
The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation

New Orleans, Louisiana, February, 1999

For more information about USENIX Association contact:

1. Phone:             1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Self-Paging in the Nemesis Operating System

Steven M. Hand
University of Cambridge Computer Laboratory



Self-Paging in the Nemesis Operating System

Steven M. Hand
University of Cambridge Computer Laboratory

New Museums Site, Pembroke St.,
Cambridge CB2 3QG,ENGLAND

Steven.Hand@cl.cam.ac.uk

Abstract
In contemporary operating systems, continuous media
(CM) applications are sensitive to the behaviour of other
tasks in the system. This is due to contention in the kernel
(or in servers) between these applications. To properly sup-
port CM tasks, we require “Quality of Service Firewalling”
between different applications.

This paper presents a memory management system sup-
porting Quality of Service (QoS) within theNemesisop-
erating system. It combines application-level paging tech-
niques with isolation, exposure and responsibility in a man-
ner we callself-paging. This enables rich virtual memory
usage alongside (or even within) continuous media appli-
cations.

1 Introduction

Researchers now recognise the importance of providing
support for continuous media applications within operat-
ing systems. This is evinced by theNemesis[1, 2, 3] and
Rialto [4, 5, 6] operating systems and, more recently, work
on theScout[7] operating system and the SMART sched-
uler [8]. Meanwhile there has been continued interest in
the area of memory management, with a particular focus
onextensibility[9, 10, 11].

While this work is valid, it is insufficient:

� Work on continuous media support in operating sys-
tems tends to focus on CPU scheduling only.
The area of memory management is either totally ig-
nored (Scout, SMART) or considered in practice to be
a protection mechanism (Rialto). In fact, the imple-
mentation of the Rialto virtual memory system de-
scribed in [12] explicitly excludes paging since it “in-
troduces unpredictable latencies”.

� Work on memory management does not support (or
try to support) any concept of Quality of Service.
While support for extensibility is a laudable goal, the

behaviour of user-level pagers or application-provided
code is hardly any more predictable or isolated than
kernel-level implementations. The “unpredictable la-
tencies” remain.

This paper presents a scheme whereby each application
is responsible for all of its own paging (and other virtual
memory activities). By providing applications with guaran-
tees for physical memory and disk bandwidth, it is possible
to isolate time-sensitive applications from the behaviour of
others.

2 Quality of Service in Operating Systems

In recent years, the application mix on general purpose
computers has shifted to include “multimedia” applica-
tions. Of particular interest arecontinuous media(CM)
applications — those which handle audio and/or video —
since the presentation (or processing) of the information
must be done in a timely manner. Common difficulties en-
countered include ensuring low latency (especially for real-
time data) and minimisingjitter (viz. the variance in delay).

Clearly not all of today’s applications have these tempo-
ral constraints. More traditional tasks such as formatting
a document, compiling a program, or sending e-mail are
unlikely to be banished by emerging continuous media ap-
plications. Hence there is a requirement formulti-service
operating systems which can support both types of applica-
tion simultaneously.

Unfortunately, most current operating systems conspicu-
ously fail to support this mix of CM and non-CM appli-
cations:

� CPU scheduling is usually implemented via some
form of priority scheme, which specifieswhobut not
whenor how much. This is unfortunate since many
continuous media applications do not require a large
fraction of the CPU resource (i.e. they are not nec-
essarily moreimportant than other applications), but



they do need to be scheduled in atimely fashion.

� Other resources on the data path, such as the disk or
network, are generally not explicitly scheduled at all.
Instead, the proportion of each resource granted to
an application results from a complex set of unpre-
dictable interactions between the kernel (or user-level
servers) and the CPU scheduler.

� The OS performs a large number of (potentially) time-
critical tasks on behalf of applications. The perfor-
mance of any particular application is hence heavily
dependent on the execution of other supposedly “in-
dependent” applications. A greedy, buggy or even
pathological application can effect the degradation of
all other tasks in the system.

This means that while most systems can support CM appli-
cations in the case of resource over-provisioning, they tend
to exhibit poor behaviour when contention is introduced.

A number of operating systems researchers are now at-
tempting to provide support for continuous media appli-
cations. The Rialto system, for example, hopes to pro-
vide modular real-time resource management [4] by means
of arbitrarily composableresource interfacescollectively
managed by aresource planner. A novel real-time CPU
scheduler has been presented in [5, 6], while an implemen-
tation of a simple virtual memory system for set-top boxes
is described in [12].

The Scout operating system uses thepath abstraction to
ensure that continuous media streams can be processed in
a timely manner. It is motivated by multimedia network
streams, and as such targets itself at sources (media servers)
and sinks (set-top boxes) of such traffic. Like Rialto, the
area of virtual memory management is not considered a
high-priority; instead there is a rudimentary memory man-
agement system which focuses upon buffer management
and does not support paging.

Most other research addresses the problem of Quality of
Service within a specific domain only. This has lead to
the recent interest in soft real-time scheduling [13, 8, 14,
15] of the CPU and other resources. The work has yet to
be widely applied to multiple resources, or to the area of
memory management.

3 Extensible Memory Management

Memory management systems have a not undeserved repu-
tation for being complex. One successful method of simpli-
fying the implementation has been the�-kernel approach:
move some or all of the memory management system out
of the kernel into “user-space”. This mechanism, pioneered
by work on Mach [16] is still prevalent in many modern�-
kernels such as V++ [17], Spring [18] and L4 [19].

Even operating systems which eschew the�-kernel ap-
proach still view the extensibility of the memory manage-
ment system as important:

� theSPIN operating system provides for user-level ex-
tension of the memory management code via the reg-
istration of an event handler for memory management.
events [10].

� the VINO operating system [20, pp 1–6] enables ap-
plications to override some or all operations within
MemoryResourceobjects, to specialise behaviour.

� the V++ Cache Kernel allows “application kernels” to
cache address-space objects and to subsequently han-
dle memory faults on these [21].

� the Aegis experimental exokernel enables “library
operating systems” to provide their own page-table
structures and TLB miss handlers [9].

This is not surprising. Many tasks are ill-served by de-
fault operating system abstractions and policies, includ-
ing database management (DBMS) [22], garbage collec-
tion [23] and multi-media applications [24]. Further-
more, certain optimisations are possible when application-
specific knowledge can be brought to bear, including
improved page replacement and prefetching [17], better
buffer cache management [25], and light-weight signal
handling [26]. All of these may be realised by providing
user-level control over some of the virtual memory system.

Unfortunately, none of the above-mentioned operating sys-
tems provide QoS in their memory management:

� No Isolation: applications which fault repeatedly will
still degrade the overall system performance. In par-
ticular, they will adversely affect the operation of
other applications.
In �-kernel systems, for example, a single external
pager may be shared among an arbitrary number of
processes, but there is no scheduling regarding fault
resolution. This indirect contention has been referred
to asQoS crosstalk[2]. Other extensible systems al-
low the application to specify, for example, the page
replacementpolicy, but similarly fail to arbitrate be-
tween multiple faulting applications.

� Insufficient Exposure: most of the above operating
systems1 abstract away from the underlying hardware;
memory faults are presented as some abstract form of
exception and memory translation as an array of vir-
tual to physical mappings.
Actual hardware features such as multiple TLB page
sizes, additional protection bits, address space num-
bers, physical address encoding, or cache behaviour
tend to be lost as a result of this abstraction.

1A notable exception is the Aegis exokernel, which endeavours to ex-
pose as much as possible to the application.



� No Responsibility: while the many of the above op-
erating systemsallow applications some form of “ex-
tensibility” for performance or other reasons, they do
not by any meansenforceits use. Indeed, they provide
a “default” or “system” pager to deal with satisfying
faults in the general case. The use of this means that
most applications fail to pay for their own faults; in-
stead the system pager spends its time and resources
processing them.

What is required is a system whereby applications benefit
from the ability to control their own memory management,
but do not gain at the expense of others.

4 Nemesis

The Nemesis operating system has been designed and im-
plemented at the University of Cambridge Computer Labo-
ratory in recent years. Nemesis is amulti-serviceoperating
system — that is, it strives to support a mix of conventional
and time-sensitive applications. One important problem it
addresses is that of preventingQoS crosstalk. This can oc-
cur when the operating system kernel (or a shared server)
performs a significant amount of work on behalf of a num-
ber of applications. For example, an application which
plays a motion-JPEG video from disk should not be ad-
versely affected by a compilation started in the background.

One key way in which Nemesis supports this isolation is
by having applications execute as many of their own tasks
as possible. This is achieved by placing much traditional
operating system functionality into user-space modules, re-
sulting in avertically integratedsystem (as shown in Fig-
ure 1). This vertical structure is similar to that of the Cache
Kernel [21] and the Aegis Exokernel [27], although the mo-
tivation is different.

The user-space part of the operating system is comprised
of a number of distinctmodules, each of which exports
one or more strongly-typedinterfaces. An interface defi-
nition language calledMIDDL is used to specify the types,
exceptions and procedures of an interface, and a run-time
typesystem allows the narrowing of types and the marshal-
ing of parameters for non-local procedure invocations.

A name-space scheme (based on Plan-9 contexts) allows
implementations of interfaces to be published and appli-
cations to pick and choose between them. This may be
termed “plug and play extensibility”; we note that it is im-
plementedabovethe protection boundary.

Given that applications are responsible for executing tradi-
tional operating system functions themselves, the must be
sufficiently empowered to perform them. Nemesis handles
this by providing explicit low-level resource guarantees or
reservations to applications. This is not limited simply to
the CPU: all resources — including disks [14], network
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Figure 1: Vertical Structuring in Nemesis

interfaces [28] and physical memory — are treated in the
same way. Hence any given application has a set of guar-
antees for all the resources it requires. Other applications
cannot interfere.

5 Self-Paging

Self-paging provides a simple solution to memory system
crosstalk:require every application to deal with all its own
memory faults using its own concrete resources. All paging
operations are removed from the kernel; instead the kernel
is simply responsible for dispatching fault notifications.

More specifically, self-paging involves three principles:

1. Control: resource access is multiplexed in both space
and time. Resources are guaranteed over medium-
term time-scales.

2. Power: interfaces are sufficiently expressive to allow
applications the flexibility they require. High-level ab-
stractions are not imposed.

3. Responsibility: each application is directly respon-
sible for carrying out its own virtual memory opera-
tions. The system does not provide a “safety net”.

The idea of performing virtual memory tasks at
application-level may at first sound similar to the ideas pio-
neered in Mach [16] and subsequently used in�-kernel sys-
tems such as L4 [19]. However while�-kernel systemsal-
low the use of one or more external (i.e. non-kernel) pagers
in order to provide extensibility and to simplify the ker-
nel, several applications will typically still share an external
pager, and hence the problem of QoS crosstalk remains.



In Nemesis werequirethat every application isself-paging.
It mustdeal with any faults that it incurs. This, along with
the use of the single address space and widespread shar-
ing of text, ensures that the execution of each domain2 is
completely independent to that of other domains save when
interaction is desired.

The difference between�-kernel approaches and Nemesis’
is illustrated in Figure 2.
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Figure 2: External Paging versus Self Paging

The left-hand side on the figure shows the�-kernel ap-
proach, with an external pager. Three applications are
shown, with two of them causing page faults (or, more gen-
erally, memory faults). The third application has a server
performing work on its behalf, and this server is also caus-
ing a memory fault. The kernel notifies the external pager
and it must then deal with the three faults.

This causes two problems:

1. Firstly, the process which caused the fault does not use
any of its own resources (in particular, CPU time) in
order to satisfy the fault. There is no sensible way
in which the external pager (or the�-kernel itself)
can account for this. A process which faults repeat-
edly thus degrades the overall system performance but
bears only a fraction of the cost.

2. Secondly, multiplexing happens in the server — i.e.
the external pager needs some way to decide how to
‘schedule’ the handling of the faults. However it will
generally not be aware of any absolute (or even rela-
tive) timeliness constraints on the faulting clients. A
first-come first-served approach is probably the best it
can do.

On the right-hand side we once again have three applica-
tions, but no servers. Each application is causing a memory
fault of some sort, which is trapped by the kernel. However
rather than sending a notification to some external pager,
the kernel simply notifies the faulting domain. Each do-
main will itself be responsible for handling the fault. Fur-

2A domainin Nemesis is the analog of a process or task.

thermore, the latency with which the fault will be resolved
(assuming it is resolvable) is dependent on the guarantees
held by that domain.

Rather closer to the self-paging ideal are “vertically struc-
tured” systems such as the Aegis & Xok exokernels [9, 29].
Like Nemesis, these systems dispatch memory faults to
user-space and expect unprivileged library operating sys-
tem code to handle them. In addition, exokernels expose
sufficient low-level detail to allow applications access to
hardware-specific resources.

However exokernels do not fully cope with the aspect of
control: resources are multiplexed in space (i.e. there is
protection), but not in time. For example, the Xok exok-
ernel allows library filing systems to download untrusted
metadata translation functions. Using these in a novel way,
the exokernel can protect disk blocks without understand-
ing file systems [29]. Yet there is no consideration given to
partitioning access in terms oftime: library filing systems
are not guaranteed a proportion of disk bandwidth.

A second problem arises with crosstalk within the exok-
ernel itself. Various device drivers coexist within the ker-
nel execution environment and hence an application (or li-
brary operating system) which is paging heavily will im-
pact others who are using orthogonal resources such as the
network. This problem is most readily averted by pushing
device driver functionality outside the kernel, as is done
with �-kernel architectures.

6 System Design

A general overview of the virtual memory architecture is
shown in Figure 3. This is necessarily simplified, but does
illustrate the basic abstractions and their relationships.
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Figure 3: VM System Architecture

The basic virtual memory abstractions shown are the
stretchand thestretch driver. A stretch merely represents
a range of virtual addresses with a certain accessibility. It



does not own — nor is it guaranteed — any physical re-
sources. A stretch driver is responsible for providing the
backing for the stretch; more generally, a stretch driver is
responsible for dealing with any faults on a stretch. Hence
it is only via its association with a stretch driver that it be-
comes possible to talk meaningfully about the “contents”
of a stretch. Stretch drivers are unprivileged, application-
level objects, instantiated by user-level creator modules and
making use only of the resources owned by the application.

The stretch driver is shown as potentially having a connec-
tion to a backing store. This is necessarily vague: there
are many different sorts of stretch driver, some of which do
not deal with non-volatile storage at all. There are also po-
tentially many different kinds of backing store. The most
important of these is theUser-Safe Backing Store(USBS).
This draws on the work described in [14] to provide per-
application guarantees on paging bandwidth, along with
isolation between paging and file-system clients.

Allocation is performed in a centralised way by the system
domain, for both virtual and physical memory resources.
The high-level part of the translation system is also in the
system domain: this is machine-dependent code responsi-
ble for the construction of page tables, and the setting up of
“NULL” mappings for freshly allocated virtual addresses.
These mappings are used to hold the initial protection in-
formation, and by default are set up to cause a page fault
on the first access. Placing this functionality within the
system domain means that the low-level translation sys-
tem does not need to be concerned with the allocation of
page-table memory. It also allows protection faults, page
faults and “unallocated address” faults to be distinguished
and dispatched to the faulting application.

Memory protection operations are carried out by the appli-
cation through the stretch interface. This talks directly to
the low-level translation system via simple system calls;
it is not necessary to communicate with the system do-
main. Protection can be carried out in this way due to the
protection model chosen which includes explicit rights for
“change permissions” operations. A light-weight valida-
tion process checks if the caller is authorised to perform an
operation.

The following subsections explain relevant parts of this ar-
chitecture in more detail.

6.1 Virtual Address Allocation

Any domain may request a stretch from a stretch alloca-
tor, specifying the desired size and (optionally) a starting
address and attributes. Should the request be successful, a
new stretch will be created and returned to the caller. The
caller is now theownerof the stretch. The starting address
and length of the returned stretch may then be queried;

these will always be a multiple of the machine’s page size3.

Protection is carried out at stretch granularity — everypro-
tection domainprovides a mapping from the set of valid
stretches to a subset off read, write, execute, metag. A
domain which holds themetaright is authorised to modify
protections and mappings on the relevant stretch.

When allocated, a stretch need not in general be backed by
physical resources. Before the virtual address may be re-
ferred to the stretch must be associated with astretch driver
— we say that a stretch must beboundto a stretch driver.
The stretch driver is the object responsible for providing
any backing (physical memory, disk space, etc.) for the
stretch. Stretch drivers are covered in Section 6.6.

6.2 Physical Memory Management

As with virtual memory, the allocation of physical memory
is performed centrally, in this case by theframes allocator.
The frames allocator allows fine-grained control over the
allocation of physical memory, including I/O space if ap-
propriate. A domain may request specific physical frames,
or frames within a “special” region4. This allows an ap-
plication with platform knowledge to make use of page
colouring [30], or to take advantages of superpage TLB
mappings, etc. A default allocation policy is also provided
for domains with no special requirements.

Unlike virtual memory, physical memory is generally a
scarce resource. General purpose operating systems tend
to deal with contention for physical memory by perform-
ing system-wide load balancing. The operating system at-
tempts to (dynamically) share physical memory between
competing processes. Frames arerevokedfrom one pro-
cess and granted to another. The main motivation is global
system performance, although some systems may consider
other factors (such as the estimated working set size or pro-
cess class).

Since in Nemesis we strive to devolve control to applica-
tions, we use an alternative scheme. Each application has
a contract with the frames allocator for a certain number of
guaranteedphysical frames. These are immune from revo-
cation in the short term (on the order of tens of seconds).
In addition to these, an application may have some num-
ber of optimistic frames, which may be revoked at much
shorter notice. This distinction only applies to frames of
main memory, not to regions of I/O space.

When a domain is created, the frames allocator is requested
to admit it as a client with a service contractfg; xg. This
represents a pair of quotas for guaranteed and optimistic

3Where multiple page sizes are supported, “page size” refers to the
size of the smallest page.

4Such as DMA-accessible memory on certain architectures.



frames respectively. Admission control is based on the re-
quested guaranteeg — the sum of all guaranteed frames
contracted by the allocator must be less than the total
amount of main memory. This is to ensure that the guar-
antees of all clients can be met simultaneously.

The frames allocator maintains the tuplefn; g; xg for each
client domain, wheren is the number of physical frames
allocated so far. As long asg > n, a request for a single
physical frame is guaranteed to succeed5. If g � n < x

and there is available memory, frames will beoptimistically
allocated to the caller.

The allocation of optimistic frames improves global perfor-
mance by allowing applications to use the available mem-
ory when it is not otherwise required. If, however, a domain
wishes to use some more of the frames guaranteed to it, it
may be necessary torevokesome optimistically allocated
frames from another domain. In this case, the frames allo-
cator chooses a candidate application6, but the selection of
the frames to release (and potentially write to the backing
store) is under the control of the application.

By convention, each application maintains aframe stack.
This is a system-allocated data structure which is writable
by the application domain. It contains a list of physical
frame numbers (PFNs) owned by that application ordered
by ‘importance’ — the top of the stack holds the PFN of the
frame which that domain is most prepared to have revoked.

This allows revocation to be performedtransparentlyin the
case that the candidate application hasunusedframes at
the top of its stack. In this case, the frames allocator can
simply reclaim these frames and update the application’s
frame stack. Transparent revocation is illustrated on the
left-hand side of Figure 4.

If there are no unused frames available,intrusive revoca-
tion is required. In this case, the frames allocator sends
a revocation notification to the application requesting that
it releasek frames by timeT . The application then must
arrange for the topk frames of its frame stack to contain
unmapped frames. This can require that it first clean some
dirty pages; for this reason,T may be relatively far in the
future (e.g. 100ms).

After the application has completed the necessary opera-
tions, it informs the frames allocator that the topk frames
may now be reclaimed from its stack. If these are not all
unused, or if the application fails to reply by timeT , the do-
main is killed and all of its frames reclaimed. This protocol
is illustrated on the right-hand side of Figure 4.

Notice that since the frames allocatoralwaysrevokes from
the top of an application’s frame stack, it makes sense for
the application to maintain its preferred revocation order.

5Due to fragmentation, a single request for up to(g � n) frames may
or may not succeed.

6i.e. one which currently has optimistically allocated frames.
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The frame stack also provides a useful place for stretch
drivers to store local information about mappings, and en-
ables the internal revocation interface to be simpler.

Due to the need for relatively large timeouts, a client do-
main requesting some more guaranteed frames may have to
wait for a non-trivial amount of time before its request suc-
ceeds. Hence time-sensitive applications generally request
all their guaranteed frames during initialisation and do not
use optimistically allocated frames at all. This is not man-
dated, however: use of physical memory is considered or-
thogonal to use of other resources. The only requirement is
that any domain which uses optimistically allocated frames
should be able to handle a revocation notification.

6.3 Translation System

The translation system deals with inserting, retrieving or
deleting mappings between virtual and physical addresses.
As such it may be considered an interface to a table of infor-
mation held about these mappings; the actual mapping will
typically be performed as necessary by whatever memory
management hardware or software is present.

The translation system is divided into two parts: a high-
level management module, and the low-level trap handlers
and system calls. The high-level part is private to the sys-
tem domain, and handles the following:

� Bootstrapping the ‘MMU’ (in hardware or software),
and setting up initial mappings.

� Adding, modifying or deleting ranges of virtual ad-
dresses, and performing the associated page table
management.

� Creating and deleting protection domains.



� Initialising and partly maintaining theRamTab; this is
a simple data structure maintaining information about
the current use of frames of main memory.

The high-level translation system is used by both the stretch
allocator and the frames allocator. The former uses it to
setup initial entries in the page table for stretches it has
created, or to remove such entries when a stretch is de-
stroyed. These entries contain protection information but
are by defaultinvalid: i.e. addresses within the range will
cause a page fault if accessed. The frames allocator, on
the other hand, uses theRamTabto record the owner and
logical frame width of allocated frames of main memory.

Recall that each domain is expected to deal with mapping
its own stretches. The low-level translation system pro-
vides direct support for this to happen efficiently and se-
curely. It does this via the following three operations:

1. map(va, pa, attr) : arrange that the virtual ad-
dressva maps onto the physical addresspa with the
(machine-dependent) PTE attributesattr .

2. unmap(va) : remove the mapping of the virtual ad-
dressva . Any further access to the address should
cause some form of memory fault.

3. trans(va) ! (pa, attr) : retrieve the cur-
rent mapping of the virtual addressva , if any.

Either mapping or unmapping a virtual addressva requires
that the calling domain is executing in a protection domain
which holds ametaright for the stretch containingva . A
consequence of this is that it is not possible to map a virtual
address which is not part of some stretch7.

It is also necessary that the frame which is being used for
mapping (or which is being unmapped) is validated. This
involves ensuring that the calling domain owns the frame,
and that the frame is not currently mapped or nailed. These
conditions are checked by using theRamTab, which is a
simple enough structure to be used by low-level code.

6.4 Fault Dispatching

Apart from TLB misses which are handled by the low-level
translation system, all other faults are dispatched directly to
the faulting application in order to prevent QoS crosstalk.
To prevent the need to block in the kernel for a user-level
entity, the kernel-part of fault handling is complete once the
dispatch has occurred. The application must perform any
additional operations, including the resumption (or termi-
nation) of the faulting thread.

The actual dispatch is achieved by using anevent channel.
Events are an extremely lightweight primitive provided by

7Bootstrapping code clearly does this, but it uses the high-level trans-
lation system and not this interface.

the kernel — an event “transmission” involves a few sanity
checks followed by the increment of a 64-bit value. A full
description of the Nemesis event mechanism is given in [2].

On a memory fault, then, the kernel saves the current con-
text in the domain’sactivation contextand sends an event
to the faulting domain. At some point in the future the
domain will be selected for activation and can then deal
with the fault. Sufficient information (e.g. faulting address,
cause, etc.) is made available to the application to facilitate
this. Once the fault has been resolved, the application can
resume execution from the saved activation context.

6.5 Application-Level Fault Handling

At some point after an application has caused a memory
fault, it will be activatedby the scheduler. The appli-
cation then needs to handle all the events it has received
since it was last activated. This is achieved by invoking
a notification handlerfor each endpoint containing a new
value; if there is no notification handler registered for a
given endpoint, no action is taken. Following this the user-
level thread scheduler (ULTS) is entered which will select
a thread to run.

Up until the point where a thread is run, the application
is said to be running within anactivation handler. This
is a limited execution environment where further activa-
tions are disallowed. One important restriction is that inter-
domain communication (IDC) is not possible within an ac-
tivation handler. Hence if the handling of an event requires
communication with another domain, the relevant notifica-
tion handler simply unblocks a worker thread. When this
is scheduled, it will carry out the rest of the operations re-
quired to handle the event.

The combination of notification handler and worker threads
is called anentry (after ANSAware/RT [31]). Entries en-
capsulate a scheduling policy on event handling, and may
be used for a variety of IDC services. An entry called the
MMEntry is used to handle memory management events.

The notification handler of theMMEntry is attached to the
endpoint used by the kernel for fault dispatching. Hence
it gets an upcall every time the domain causes a memory
fault. It is also entered when the frames allocator performs
a revocation notification (as described in Section 6.2). The
‘top’ part of theMMEntry consists of one or more worker
threads which can be unblocked by the notification handler.

The MMEntry does not directly handle memory faults or
revocation requests: rather it coordinates the set of stretch
drivers used by the domain. It does this in one of two ways:

� If handling a memory fault, it uses the faulting stretch
to lookup the stretch driver bound to that stretch and
then invokes it.



� If handling a revocation notification, it cycles through
each stretch driver requesting that it relinquish frames
until enough have been freed.

Figure 5 illustrates this in the case of a page fault.

Event Demultiplexer

Domain Activated1

MMEntry Other Entries

Notify
Handler

2

Stretch
Driver
Stretch
Driver

to user-level 
thread scheduler

Mmgt Notify 
Handler

5

3

4

map()

(potentially) to 
backing store

➀ The domain receives an event. At some point, the kernel
decides to schedule it, and it isactivated. It is informed that
the reason for the activation was the receipt of an event.

➁ The user-level event demultiplexer notifies interested parties
of any events which have been received on their end-point(s).

➂ The memory fault notification handler demultiplexes the
stretch to the stretch driver, and invokes this in an initial at-
tempt to satisfy the fault.

➃ If the attempt fails, the handler blocks the faulting thread,
unblocks a worker thread, and returns. After all events have
been handled, the user-level thread scheduler is entered.

➄ The worker thread in the memory management entry is
scheduled and once more invokes the stretch driver to map
the fault, which may potentially involve communication with
another domain.

Figure 5: Memory Management Event Handling

Note that the initial attempt to resolve the fault (arrow la-
belled➂) is merely a “fast path” optimisation. If it suc-
ceeds, the faulting thread will be able to continue once the
ULTS is entered. On the other hand, if the initial attempt
fails, theMMEntry must block the faulting thead pending
the resolution of the fault by a worker thread.

6.6 Stretch Drivers

As has been described, the actual resolution of a fault is the
province of astretch driver. A stretch driver is something
which provides physical resources to back the virtual ad-
dresses of the stretches it is responsible for. Stretch drivers
acquire and manage their own physical frames, and are re-
sponsible for setting up virtual to physical mappings by in-
voking the translation system.

The current implementation includes three stretch drivers

which may be used to handle faults. The simplest is the
nailedstretch driver; this provides physical frames to back
a stretch at bind time, and hence never deals with page
faults. The second is thephysicalstretch driver. This pro-
vides no backing frames for any virtual addresses within
a stretch initially. The first authorised attempt to access
any virtual address within a stretch will cause a page fault
which is dispatched in the manner described in Section 6.4.
The physical stretch driver is invoked from within the
notification handler: this is a limited execution environ-
ment where certain operations may occur but others cannot.
Most importantly, one cannot perform any inter-domain
communication (IDC) within a notification handler.

When the stretch driver is invoked, the following occurs:

� After performing basic sanity checks, the stretch
driver looks for an unused (i.e. unmapped) frame. If
this fails, it cannot proceed further now — but may be
able to request more physical frames when activations
are on. Hence it returnsRetry .

� Otherwise, it can proceed now. In this case, the
stretch driver sets up the new mapping with a call to
map(va,pa,attr) , and returnsSuccess .

In the case whereRetry is returned, a memory manage-
ment entry worker thread will invoke the physical stretch
driver for a second time once activations are on. In this
case, IDC operations are possible, and hence the stretch
driver may attempt to gain additional physical frames by
invoking the frames allocator. If this succeeds, the stretch
driver sets up a mapping from the faulting virtual address
to a newly allocated physical frame. Otherwise the stretch
driver returnsFailure .

The third stretch driver implemented is thepagedstretch
driver. This may be considered an extension of the phys-
ical stretch driver; indeed, the bulk of its operation is pre-
cisely the same as that described above. However the paged
stretch driver also has a binding to the USBS and hence
may swap pages in and out to disk. It keeps track of swap
space as a bitmap ofbloks— a blok is a contiguous set of
disk blocks which is a multiple of the size of a page. A
(singly) linked list of bitmap structures is maintained, and
bloks are allocated first fit — a hint pointer is maintained
to the earliest structure which is known to have free bloks.

Currently we implement a fairly pure demand paged
scheme — when a page fault occurs which cannot be sat-
isfied from the pool of free frames, disk activity of some
form will ensue. Clearly this can be improved; however
it will suffice for the demonstration of “Quality of Service
Firewalling” in Section 7.2.



6.7 User-Safe Backing Store

The user-safe backing store (USBS) is comprised of two
parts: the swap filesystem (SFS) and the user-safe disk
(USD) [32]. The SFS is responsible forcontrol opera-
tions such as allocation of an extent (a contiguous range of
blocks) for use as a swap file, and the negotiation of Quality
of Service parameters to the USD, which is responsible for
schedulingdataoperations. This is illustrated in Figure 6.
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Figure 6: The User-Safe Backing Store

Clients communicate with the USD via a FIFO buffering
scheme calledIO channels; these are similar in operation
to the ‘rbufs’ scheme described in [33].

The type of QoS specification used by the USD is in the
form (p; s; x; l) wherep is theperiodands theslice; both
of these are typically of the order of tens of milliseconds.
Such a guarantee represents that the relevant client will be
allowed to perform disk transactions totalling at mosts ms
within everyp ms period. Thex flag determines whether or
not the client is eligible for any slack time which arises in
the schedule — for the purposes of this paper it will always
beFalse, and so may be ignored.

The actual scheduling is based on theAtropos algo-
rithm [2]: this is a based on the earliest-deadline first (EDF)
algorithm [34], although the deadlines are implicit, and
there is support foroptimisticscheduling.

Each client is periodically allocateds ms and a deadline of
now + p ms, and placed on arunnablequeue. A thread
in the USD domain is awoken whenever there are pending
requests and, if there is work to be done for multiple clients,
chooses the one with the earliest deadline and performs a
single transaction.

Once the transaction completes, the time taken is computed

and deducted from that client’s remaining time. If the re-
maining time is� 0, the client is moved onto await queue;
once its deadline is reached, it will receive a new alloca-
tion and be returned to the runnable queue. Until that time,
however, it cannot perform any more operations.

Note that this algorithm will tend to perform requests from
a single client consecutively. This is a very desirable prop-
erty since it minimises the impact of clients upon each other
— the first transaction after a “context switch” to a new
client will often incur a considerable seek/rotation penalty
over which it has no control. However this cost can be
amortised over the number of transactions which the client
subsequently carries out, and hence has a smaller impact
on its overall performance.

Unfortunately, many clients (and most particularly clients
using the USD as a swap device) cannot pipeline a large
number of transactions since they do not know in advance
to/from where they will wish to write/read. Early versions
of the USD scheduler suffered from this so-called “short-
block” problem: if the client with the earliest deadline has
(instantaneously) no further work to be done, the USD
scheduler would mark it idle, and ignore it until its next
periodic allocation.

To avoid this problem, the idea of “laxity” is used, as given
by thel parameter of the tuple mentioned above. This is a
time value (typically a small number of milliseconds) for
which a client should be allowed to remain on the runnable
queue, even if it currently has no transactions pending. This
does not break the scheduling algorithm since the addi-
tional time spent — thelax time — is accounted to the
client just as if it were time spent performing disk transac-
tions. Section 7.2 will show the beneficial impact of laxity
in the case of paging operations.

7 Experiments

7.1 Micro-Benchmarks

In order to evaulutate the combination of low-level and
application-level memory system functions, a set of micro-
benchmarks based on those proposed in [23] were per-
formed on Nemesis and compared with Digital OSF1 V4.0
on the same hardware (PC164) and basic page table struc-
ture (linear). The results are shown in Table 1.

The first benchmark shown isdirty . After [9] this mea-
sures the time to determine whether a page is dirty or not.
On Nemesis this simply involves looking up a random page
table entry and examining its ‘dirty’ bit8. We use alinear
page table implementation (i.e. the main page table is an
8Gb array in the virtual address space with a secondary

8We implement ‘dirty’ and ‘referenced’ using theFOR/FOWbits; these
are set by software and cleared by the PALCODEDFault routine.



OS dirty (un)prot1 (un)prot100
OSF1 V4.0 n/a 3.36 5.14

Nemesis 0.15 0.42 [0.40] 10.78 [0.30]
trap appel1 appel2

OSF1 V4.0 10.33 24.08 19.12
Nemesis 4.20 5.33 9.75y

yNon-standard — see main text.

Table 1: Comparative Micro-Benchmarks; the units are�s.

page table used to map it on “double faults”) which pro-
vides efficient translation; an earlier implementation using
guardedpage tables was about three times slower.

The second benchmark measures the time taken to protect
or unprotect a random page. Since our protection model
requires that all pages of a stretch have the same access
permissions, this amounts to measuring the time required
to change the permissions on small stretches. There are
two ways to achieve this under Nemesis: by modifying the
page tables, or by modifying aprotection domain— the
times for this latter procedure are shown in square brackets.

The third benchmark measures the time taken to
(un)protect a range of 100 pages. Nemesis does not have
code optimised for the page table mechanism (e.g. it looks
up each page in the range individually) and so it takes con-
siderably longer than (un)protecting a single page. OSF1,
by contrast, shows only a modest increase in time when
protecting more than one page at a time. Nemesis does
perform well when using the protection domain scheme.

This benchmark is repeated a number of times with the
same range of pages and the average taken. Since on Neme-
sis the protection scheme detects idempotent changes, we
alternately protect and unprotect the range; otherwise the
operation takes an average of only 0.15�s. If OSF1 is
benchmarked using the Nemesis semantics of alternate pro-
tections, the cost increases to�75�s.

The trap benchmark measures the time to handle a page
fault in user-space. On Nemesis this requires that the kernel
send an event (<50ns), do a full context save (�750ns), and
then activate the faulting domain (<200ns). Hence approx-
imately 3�s are spent in the unoptimised user-level notifi-
cation handlers, stretch drivers and thread-scheduler. This
could clearly be improved.

The next benchmark,appel1 (this is “prot1+trap+unprot”
in [23]), measures the time taken to access a random pro-
tected page and, in the fault handler, to unprotect that page
and protect another. This uses a standard (physical) stretch
driver with the access violation fault type overridden by
a custom fault-handler; a more efficient implementation
would use a specialised stretch driver.

The final benchmark isappel2 , which is called
“protN+trap+unprot” in [23]. This measures the time taken

to protect 100 contiguous pages, to access each in a ran-
dom order and, in the fault handler, unprotect the relevant
page. It is not possible to do this precisely on Nemesis due
to the protection model — all pages of a stretch must have
the same accessibility. Hence we unmap all pages rather
than protecting them, and map than rather than unprotect-
ing them. An alternative solution would have been use the
Alpha FOW bit, but this is reserved in the current imple-
mentation.

7.2 Paging Experiments

A number of simple experiments have been carried out to
illustrate the operation of the system so far described. The
host platform was a Digital EB164 (with a 21164 CPU run-
ning at 266Mhz) equipped with a NCR53c810 Fast SCSI-2
controller with a single disk attached. The disk was a 5400
rpm Quantum (model VP3221), 2.1Gb in size (4,304,536
blocks with 512 bytes per block). Read caching was en-
abled, but write caching was disabled (the default configu-
ration).

The purpose of these experiments is to show the behaviour
of the system under heavy load. This is simulated by the
following:

� Each application has a tiny amount of physical mem-
ory (16Kb, or 2 physical frames), but a reasonable
amount of virtual memory (4Mb).

� A trivial amount of computation is performed per page
— in the tests, each byte is read/written but no other
substantial work is performed.

� No pre-paging is performed, despite the (artificially)
predictable reference pattern.

A test application was written which created a paged stretch
driver with 16Kb of physical memory and 16Mb of swap
space, and then allocated a 4Mb stretch and bound it to the
stretch driver. The application then proceeded to sequen-
tially read every byte in the stretch, causing every page to
be demand zeroed.

7.2.1 Paging In

The first experiment is designed to illustrate the overall per-
formance and isolation achieved when multiple domains
are paging in data from different parts of the same disk.
The test application continues from the initialisation de-
scribed above by writing to every byte in the stretch, and
then forking a “watch thread”. The main thread continues
sequentially accessing every byte from the start of the 4Mb
stretch, incrementing a counter for each byte ‘processed’
and looping around to the start when it reaches the top.
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Figure 7: Paging In (lhs shows sustained bandwidth,rhsshows a USD Scheduler Trace)

The watch thread wakes up every 5 seconds and logs the
number of bytes processed.

The experiment uses three applications: one is allocated
25ms per 250ms, the second allocated 50ms per 250ms,
and the third allocated 100ms per 250ms — the same pe-
riod is used in each case to make the results easier to un-
derstand. No domain is eligible for slack time, and all do-
mains have alaxity value of 10ms. The resulting measured
progress (in terms of Mbits/second) is plotted on the left
hand side of Figure 7.

Observe that the ratio between the three domains is very
close to4 : 2 : 1, which is what one would expect if each
domain were receiving all of its guaranteed time. In order
to see what was happening in detail, a log was taken inside
the USD scheduler which recorded, among other things:

� each time a given client domain was scheduled to per-
form a transaction,

� the amount of lax time each client was charged, and

� the period boundaries upon which a new allocation
was granted.

The right hand side of Figure 7 shows these events on two
different time-scales: the top plot shows a four second sam-
ple, while the bottom plot shows the first second of the
sample in more detail. The darkest gray squares represent
transactions from the application with the smallest guar-
antee (10%), while the lightest gray show those from the
application with the highest (40%). The small arrows in
each colour represent the point at which the relevant client
received a new allocation.

Each filled box shows a transaction carried out by a given
client — the width of the box represents the amount of
time the transaction took. All transactions in the sample
given take roughly the same time; this is most likely due to
the fact that the sequential reads are working well with the
cache.

The solid lines between the transactions (most visible in
the detailed plot) illustrate the effect oflaxity on the sched-
uler: since there is only one threadcausingpage faults, and
one threadsatisfyingthem, no client ever has more than
one transaction outstanding. In this case the EDF algorithm
unmodified by laxity would allow each client exactly one
transaction per period.

Notice further that the length of any laxity line never ex-
ceeds 10ms, the value specified above, and that the use of
laxity does not impact the deadlines of clients.

7.2.2 Paging Out

The second experiment is designed to illustrate the over-
all performance and isolation achieved when multiple do-
mains are paging out data to different parts of the same
disk. The test application operates with a slightly modified
stretch driver in order to achieve this effect — it “forgets”
that pages have a copy on disk and hence never pages in
during a page fault. The other parameters are as for the
previous experiment. The resulting progress is plotted on
the left hand side of Figure 8.

As can been seen, the domains once again proceed roughly
in proportion, although overall throughput is much re-
duced. The reason for this is in the detailed USD sched-
uler trace on the right hand side of Figure 8. This clearly
shows that almost every transaction is taking on the order
of 10ms, with some clearly taking an additional rotational
delay. This is most likely due to the fact that individual
transactions are separated by a small amount of time, hence
preventing the driver from performing any transaction coa-
lescing.

One may also observe the fact that the client with the small-
est slice (which is 25ms) tends to complete three transac-
tions (totalling more than 25ms) in some periods, but then
will obtain less time in the following period. This is since
we employ a roll-over accounting scheme: clients are al-
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Figure 8: Paging Out (lhs shows sustained bandwidth,rhsshows a USD Scheduler Trace)

lowed to complete a transaction if they have a reasonable
amount of time remaining in the current period. Should
their transaction take more than this amount of time, the
client will end with a negative amount of remaining time
which will count against its next allocation.

Using this technique prevents an application deterministi-
cally exceeding its guarantee. It is not perfect — since it al-
lows jitter to be introduced into the schedule — but it is not
clear that there is a better way to proceed without intimate
knowledge of the disk caching and scheduling policies.

7.3 File-System Isolation

The final experiment presented here adds another factor to
the equation: a client domain reading data from another
partition on the same disk. This client performs significant
pipeliningof its transaction requests (i.e. it trades off addi-
tional buffer space against disk latency), and so is expected
to perform well. For homogeneity, its transactions are each
the same size as a page.

The file-system client is guaranteed 50% of the disk (i.e.
125ms per 250ms). It is first run on its own (i.e. with
no other disk activity occuring) and achieves the sustained
bandwidth shown in the left hand side of Figure 9. Subse-
quently it was run again, this time concurrently with two
paging applications having 10% and 20% guarantees re-
spectively. The resulting sustained bandwidth is shown in
the right hand side of Figure 9.

As can be seen, the throughput observed by the file-system
client remains almost exactly the same despite the addition
of two heavily paging applications.

8 Conclusion

This paper has presented the idea ofself-pagingas a tech-
nique to provide Quality of Service to applications. Experi-

ments have shown that it is possible to accurately isolate the
effects of application paging, which allows the coexistence
of paging along with time-sensitive applications. Most of
the VM system is provided by unprivileged user-level mod-
ules which are explicitly and dynamically linked, thus sup-
porting extensibility.

Performance can definitely be improved. For example, the
3�s overhead in user-space trap-handling could probably
be cut in half. Additionally the current stretch driver im-
plementation is immature and could be extended to handle
additional pipe-lining via a “stream-paging” scheme such
as that described in [24].

A more difficult problem with the self-paging approach,
however, is that ofglobal performance. The strategy of
allocating resources directly to applications certainly gives
them more control, but means that optimisations for global
benefit are not directly enforced. Ongoing work is looking
at both centralised and devolved solutions to this issue.

Nonetheless, the result is promising: virtual memory tech-
niques such as demand-paging and memory mapped files
have proved useful in the commodity systems of the past.
Failing to support them in the continuous media operat-
ing systems of the future would detract value, yet support-
ing them is widely perceived to add unacceptable unpre-
dictability. Self-paging offers a solution to this dilemma.
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Availability

The Nemesis Operating System has been developed as part
of the Pegasus II project, supported by the European Com-
munities’ ESPRIT programme. A public release of the
source code will be made in 1999.
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