stack size is sufficient only
in the “production” kernel configuration which leaves out
various kernel debugging features, and only when the de-
vice drivers do not run on these kernel stacks. (Fluke’s
device drivers were “borrowed” [14] from legacy systems
and require a 4K stack.)

To summarize these results, although it is true that
interrupt-model kernels most effectively minimize kernel
thread memory use, at least for modest numbers of ac-
tive threads, much of this reduction can also be achieved
in process-model kernels simply by structuring the ker-

System Execution TCB Stack Total
Model Size Size Size

FreeBSD Process 2132 6700 8832
Linux Process 2395 4096 6491
Mach Process 452 4022 4474
Mach Interrupt 690 — 690
L3 Process 1024 1024
Fluke Process 4096 4096
Fluke Process 1024 1024
Fluke Interrupt 300 — 300

Table 7:Memory overhead in bytes due to thread/process man-
agement in various existing systems and execution models.

nel to avoid excessive stack requirements. At least on the
x86 architecture, as long as the thread management over-
head is about 1K or less per thread, there appears to be no
great difference between the two models for modest num-
bers of threads. However, real production systems may
need larger stacks and also may want them to be a mul-
tiple of the page size in order to use a “red zone.” These
results should apply to other architectures, although the
basic sizes may be scaled by an architecture-specific fac-
tor. For all but power-constrained systems, the memory
differences are probably in the noise.

5.5 Architectural Bias
Besides the more fundamental advantages and disad-

vantages of each model as discussed above, in some cases
there are advantages to one model artificially caused by
the design of the underlying processor architecture. In
particular, traditional CISC architectures, such as the
x86 and 680x0, tend to be biased somewhat toward the
process model and make the kernel programmer jump
through various hoops to write an interrupt-model kernel.
With a few exceptions, more recent RISC architectures
tend to be fairly unbiased, allowing either model to be
implemented with equal ease and efficiency.

Unsurprisingly, the architectural property that causes
this bias is the presence of automatic stack manage-
ment and stack switching performed by the processor.
For example, when the processor enters supervisor mode
on the x86, it automatically loads the new supervisor-
mode stack pointer, and then pushes the user-mode stack
pointer, instruction pointer (program counter), and pos-
sibly several other registers onto this supervisor-mode
stack. Thus, the processor automaticallyassumesthat
the kernel stack is associated with the current thread. To
build an interrupt-model kernel on such a “process-model
architecture,” the kernel must either copy this data on ker-
nel entry from the per-processor stack to the appropriate
thread control block, or it must keep a separate, “min-
imal” process-model stack as part of each thread con-
trol block, where the processor automatically saves the

thread’s state on kernel entry before kernel code man-
ually switches to the “real” kernel stack. Fluke in its
interrupt-model configuration uses the former technique,
while Mach uses the latter.

Most RISC processors, on the other hand, including the
MIPS, PA-RISC, and PowerPC, use “shadow registers”
for exception and interrupt handling rather than explicitly
supporting stack switching in hardware. When an inter-
rupt or exception occurs, the processor merely saves off
the original user-mode registers in special one-of-a-kind
shadow registers, and then disables further interrupts un-
til they are explicitly re-enabled by software. If the OS
wants to support nested exceptions or interrupts, it must
then store these registers on the stack itself; it is generally
just as easy for the OS to save them on a per-processor
interrupt-model stack as it is to save them on a per-thread
process-model stack. A notable exception among RISC
processors is the SPARC, with its stack-based register
window feature.

To examine the effect of architectural bias on the
x86, we compared the performance of the interrupt and
process-model Fluke kernels in otherwise completely
equivalent configurations (using no kernel preemption).
On a 100MHz Pentium CPU, the additional trap and sys-
tem call overhead introduced in the interrupt-model ker-
nel by moving the saved state from the kernel stack to
the thread structure on entry, and back again on exit,
amounts to about six cycles (60ns). In contrast, the
minimal hardware-mandated cost of entering and leav-
ing supervisor mode is about 70 cycles on this processor.
Therefore, even for the fastest possible system call the
interrupt-model overhead is less than 10%, and for realis-
tic system calls is in the noise. We conclude that although
this architectural bias is a significant factor in terms of
programming convenience, and may be important if it is
necessary to “squeeze every last cycle” out of a critical
path, it is not a major performance concern in general.

5.6 Legacy Code
One of the most important practical concerns with

an interrupt-based kernel execution model is that it ap-
pears to be impossible to use pre-existing legacy code,
borrowed from process-model systems such as BSD or
Linux, in an interrupt-model kernel, such as the exok-
ernels and the CacheKernel. For example, especially on
the x86 architecture, it is impractical for a small program-
ming team to write device drivers for any significant frac-
tion of the commonly available PC hardware; they must
either borrow drivers from existing systems, or support
only a bare minimum set of hardware configurations. The
situation is similar, though not as severe, for other types
of legacy code such as file systems or TCP/IP protocol
stacks.

There are a number of approaches to incorporating
process-model legacy code into interrupt-model kernels.

For example, if kernel threads are available (threads that
run in the kernel but are otherwise ordinary process-
model threads), process-model code can be run on these
threads when necessary. This is the method Minix [30]
uses to run device driver code. Unfortunately, kernel
threads can be difficult to implement in interrupt-model
kernels, and can introduce additional overhead on the
kernel entry/exit paths, especially on architectures with
the process-model bias discussed above. This is because
such processors behave differently in a trap or interrupt
depending on whether the interrupted code was in user
or supervisor mode [21]; therefore each trap or inter-
rupt handler in the kernel must now determine whether
the interrupted code was a user thread, a process-model
kernel thread, or the interrupt-model “core” kernel itself,
and react appropriately in each case. In addition, the
process-model stacks of kernel threads on these archi-
tectures can’t easily be pageable or dynamically grow-
able, because the processor depends on always being able
to push saved state onto the kernel stack if a trap oc-
curs. Ironically, on RISC processors that have no bias
towards the process model, it is much easier to imple-
ment process-model kernel threads in an interrupt-model
kernel.

As an alternative to supporting kernel threads, the ker-
nel can instead use only apartial interrupt model, in
which kernel stacks are usually handed off to the next
thread when a thread blocks, but can be retained while
executing process-model code. This is the method that
Mach with continuations [11] uses. Unfortunately, this
approach brings with it a whole new set of complexities
and inefficiencies, largely caused by the need to manage
kernel stacks as first-class kernel objects independent of
and separable from both threads and processors.

The Fluke kernel uses a different approach, which
keeps the “core” interrupt-model kernel simple and un-
cluttered while effectively supporting something almost
equivalent to kernel threads. Basically, the idea is to run
process-model “kernel” threads in user mode but in the
kernel’s address space. In other words, these threads run
in the processor’s unprivileged execution mode, and thus
run on their own process-model user stacks separate from
the kernel’s interrupt-model stack; however, the address
translation hardware is set up so that while these threads
are executing, their view of memory is effectively the
same as it is for the “core” interrupt-model kernel itself.
This design allows the core kernel to treat these process-
level activities just like all other user-level activities run-
ning in separate address spaces, except that this particular
address space is set up a bit differently.

There are three main issues with this approach. The
first is that these user-level pseudo-kernel threads may
need to performprivileged operationsoccasionally, for
example to enable or disable interrupts or access device

registers. In the x86 this isn’t a problem because user-
level threads can be given direct access to these facili-
ties simply by setting some processor flag bits associated
with those threads; however, on other architectures these
operations may need to be “exported” from the core ker-
nel as pseudo-system calls only available to these special
pseudo-kernel threads. Second, these user-level activi-
ties may need to synchronize and share data structures
with the core kernel to perform operations such as allocat-
ing kernel memory or installing interrupt handlers; since
these threads are treated as normal user-mode threads,
they are probably fully preemptible and do not share the
same constrained execution environment or synchroniza-
tion primitives as the core kernel uses. Again, a straight-
forward solution, which is what Fluke does, is to “export”
the necessary facilities through a special system call that
allows these special threads to temporarily jump into su-
pervisor mode and the kernel’s execution environment,
perform some arbitrary (nonblocking) activity, and then
return to user mode. The third issue is thecost of per-
forming this extra mode switching; however, our experi-
ence indicates that this cost is negligible. Finally, note
that the memory management hardware on some proces-
sors, particularly the MIPS architecture, does not support
this technique; however, at least on MIPS there is no com-
pelling need for it either because the processor does not
have the traditional CISC-architecture bias toward a par-
ticular kernel stack management scheme.

6 Conclusion

In this paper, we have explored in depth the differences
between the interrupt and process models and presented
a number of ideas, insights, and results. Our Fluke kernel
demonstrates that the need for the kernel to manually save
state incontinuationsis not a fundamental property of the
interrupt model, but instead is a symptom of a mismatch
between the kernel’s implementation and its API. Our
kernel exports a purely “atomic” API, in which all ker-
nel operations are fully interruptible and restartable; this
property has important benefits for fault-tolerance and
for applications such as user-mode process migration,
checkpointing, and garbage collection, and eliminates the
need for interrupt-model kernels to manually save and re-
store continuations. Using our configurable kernel which
supports both the interrupt-based and process-based ex-
ecution models, we have made a controlled comparison
between the two execution models. As expected, the
interrupt-model kernel requires less per-thread memory.
Although a null system call entails a 5–10% higher over-
head on an interrupt-model kernel due to a built-in bias
toward the process model in common processor architec-
tures such as the x86, the interrupt-model kernel exhibits
a modest performance advantage in some cases. How-
ever, the interrupt model can incur vastly higher preemp-

tion latencies unless care is taken to insert explicit pre-
emption points on critical kernel paths. Our conclusion is
that it is highly desirable for a kernel to present an atomic
API such as Fluke’s, but that for the kernel’s internal exe-
cution model, either implementation model is reasonable.

Acknowledgements
We are grateful to Alan Bawden and Mootaz Elnozahy for

interesting and enlightening discussion concerning these inter-
face issues and their implications for reliability, to Kevin Van
Maren for elucidating and writing up notes on other aspects of
the kernel’s execution model, to the anonymous reviewers, John
Carter, and Dave Andersen for their extensive and helpful com-
ments, to Linus Kamb for help with the use of certain system
calls, and to Eric Eide for last minute expert formatting help.

References
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-

nian, and M. Young. Mach: A New Kernel Foundation for UNIX
Development. InProc. of the Summer 1986 USENIX Conf., pages
93–112, June 1986.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.
Scheduler Activations: Effective Kernel Support for the User-
Level Management of Parallelism.ACM Transactions on Com-
puter Systems, 10(1):53–79, Feb. 1992.

[3] J. F. Bartlett. A Non Stop Kernel. InProc. of the 8th ACM Sympo-
sium on Operating Systems Principles, pages 22–29, Dec. 1981.

[4] A. Bawden. PCLSRing: Keeping Process State Modular. Unpub-
lished report. ftp://ftp.ai.mit.edu/pub/alan/pclsr.memo, 1989.

[5] A. Bawden. Personal Communication, Aug. 1998.

[6] A. C. Bomberger and N. Hardy. The KeyKOS Nanokernel Archi-
tecture. InProc. of the USENIX Workshop on Micro-kernels and
Other Kernel Architectures, pages 95–112, Apr. 1992.

[7] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation
and Performance of Munin. InProc. of the 13th ACM Symp. on
Operating Systems Principles, pages 152–164, Oct. 1991.

[8] D. R. Cheriton. The V Distributed System.Communications of
the ACM, 31(3):314–333, Mar. 1988.

[9] D. R. Cheriton and K. J. Duda. A Caching Model of Operat-
ing System Kernel Functionality. InProc. of the First Symp. on
Operating Systems Design and Implementation, pages 179–193.
USENIX Assoc., Nov. 1994.

[10] R. P. Draves.Control Transfer in Operating System Kernels. PhD
thesis, Carnegie Mellon University, May 1994.

[11] R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean. Using
Continuations to Implement Thread Management and Communi-
cation in Operating Systems. InProc. of the 13th ACM Symp. on
Operating Systems Principles, Asilomar, CA, Oct. 1991.

[12] D. Eastlake, R. Greenblatt, J. Holloway, T. Knight, and S. Nelson.
ITS 1.5 Reference Manual. Memo 161a, MIT AI Lab, July 1969.

[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: An
Operating System Architecture for Application-Level Resource
Management. InProc. of the 15th ACM Symp. on Operating Sys-
tems Principles, pages 251–266, Dec. 1995.

[14] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A Substrate for OS and Language Research. In
Proc. of the 16th ACM Symp. on Operating Systems Principles,
pages 38–51, St. Malo, France, Oct. 1997.

[15] B. Ford, M. Hibler, and Flux Project Members. Fluke: Flexi-
ble�-kernel Environment (draft documents). University of Utah.
Postscript and HTML available under http://www.cs.utah.edu/-
projects/flux/fluke/, 1996.

[16] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels Meet Recursive Virtual Machines. In
Proc. of the Second Symp. on Operating Systems Design and Im-
plementation, pages 137–151. USENIX Assoc., Oct. 1996.

[17] R. Haskin, Y. Malachi, W. Sawdon, and G. Chan. Recovery Man-
agement in QuickSilver.ACM Transactions on Computer Sys-
tems, 6(1):82–108, Feb. 1988.

[18] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, San Mateo, CA,
1989.

[19] D. Hildebrand. An Architectural Overview of QNX. InProc. of
the USENIX Workshop on Micro-kernels and Other Kernel Archi-
tectures, pages 113–126, Seattle, WA, Apr. 1992.

[20] Institute of Electrical and Electronics Engineers, Inc.Informa-
tion Technology — Portable Operating System Interface (POSIX)
— Part 1: System Application Program Interface (API) [C Lan-
guage], 1994. Std 1003.1-1990.

[21] Intel Corp. Pentium Processor User’s Manual, volume 3. Intel,
1993.

[22] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. B. no, R. Hunt,
D. Mazières, T. Pinckney, R. Grimm, J. Janotti, and K. Macken-
zie. Application Performance and Flexibility on Exokernel Sys-
tems. InProc. of the 16th ACM Symp. on Operating Systems Prin-
ciples, pages 52–65, St. Malo, France, Oct. 1997.

[23] J. Liedtke. A Persistent System in Real Use – Experiences of the
First 13 Years. InProc. of the Third International Workshop on
Object Orientation in Operating Systems, pages 2–11, Dec. 1993.

[24] J. Liedtke. A Short Note on Small Virtually-Addressed Control
Blocks. Operating Systems Review, 29(3):31–34, July 1995.

[25] P. R. McJones and G. F. Swart. Evolving the UNIX System In-
terface to Support Multithreaded Programs. InProceedings of the
Winter 1989 USENIX Technical Conference, pages 393–404, San
Diego, CA, Feb. 1989. USENIX.

[26] S. J. Mullender. Process Management in a Distributed Operat-
ing System. In J. Nehmer, editor,Experiences with Distributed
Systems, volume 309 ofLecture Notes in Computer Science.
Springer-Verlag, 1988.

[27] Open Software Foundation and Carnegie Mellon Univ.OSF
MACH Kernel Principles, 1993.

[28] M. Schroeder and M. Burrows. Performance of Firefly RPC.ACM
Transactions on Computer Systems, 8(1):1–17, Feb. 1990.

[29] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With
Disaster: Surviving Misbehaved Kernel Extensions. InProc. of
the Second Symp. on Operating Systems Design and Implementa-
tion, pages 213–227, Seattle, WA, Oct. 1996. USENIX Assoc.

[30] A. S. Tanenbaum.Operating Systems: Design and Implementa-
tion. Prentice-Hall, Englewood Cliffs, NJ, 1987.

[31] P. Tullmann, J. Lepreau, B. Ford, and M. Hibler. User-level
Checkpointing Through Exportable Kernel State. InProc. Fifth
International Workshop on Object Orientation in Operating Sys-
tems, pages 85–88, Seattle, WA, Oct. 1996. IEEE.

[32] V-System Development Group.V-System 6.0 Reference Manual.
Computer Systems Laboratory, Stanford University, May 1986.

[33] A. Valencia. An Overview of the VSTa Microkernel. http://-
www.igcom.net/̃ jeske/VSTa/vstaintro.html.

