i

The following paper was originally published in the
Proceedings of the 3rd Symposium on Operating Systems Design and Implementation
New Orleans, Louisiana, February, 1999

Self-Paging in the Nemesis Operating System

Steven M. Hand
University of Cambridge Computer Laboratory

For more information about USENIX Association contact:

1. Phone: 1.510.528.8649
2. FAX: 1.510.548.5738
3. Email: office@usenix.org

4. WWW URL  http://www.usenix.org/



Self-Paging in the Nemesis Operating System

Steven M. Hand
University of Cambridge Computer Laboratory
New Museums Site, Pembroke St.,
Cambridge CB2 3QGENGLAND
Steven.Hand@cl.cam.ac.uk

Abstract behaviour of user-level pagers or application-provided

In contemporary operating systems, continuous media  code is hardly any more predictable or isolated than
(CM) applications are sensitive to the behaviour of other ~ kernel-level implementations. The “unpredictable la-
tasks in the system. This is due to contention in the kernel ~ tencies” remain.

(orin servers) between'these ap'plications'. To properliy SUPrhis paper presents a scheme whereby each application
port CM tasks, we require "Quality of Service Firewalling” js responsible for all of its own paging (and other virtual

between different applications. memory activities). By providing applications with guaran-
This paper presents a memory management System Su}@es for thSicaI memory and disk bandW|dth, itis pOSSible
porting Quality of Service (QoS) within thNemesisop- 10 isolate time-sensitive applications from the behaviour of
erating system. It combines application-level paging techothers.

niques with isolation, exposure and responsibility in a man-

ner we callself-paging This enables rich virtual memory

usage alongside (or even within) continuous media appli2 Quality of Service in Operating Systems
cations.

In recent years, the application mix on general purpose
. computers has shifted to include “multimedia” applica-
1 Introduction tions. Of particular interest areontinuous medigCM)
applications — those which handle audio and/or video —

Researchers now recognise the importance of providingince the presentation (or processing) of the information
support for continuous media applications within operatmust be done in a timely manner. Common difficulties en-
ing systems. This is evinced by themesig1, 2, 3] and countered include ensuring low latency (especially for real-
Rialto[4, 5, 6] operating systems and, more recently, worktime data) and minimisinffter (viz. the variance in delay).

on theScout[7] operating system and thev@RT sched-  jeary not all of today’s applications have these tempo-

uler [8]. Meanwhile there has been continued interest i, constraints. More traditional tasks such as formatting
the area of memory management, with a particular focus, document, compiling a program, or sending e-mail are

onextensibility[9, 10, 11]. unlikely to be banished by emerging continuous media ap-
While this work is valid, it is insufficient: plications. Hence there is a requirement faulti-service

) . ] . operating systems which can support both types of applica-
e Work on continuous media support in operating sys-tjon simultaneously.

tems tends to focus on CPU scheduling only.
The area of memory management is either totally ig-Unfortunately, most current operating systems conspicu-
nored (Scout, BART) or considered in practice to be Ously fail to support this mix of CM and non-CM appli-

a protection mechanism (Rialto). In fact, the imple- cations:

mentation of the Rialto virtual memory system de-
scribed in [12] explicitly excludes paging since in”
troduces unpredictable latencies

e CPU scheduling is usually implemented via some
form of priority scheme, which specifiegho but not
whenor how much This is unfortunate since many

e Work on memory management does not support (or  continuous media applications do not require a large
try to support) any concept of Quality of Service. fraction of the CPU resource (i.e. they are not nec-
While support for extensibility is a laudable goal, the essarily morémportantthan other applications), but



they do need to be scheduled itimelyfashion. Even operating systems which eschew jhx&ernel ap-

: roach still view the extensibility of the memory manage-
e Other resources on the data path, such as the disk Lent system as important:

network, are generally not explicitly scheduled at all.
Instead, the proportion of each resource granted to e the SPIN operating system provides for user-level ex-

an application results from a complex set of unpre- tension of the memory management code via the reg-
dictable interactions between the kernel (or user-level istration of an event handler for memory management.
servers) and the CPU scheduler. events [10].

e The OS performs a large number of (potentially) time- e the VINO operating system [20, pp 1-6] enables ap-
critical tasks on behalf of applications. The perfor- plications to override some or all operations within
mance of any particular application is hence heavily MemoryResourcebjects, to specialise behaviour.
dependent on the execution of other supposedly “in-
dependent” applications. A greedy, buggy or even
pathological application can effect the degradation of
all other tasks in the system.

¢ the V++ Cache Kernel allows “application kernels” to
cache address-space objects and to subsequently han-
dle memory faults on these [21].

the Aegis experimental exokernel enables “library
operating systems” to provide their own page-table
structures and TLB miss handlers [9].

This means that while most systems can support CM appli- ¢
cations in the case of resource over-provisioning, they tend
to exhibit poor behaviour when contention is introduced.

A number of operating systems researchers are now a This is not _surprising. Many tgsks are iII-sgryed t_)y de-
tempting to provide support for continuous media app”_.ault operating system abstractions and policies, includ-
cations. The Rialto system, for example, hopes to promg database management (DBMS) [22], garbage collec-

vide modular real-time resource management [4] by mean%?nr [23]”3?: mtlijrlr?i-mteid;a afpl'cat'?br;s vE/2h4]ﬁ Fu”rthfir-n
of arbitrarily composableesource interfacesollectively ore, certain opimisations are possible when applicatio
specific knowledge can be brought to bear, including

managed by aesource planner A novel real-time CPU .
g y urce p v : mproved page replacement and prefetching [17], better

schedulerhfas been presented in [5, 6], while an implemertuﬁer cache management [25], and light-weight signal
tation of a simple virtual memory system for set-top boxeshandling [26]. Al of these may ’be realised by providing

is described in [12]. .

user-level control over some of the virtual memory system.
The Scout operating system uses trath abstraction to . .
ensure that continuous media streams can be processedLiJﬁ]fortuna.tely‘ none of th.e above-mentioned operating sys-
a timely manner. It is motivated by multimedia network tems provide QoS in their memory management:
streams, and as such targets itself at sources (media serversy No Isolation: applications which fault repeatedly will
and sinks (Set-top bOXGS) of such traffic. Like Rialto, the still degrade the overall system performance. In par-
area of virtual memory management is not considered a ticular, they will adversely affect the operation of

high-priority; instead there is a rudimentary memory man- other applications.
agement system which focuses upon buffer management |n y-kernel systems, for example, a single external
and does not support paging. pager may be shared among an arbitrary number of

processes, but there is no scheduling regarding fault
resolution. This indirect contention has been referred
to asQosS crosstalf2]. Other extensible systems al-
low the application to specify, for example, the page
replacemenpolicy, but similarly fail to arbitrate be-
tween multiple faulting applications.

Most other research addresses the problem of Quality of
Service within a specific domain only. This has lead to

the recent interest in soft real-time scheduling [13, 8, 14,
15] of the CPU and other resources. The work has yet to
be widely applied to multiple resources, or to the area of
memory management.

¢ Insufficient Exposure: most of the above operating
) system&abstract away from the underlying hardware;

3 Extensible Memory Management memory faults are presented as some abstract form of
exception and memory translation as an array of vir-

Memory management systems have a not undeserved repu- tual to physical mappings. _

tation for being complex. One successful method of simpli- ~ Actual hardware features such as multiple TLB page
fying the implementation has been thekernel approach: sizes, addl.tlonal protection blt_s, address space num-
move some or all of the memory management system out  Pers, physical address encoding, or cache behaviour
of the kernel into “user-space”. This mechanism, pioneered ~ €nd to be lost as a result of this abstraction.

by work on Mach [16] is still pr.evalent in many modein 1A notable exception is the Aegis exokernel, which endeavours to ex-
kernels such as V++ [17], Spring [18] and L4 [19]. pose as much as possible to the application.




¢ No Responsibility: while the many of the above op- System' App App Device
erating systemallow applications some form of “ex- Domain ' ’ Driver
tensibility” for performance or other reasons, theydo | |-  }..| [
not by any meanenforceits use. Indeed, they provide o
a “default” or “system” pager to deal with satisfying
faults in the general case. The use of this means that shared
most applications fail to pay for their own faults; in- os. 0S. 0s. 0S. Mol
stead the system pager spends its time and resources Code
processing them.
What is required is a system whereby applications benefit
from the ability to control their own memory management, | | | [ |7
but do not gain at the expense ofothers. [ -1 T | L ....v"[mpri\,
Priv
. Onnonnn ——— E
4 Nemesis Driver Stubsf S/W
I Bl o . ];“'TD';IH/W

The Nemesis operating system has been designed and im-
plemented at the University of Cambridge Computer Labo-
ratory in recent years. Nemesis isnalti-serviceoperating
system — that is, it strives to support a mix of conventional
and time-sensitive applications. One important problem i
addresses is that of preventi@Q@S crosstalkThis can oc-
cur when the operating system kernel (or a shared serve
performs a significant amount of work on behalf of a num-
ber of applications. For example, an application which
plays a motion-JPEG video from disk should not be ad-

versely affected by a compilation started in the background .
Y Y P g 5 Self-Paging

Figure 1: Vertical Structuring in Nemesis

linterfaces [28] and physical memory — are treated in the

ame way. Hence any given application has a set of guar-
ﬁntees for all the resources it requires. Other applications
cannot interfere.

One key way in which Nemesis supports this isolation is
by having applications execute as many of their own tasks , i , i
as possible. This is achieved by placing much traditionaP€!-P2ding provides a simple solution to memory system

operating system functionality into user-space modules, regrosstalk]:re?U|re cevery application to deal W';gs I 'ts. own
sulting in avertically integratedsystem (as shown in Fig- Memory faults using its own concrete resouraéispaging

ure 1). This vertical structure is similar to that of the CachePPerations are removed from the kernel; instead the kernel
Kernel [21] and the Aegis Exokernel [27], although the mo-1S simply responsible for dispatching fault notifications.

tivation is different. More specifically, self-paging involves three principles:

The user-space part of the operating system is comprisedy controt resource access is multiplexed in both space
of a number of distincmodules each of which exports and time. Resources are guaranteed over medium-
one or more strongly-typeititerfaces An interface defi- term time-scales.

nition language calleMIDDL is used to specify the types,

exceptions and procedures of an interface, and a run-time2. Power interfaces are sufficiently expressive to allow
typesystem allows the narrowing of types and the marshal-  applications the flexibility they require. High-level ab-
ing of parameters for non-local procedure invocations. stractions are not imposed.

A name-space scheme (based on Plan-9 contexts) allows3. Responsibility each application is directly respon-
implementations of interfaces to be published and appli-  sible for carrying out its own virtual memory opera-
cations to pick and choose between them. This may be tions. The system does not provide a “safety net”.

termed “plug and play extensibility”; we note that it is im-

plementedibovethe protection boundary. The idea of performing virtual memory tasks at

application-level may at first sound similar to the ideas pio-
Given that applications are responsible for executing tradineered in Mach [16] and subsequently used-kernel sys-
tional operating system functions themselves, the must beems such as L4 [19]. However whilekernel systemal-
sufficiently empowered to perform them. Nemesis handlesow the use of one or more external (i.e. non-kernel) pagers
this by providing explicit low-level resource guarantees orin order to provide extensibility and to simplify the ker-
reservations to applications. This is not limited simply to nel, several applications will typically still share an external
the CPU: all resources — including disks [14], network pager, and hence the problem of QoS crosstalk remains.



In Nemesis weequirethat every application iself-paging  thermore, the latency with which the fault will be resolved

It mustdeal with any faults that it incurs. This, along with (assuming it is resolvable) is dependent on the guarantees
the use of the single address space and widespread shaeld by that domain.

ing of text, ensures that the execution of each dofisin
completely independent to that of other domains save whe
interaction is desired.

ﬁather closer to the self-paging ideal are “vertically struc-

tured” systems such as the Aegis & Xok exokernels [9, 29].
Like Nemesis, these systems dispatch memory faults to
The difference betweem-kernel approaches and Nemesis’ user-space and expect unprivileged library operating sys-
is illustrated in Figure 2. tem code to handle them. In addition, exokernels expose
sufficient low-level detail to allow applications access to

hardware-specific resources.

KEY: ‘

External Paging | ------ > Page/Protection Fault Self Paging

—— Kernel Notification

<——> General neraction However exokernels do not fully cope with the aspect of
control: resources are multiplexed in space (i.e. there is
protection), but not in time. For example, the Xok exok-
ernel allows library filing systems to download untrusted
metadata translation functions. Using these in a novel way,
\ the exokernel can protect disk blocks without understand-
i i / ing file systems [29]. Yet there is no consideration given to
3 e Privileged: LA partitioning access in terms tifne library filing systems

W T
U-Kernel Nemesis are not guaranteed a proportion of disk bandwidth.

A second problem arises with crosstalk within the exok-
ernel itself. Various device drivers coexist within the ker-
nel execution environment and hence an application (or li-
brary operating system) which is paging heavily will im-
act others who are using orthogonal resources such as the

Shared Library Code)|

Unprivileged: \"-‘

Figure 2: External Paging versus Self Paging

The left-hand side on the figure shows thekernel ap-
proach, V.V'th an extemnal pager. Three applications aré:etwork. This problem is most readily averted by pushing
shown, with two of them causing page.fauI.tS (or, more 9€NYevice driver functionality outside the kernel, as is done
erally, memory faults). The third application has a Server, i ,i-kernel architectures.

performing work on its behalf, and this server is also caus-
ing a memory fault. The kernel notifies the external pager

and it must then deal with the three faults. .
6 System Design

This causes two problems:

1. Firstly, the process which caused the fault does not usa general overview of the virtual memory architecture is
any of its own resources (in particular, CPU time) in shown in Figure 3. This is necessarily simplified, but does
order to satisfy the fault. There is no sensible wayillustrate the basic abstractions and their relationships.
in which the external pager (or the-kernel itself)
can account for this. A process which faults repeat-
edly thus degrades the overall system performance but _—
bears only a fraction of the cost. Stretch

Stretch |« /00U | All0CatOY

Stretch (Virtual Address

4‘ Local Allocation)

A§sociatinn
o)
\ Frame
Allocate Allocator E>

~.
- Stretch
Driver
Frames (Physical Address

Set/Get
Mappin,
1 Allocation)

Application Domain System Domain

2

Translation System (High Level)

2. Secondly, multiplexing happens in the server — i.e.
the external pager needs some way to decide how to
‘schedule’ the handling of the faults. However it will  Toerie)
generally not be aware of any absolute (or even rela-t Backing Store
tive) timeliness constraints on the faulting clients. A
first-come first-served approach is probably the best it Set/Get Diepaten
can do. Proteitions Fai,hs

v
Translation System (Low Level)

On the right-hand side we once again have three applica-
tions, but no servers. Each application is causing a memory
fault of some sort, which is trapped by the kernel. However

rather than sending a notification to some external pager,
the kernel simply notifies the faulting domain. Each do-
main will itself be responsible for handling the fault. Fur-

Figure 3: VM System Architecture

The basic virtual memory abstractions shown are the
stretchand thestretch driver A stretch merely represents
2A domainin Nemesis is the analog of a process or task. a range of virtual addresses with a certain accessibility. It




does not own — nor is it guaranteed — any physical rethese will always be a multiple of the machine’s pageSize

sources. A stretch driver is responsible for providing the

backing for the stretch; more generally, a stretch driver iéa rotection is carried out at stretch granularity — evemy

responsible for dealing with any faults on a stretch. Hencéecuoﬂ domawprc;wdesfa mapping from the set of X\a“d
it is only via its association with a stretch driver that it be- stretches to a subset gfread write, executemeta}.

comes possible to talk meaningfully about the “contents'doma'n. which SOIdS thmetarlgr;t IS altuthorlsed tohmodn‘y
of a stretch. Stretch drivers are unprivileged, applicationprOtecnons and mappings on the relevant stretch.

level objects, instantiated by user-level creator modules angyhen allocated, a stretch need not in general be backed by
making use only of the resources owned by the applicationphysical resources. Before the virtual address may be re-
ferred to the stretch must be associated witretch driver

The stretch driver is shown as potentially having a connec-

tion to a backing store. This is necessarily vague: there we say that a stretch must beundto a stretch driver.

are many different sorts of stretch driver, some of which doThe stretch driver is the object responsible for providing

not deal with non-volatile storage at all. There are also po2"Y backing (physical memory, disk space, etc.) for the
tentially many different kinds of backing store. The most stretch. Stretch drivers are covered in Section 6.6.
important of these is theser-Safe Backing Sto(&)SBS).

This draws on the work described in [14] to provide per- )

application guarantees on paging bandwidth, along witt6.2 Physical Memory Management

isolation between paging and file-system clients.

L . . As with virtual memory, the allocation of physical memory
Allocation is performed in a centralised way by the system, L
. . . is performed centrally, in this case by thhames allocator
domain, for both virtual and physical memory resources : .
: . . . The frames allocator allows fine-grained control over the
The high-level part of the translation system is also in the : : ) . )
LT : allocation of physical memory, including 1/O space if ap-
system domain: this is machine-dependent code responsi-

ble for the construction of page tables, and the setting up ng)roprlate. A domain may request specific physical frames,

“NULL" mappings for freshly allocated virtual addresses. or fra.mes W'thm a “special” regidn This allows an ap-
) S .~ plication with platform knowledge to make use of page
These mappings are used to hold the initial protection in:

. ﬁolouring [30], or to take advantages of superpage TLB
formation, and by default are set up to cause a page fauma ings, etc. A default allocation policy is also provided
on the first access. Placing this functionality within the PPINgs, etc. policy P

; . for domains with no special requirements.
system domain means that the low-level translation sys- P g

tem does not need to be concerned with the allocation ofinlike virtual memory, physical memory is generally a
page-table memory. It also allows protection faults, pagecarce resource. General purpose operating systems tend
faults and “unallocated address” faults to be distinguishedo deal with contention for physical memory by perform-
and dispatched to the faulting application. ing system-wide load balancind he operating system at-

Memory protection operations are carried out by the appli-tempts to (dynamically) share physical memory between

cation through the stretch interface. This talks directly tocompetlng processes. Frames amolfedfror_n one pro-

: S cess and granted to another. The main motivation is global
the low-level translation system via simple system calls; )
. . . system performance, although some systems may consider
it is not necessary to communicate with the system do- 4 . .

. . . L other factors (such as the estimated working set size or pro-
main. Protection can be carried out in this way due to the
i o 2 cess class).
protection model chosen which includes explicit rights for
“change permissions” operations. A light-weight valida- Since in Nemesis we strive to devolve control to applica-
tion process checks if the caller is authorised to perform afions, we use an alternative scheme. Each application has
operation. a contract with the frames allocator for a certain number of
The following subsections explain relevant parts of this ar_gua_lran.teeqmysmal frames. These are immune from revo-
: . . cation in the short term (on the order of tens of seconds).
chitecture in more detail. . L
In addition to these, an application may have some num-
ber of optimistic frames, which may be revoked at much

) . shorter notice. This distinction only applies to frames of
6.1 Virtual Address Allocation main memory, not to regions of I/O space.

Any domain may request a stretch from a stretch allocaVhen adomainis created, the frames allocator is requested

tor, specifying the desired size and (optionally) a startingt® @dmit it as a client with a service contrdgt, +}. This
address and attributes. Should the request be successfull&Presents a pair of quotas for guaranteed and optimistic
new stretch will be created and returned to the caller. The 5~ , . . -

. . ere multiple page sizes are supported, “page size” refers to the
caller is now theownerof the stretch. The starting address gjze of the smallest page.
and length of the returned stretch may then be queried; “Such as DMA-accessible memory on certain architectures.




frames respectively. Admission control is based on the re-
quested guarantee— the sum of all guaranteed frames

contracted by the allocator must be less than the totalﬁt
amount of main memory. This is to ensure that the guar- I

antees of all clients can be met simultaneously. !
|

The frames allocator maintains the tugle, g, z} for each i

client domain, where: is the number of physical frames

allocated so far. As long ag > n, a request for a single
physical frame is guaranteed to succeeld ¢ < n < z

me

System Domain ‘

+ Intrusive :
I e ~ Revocation |

and there is available memory, frames willdq@imistically O

allocated to the caller.

The allocation of optimistic frames improves global perfor- :
mance by allowing applications to use the available memg
ory when itis not otherwise required. If, however, adomainO
wishes to use some more of the frames guaranteed to it, it

The frames allocator sends a revocation notification to Ap-
plication B.

Application B fields this notification, and arranges for the
top k frames on the stack to be unused.

Application B replies that all is now ready.

The frames allocator reclaims the tépframes from the
stack.

may be necessary te@vokesome optimistically allocated
frames from another domain. In this case, the frames allo-
cator chooses a candidate applicatjdut the selection of
the frames to release (and potentially write to the backin
store) is under the control of the application.

Figure 4: Revocation of Physical Memory

gI'he frame stack also provides a useful place for stretch
. o o drivers to store local information about mappings, and en-
By convention, each application maintainérame stack  ables the internal revocation interface to be simpler.

This is a system-allocated data structure which is writable . . ]
by the application domain. It contains a list of physical Due to the need for relatively large timeouts, a client do-

frame numbers (PFNs) owned by that application ordered@n requesting some more guaranteed frames may have to
by ‘importance’ — the top of the stack holds the PFN of theWait for a non-trivial amount of time before its request suc-

frame which that domain is most prepared to have revokedc€€ds. Hence time-sensitive applications generally request
all their guaranteed frames during initialisation and do not

This allows revocation to be performednsparentlyinthe  yse optimistically allocated frames at all. This is not man-
case that the candidate application hasisedframes at  dated, however: use of physical memory is considered or-
the top of its stack. In this case, the frames allocator camhogonal to use of other resources. The only requirement is
simply reclaim these frames and update the application’shat any domain which uses optimistically allocated frames
frame stack. Transparent revocation is illustrated on thghould be able to handle a revocation notification.
left-hand side of Figure 4.

If there are no unused frames availahlgrusive revoca- .

tion is required. In this case, the frames allocator send§-3 Translation System

a revocation notification to the application requesting that

it releasek frames by timeT’. The application then must The translation system deals with inserting, retrieving or
arrange for the tog frames of its frame stack to contain deleting mappings between virtual and physical addresses.
unmapped frames. This can require that it first clean somés such it may be considered an interface to a table of infor-
dirty pages; for this reasof, may be relatively far in the mation held about these mappings; the actual mapping will
future (e.g. 100ms). typically be performed as necessary by whatever memory

o management hardware or software is present.
After the application has completed the necessary opera-

tions, it informs the frames allocator that the tofirames  The translation system is divided into two parts: a high-

may now be reclaimed from its stack. If these are not allevel management module, and the low-level trap handlers
unused, or if the application fails to reply by tirffigthe do-  and system calls. The high-level part is private to the sys-
main is killed and all of its frames reclaimed. This protocol tem domain, and handles the following:

is illustrated on the right-hand side of Figure 4. « Bootstrapping the ‘MMU’ (in hardware or software),

Notice that since the frames allocaawaysrevokes from and setting up initial mappings.
the top of an application’s frame stack, it makes sense for

the application to maintain its preferred revocation order. * Adding, modifying or deleting ranges of virtual ad-

dresses, and performing the associated page table
management.

5Due to fragmentation, a single request for uggo— n) frames may
or may not succeed.

6i.e. one which currently has optimistically allocated frames. e Creating and deleting protection domains.



e Initialising and partly maintaining thRamTahthisis  the kernel — an event “transmission” involves a few sanity
a simple data structure maintaining information aboutchecks followed by the increment of a 64-bit value. A full
the current use of frames of main memory. description of the Nemesis event mechanism is givenin [2].

The high-level translation system is used by both the stretckbn a memory fault, then, the kernel saves the current con-
allocator and the frames allocator. The former uses it taext in the domain’activation contexand sends an event
setup initial entries in the page table for stretches it haso the faulting domain. At some point in the future the
created, or to remove such entries when a stretch is detomain will be selected for activation and can then deal
stroyed. These entries contain protection information butvith the fault. Sufficient information (e.g. faulting address,
are by defaulinvalid: i.e. addresses within the range will cause, etc.) is made available to the application to facilitate
cause a page fault if accessed. The frames allocator, ahis. Once the fault has been resolved, the application can
the other hand, uses tligamTabto record the owner and resume execution from the saved activation context.

logical frame width of allocated frames of main memory.

Recall that each domain is expected to deal with mappin%3
its own stretches. The low-level translation system pro-
vides direct support for this to happen efficiently and se-
curely. It does this via the following three operations: At some point after an application has caused a memory
fault, it will be activatedby the scheduler. The appli-

" ' cation then needs to handle all the events it has received
dressva maps onto the physical address with the  gjnce it was last activated. This is achieved by invoking
(machine-dependent) PTE attribuss a notification handlerfor each endpoint containing a new

a thread to run.

.5 Application-Level Fault Handling

1. map(va, pa, attr) : arrange that the virtual ad-

3. trans(va) — (pa, attr) . retrieve the cur-

rent mapping of the virtual addresa, if any. Up until the point where a thread is run, the application
) ) ) ) ) is said to be running within aactivation handler This
Either mapping or unmapping a virtual addreasrequires s 5 |imited execution environment where further activa-

that the calling domain is executing in a protection domairtions are disallowed. One important restriction is that inter-
which holds ametaright for the stretch containinga. A gomain communication (IDC) is not possible within an ac-
consequence of this is that it is not possible to map a virtugjjyation handler. Hence if the handling of an event requires
address which is not part of some strétch communication with another domain, the relevant notifica-

It is also necessary that the frame which is being used fofion handler simply unblocks a worker thread. When this
mapping (or which is being unmapped) is validated. This'S §cheduled, it will carry out the rest of the operations re-
involves ensuring that the calling domain owns the frameduired to handle the event.

and that the frame is not currently mapped or nailed. Thesgpe combination of notification handler and worker threads

conditions are checked by using tRamTab which is a g called anentry (after ANSAware/RT [31]). Entries en-

simple enough structure to be used by low-level code. capsulate a scheduling policy on event handling, and may
be used for a variety of IDC services. An entry called the

. . MMEntry is used to handle memory management events.
6.4 Fault Dispatching Y Y g

The notification handler of theIMEntry is attached to the
Apart from TLB misses which are handled by the low-level endpoint used by the kernel for fault dispatching. Hence
translation system, all other faults are dispatched directly téf 9€ts an upcall every time the domain causes a memory
the faulting application in order to prevent QoS crosstalk fault. Itis also entered when the frames allocator performs
To prevent the need to block in the kernel for a user-leveR revocation notification (as described in Section 6.2). The
entity, the kernel-part of fault handling is complete once thetop’ part of the MMEntry consists of one or more worker
dispatch has occurred. The application must perform anymreads which can be unblocked by the notification handler.

adqlitional operatiqns, including the resumption (or termi-pq MMEntry does not directly handle memory faults or
nation) of the faulting thread. revocation requests: rather it coordinates the set of stretch
The actual dispatch is achieved by usingeaent channel ~ drivers used by the domain. It does this in one of two ways:

Events are an extremely lightweight primitive provided by | If handling a memory fault, it uses the faulting stretch

7Bootstrapping code clearly does this, but it uses the high-level trans- O qukup the.StretCh driver bound to that stretch and
lation system and not this interface. then invokes it.




¢ If handling a revocation notification, it cycles through which may be used to handle faults. The simplest is the
each stretch driver requesting that it relinquish framesailed stretch driver; this provides physical frames to back
until enough have been freed. a stretch at bind time, and hence never deals with page
faults. The second is thghysicalstretch driver. This pro-
vides no backing frames for any virtual addresses within
a stretch initially. The first authorised attempt to access
any virtual address within a stretch will cause a page fault
which is dispatched in the manner described in Section 6.4.
The physical stretch driver is invoked from within the
notification handler this is a limited execution environ-
ment where certain operations may occur but others cannot.
Most importantly, one cannot perform any inter-domain
communication (IDC) within a natification handler.

Figure 5 illustrates this in the case of a page fault.

MMEntry Other Entries

Stretch
Driver

(potentially) to

a(:kiI store

When the stretch driver is invoked, the following occurs:

@DvmalinActivated e After performing basic sanity checks, the stretch

driver looks for an unused (i.e. unmapped) frame. If

this falils, it cannot proceed further now — but may be

able to request more physical frames when activations
are on. Hence it returrRetry .

0 The domain receives an event. At some point, the kernel
decides to schedule it, and itastivated It is informed that
the reason for the activation was the receipt of an event.

O The user-level event demultiplexer notifies interested parties ® Otherwise, it can proceed now. In this case, the
of any events which have been received on their end-point(s).  stretch driver sets up the new mapping with a call to

O The memory fault notification handler demultiplexes the map(va,pa,attr) , and returnSuccess .
stretch to the stretch driver, and invokes this in an initial at-

tempt to satisfy the fault. In th herRet . t d
O If the attempt fails, the handler blocks the faulting thread, n the case whergetry IS returned, a memory manage-

unblocks a worker thread, and returns. After all events havé‘nfant entry worker th.read will invo-ke t-he physical stretch
been handled, the user-level thread scheduler is entered. driver for a second time once activations are on. In this

0  The worker thread in the memory management entry iscase, IDC operations are possible, and hence the stretch
scheduled and once more invokes the stretch driver to ma@river may attempt to gain additional physical frames by
the fault, which may potentially involve communication with invoking the frames allocator. If this succeeds, the stretch

another domain. driver sets up a mapping from the faulting virtual address
to a newly allocated physical frame. Otherwise the stretch
Figure 5: Memory Management Event Handling driver returnsFailure

Note that the initial attempt to resolve the fault (arrow la- The third stretch driver implemented is thagedstretch

belledl) is me_rely a “fast path" optimisatioq. If it suc- driver. This may be considered an extension of the phys-
ceeds, the faulting thread will be able to continue once th?

. . L cal stretch driver; indeed, the bulk of its operation is pre-
ULTS is entered. On the other hand, if the initial attempt _; :
) i . Mcisely the same as that described above. However the paged
fails, the MMEntry must block the faulting thead pending y bag

: stretch driver also has a binding to the USBS and hence
the resolution of the fault by a worker thread. may swap pages in and out to disk. It keeps track of swap
space as a bitmap bfoks— a blok is a contiguous set of
disk blocks which is a multiple of the size of a page. A
(singly) linked list of bitmap structures is maintained, and
bloks are allocated first fit — a hint pointer is maintained

As has been described, the actual resolution of a fault is thg, the earliest structure which is known to have free bloks.
province of astretch driver A stretch driver is something

which provides physical resources to back the virtual ad- rrently we implement a fairl e demand d
dresses of the stretches it is responsible for. Stretch driver%cuhei]ey ehen p;e aee faa Itecl)cg rzu eh'cf? c:nnotptflgzat-
acquire and manage their own physical frames, and are 8 —W page fau urs whi

sponsible for setting up virtual to physical mappings by in-:czfr':;d f(ﬁmer]tgeepogllé);rll‘reg]fsra(gist,)éjl_snl]< a;gtl\gg ﬁ‘;soem;
voking the translation system. wi ue. y thi improved; howev

it will suffice for the demonstration of “Quality of Service
The current implementation includes three stretch drivergirewalling” in Section 7.2.

6.6 Stretch Drivers



6.7 User-Safe Backing Store and deducted from that client’s remaining time. If the re-
maining time is< 0, the client is moved ontowait queue;

The user-safe backing store (USBS) is comprised of twdnce its deadline is reached, it will receive a new alloca-
parts: the swap filesystem (SFS) and the user-safe digkon and b.e returned to the runnable queue..UntiI that time,
(USD) [32]. The SFS is responsible foepntrol opera- however, it cannot perform any more operations.

tions such as allocation of an extent (a contiguous range Qfgte that this algorithm will tend to perform requests from

blocks) for use as a swap file, and the negotiation of Quality, gjngle client consecutively. This is a very desirable prop-
of Service parameters to the USD, which is responsible fopy since it minimises the impact of clients upon each other

schedulinglataoperations. This is illustrated in Figure 6. __“ine first transaction after a “context switch” to a new
client will often incur a considerable seek/rotation penalty

Application B over which it has no control. However this cost can be

Application A
/- amortised over the number of transactions which the client
Swap Space

Alocation & subsequently carries out, and hence has a smaller impact

) e} QoS Admission

REvs AGKs vV ) REGs AGKs on its overall performance.
¢ Unfortunately, many clients (and most particularly clients
System using the USD as a swap device) cannot pipeline a large
number of transactions since they do not know in advance
sonace to/from where they will wish to write/read. Early versions
T corre! T of the USD scheduler suffered from this so-called “short-

block” problem: if the client with the earliest deadline has
(instantaneously) no further work to be done, the USD

N ache Miss
Translation &
Protection

[l scheduler would mark it idle, and ignore it until its next
‘ Transaction Scheduler ‘ USD periodic allocation.
To avoid this problem, the idea of “laxity” is used, as given
w by thel parameter of the tuple mentioned above. This is a
time value (typically a small number of milliseconds) for
which a client should be allowed to remain on the runnable
Figure 6: The User-Safe Backing Store queue, evenifit currently has no transactions pending. This

does not break the scheduling algorithm since the addi-
Clients communicate with the USD via a FIFO buffering tional time spent — thédax time — is accounted to the
scheme calledO channelsthese are similar in operation client just as if it were time spent performing disk transac-
to the ‘rbufs’ scheme described in [33]. tions. Section 7.2 will show the beneficial impact of laxity

in the case of paging operations.
The type of QoS specification used by the USD is in the haging op

form (p, s, z,1) wherep is theperiodands theslice both
of these are typically of the order of tens of miIIiseconds.7 Experiments
Such a guarantee represents that the relevant client will be
allowed to perform disk transactions totalling at mests
within everyp ms period. The: flag determines whetheror 7.1 Micro-Benchmarks
not the client is eligible for any slack time which arises in
the schedule — for the purposes of this paper it will alwaysin order to evaulutate the combination of low-level and
be False and so may be ignored. application-level memory system functions, a set of micro-
L benchmarks based on those proposed in [23] were per-

The actual scheduling is based on tAéropos algo- {5 meq on Nemesis and compared with Digital OSF1 V4.0
rithm [2]: this is a based on the earliest-deadline first (EDF)on the same hardware (PC164) and basic page table struc-
algorithm [34], although the deadlines are implicit, andture (linear). The results are shown in Table 1.
there is support fooptimisticscheduling.

o o . The first benchmark shown dirty . After [9] this mea-
Each client is periodically allocatedms and a deadline of ¢ ,res the time to determine whether a page is dirty or not.
now + p ms, and placed on minnablequeue. A thread  on Nemesis this simply involves looking up a random page
in the USD domain is awoken whenever there are pending,p|e entry and examining its ‘dirty’ it We use dinear
requests and, if there is work to be done for multiple cIients,page table implementation (i.e. the main page table is an

chooses the one with the earliest deadline and performs gy, array in the virtual address space with a secondary
single transaction.

) . . 8We implement ‘dirty’ and ‘referenced’ using tir@R/Fow bits; these
Once the transaction completes, the time taken is computege set by software and cleared by the RAIDE DFault routine.



OS | dirty (un)protl (un)prot100 to protect 100 contiguous pages, to access each in a ran-
OSF1V4.0 n/a 3.36 5.14 dom order and, in the fault handler, unprotect the relevant
Nemesis| 0.15 0.42[0.40] 10.78[0.30] page. It is not possible to do this precisely on Nemesis due
trap appell appel2 to the protection model — all pages of a stretch must have

OSF1V4.0| 10.33 24.08 19.12 the same accessibility. Hence we unmap all pages rather
Nemesis| 4.20 5.33 9.75 than protecting them, and map than rather than unprotect-

ing them. An alternative solution would have been use the
Alpha Fow bit, but this is reserved in the current imple-

Table 1: Comparative Micro-Benchmarks; the unitsgge ~ mentation.

tNon-standard — see main text.

page table used to map it on “double faults”) which pro-- 5 Paging Experiments
vides efficient translation; an earlier implementation using °

guardedpage tables was about three times slower. ] ) ]
A number of simple experiments have been carried out to

The second benchmark measures the time taken to proteifitistrate the operation of the system so far described. The
or unprotect a random page. Since our protection modehost platform was a Digital EB164 (with a 21164 CPU run-

requires that all pages of a stretch have the same accegfg at 266Mhz) equipped with a NCR53¢810 Fast SCSI-2
permissions, this amounts to measuring the time requiredontroller with a single disk attached. The disk was a 5400
to change the permissions on small stretches. There afgm Quantum (model VP3221), 2.1Gb in size (4,304,536
two ways to achieve this under Nemesis: by modifying thep|ocks with 512 bytes per block). Read caching was en-

page tables, or by modifying protection domain— the  apled, but write caching was disabled (the default configu-
times for this latter procedure are shown in square bracketsation).

The third benchmark measures the time taken torpe purpose of these experiments is to show the behaviour

(un)protect a range of 100 pages. Nemesis does not hayg the system under heavy load. This is simulated by the
code optimised for the page table mechanism (e.g. it I00kg||owing:

up each page in the range individually) and so it takes con-

siderably longer than (un)protecting a single page. OSF1, ¢ Each application has a tiny amount of physical mem-
by contrast, shows only a modest increase in time when  ory (16Kb, or 2 physical frames), but a reasonable
protecting more than one page at a time. Nemesis does amount of virtual memory (4Mb).

perform well when using the protection domain scheme. « Atrivial amount of computation is performed per page

This benchmark is repeated a number of times with the = — in the tests, each byte is read/written but no other
same range of pages and the average taken. Since on Neme- substantial work is performed.

sis the protection scheme detects idempotent changes, we
alternately protect and unprotect the range; otherwise the
operation takes an average of only Qu&5 If OSF1 is

benchmarked using the Nemesis semantics of alternate praxtest application was written which created a paged stretch
tections, the cost increasestd5us. driver with 16Kb of physical memory and 16Mb of swap

Thetrap benchmark measures the time to handle a pag&Pace, an.d then allocatgd a.4Mb stretch and bound it to the
faultin user-space. On Nemesis this requires that the kernéfrétch driver. The application then proceeded to sequen-
send an event(50ns), do a full context save-f50ns), and tially read every byte in the stretch, causing every page to
then activate the faulting domair200ns). Hence approx- P€ demand zeroed.

imately 3us are spent in the unoptimised user-level notifi-

cation handlers, stretch drivers and thread-scheduler. This .

could clearly be improved. 7.2.1 PagingIn

isis“ + + " . . . . .
The nextbenchmarkippell - (this is "protl +trap+unprot The first experiment is designed to illustrate the overall per-

in [23]), measures the time taken to access a random prq- . ) . . .

) ormance and isolation achieved when multiple domains
tected page and, in the fault handler, to unprotect that pagere acing in data from different parts of the same disk
and protect another. This uses a standard (physical) stret paging P '

. . L . e test application continues from the initialisation de-
driver with the access violation fault type overridden by i~ )
) i . .’ scribed above by writing to every byte in the stretch, and
a custom fault-handler; a more efficient implementation

would use a specialised stretch driver then forl_<ing a “watc_h thread”. The main thread continues

' sequentially accessing every byte from the start of the 4Mb
The final benchmark isappel2 , which is called stretch, incrementing a counter for each byte ‘processed’
“protN+trap+unprot”in [23]. This measures the time takenand looping around to the start when it reaches the top.

¢ No pre-paging is performed, despite the (artificially)
predictable reference pattern.



1 K ull" EZbO ! : K : ;’.4‘(!‘!:"‘ ) 71;6‘05*7 lil“’ﬂ;l ) 3800 : " A7 lu:l:l ) 4&0
of SO M R S
x 2200 T 2400 260* 2800 x 3&0

. UM R MR
g‘ i 12‘00 i 14‘00 ) 16‘0& ) 1800 A ) Z@O
g ’ Guaranteed 25ms/250ms ~s— I Hﬂm J’l’ﬁl’m 1 mm‘ wﬂmﬂﬂlw I mﬂlﬂ JI’HMM I I mm
é . Guaranteed 50ms/250ms —+— A e S s - b < e
5
&
% | P T T s vu e R AR R RERERRRRERERGRREILRERLSHN 818 I‘H‘I . T
g 800 850 900 950 16b0
&
g ! vl - a0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII LRGRRRENI Y133 i H‘l i i
2 3 550 600 650 700 7
= (RO AR AR IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIII RIHIHEL ¥ 131§ H‘I‘I ; err———

2 300 350 400 450 o

N vl el ks Rl LR L WG RREREEEREREREERERLEREE & 18 1 ] er——————

50 100 150 200 ZéU

150 200 250 300 350
Time (in Seconds)

Figure 7: Paging Inlfis shows sustained bandwidtiis shows a USD Scheduler Trace)

The watch thread wakes up every 5 seconds and logs thEhe solid lines between the transactions (most visible in
number of bytes processed. the detailed plot) illustrate the effect laixity on the sched-

) o ) uler: since there is only one threadusingpage faults, and
The experiment uses three applications: one is allocateg,q threadsatisfyingthem, no client ever has more than
25ms per 250ms, the second allocated 50ms per 250Mgne transaction outstanding. In this case the EDF algorithm

and the third allocated 100ms per 250ms — the same pg;ymogified by laxity would allow each client exactly one
riod is used in each case to make the results easier to URransaction per period.

derstand. No domain is eligible for slack time, and all do-

mains have #axity value of 10ms. The resulting measured Notice further that the length of any laxity line never ex-
progress (in terms of Mbits/second) is plotted on the leftceeds 10ms, the value specified above, and that the use of
hand side of Figure 7. laxity does not impact the deadlines of clients.

Observe that the ratio between the three domains is very

close to4 : 2 : 1, which is what one would expect if each 7.2.2 Paging Out

domain were receiving all of its guaranteed time. In order

to see what was happening in detail, a log was taken insid¢nhe second experiment is designed to illustrate the over-

the USD scheduler which recorded, among other things: 4| performance and isolation achieved when multiple do-

mains are paging out data to different parts of the same

disk. The test application operates with a slightly modified

stretch driver in order to achieve this effect — it “forgets”

¢ the amount of lax time each client was charged, and that pages have a copy on disk and hence never pages in
during a page fault. The other parameters are as for the

» the period boundaries upon which a new allocationprevious experiment. The resulting progress is plotted on

was granted. the left hand side of Figure 8.

The right hand side of Figure 7 shows these events on twas can been seen, the domains once again proceed roughly
differenttime-scales: the top plot shows a four second samin proportion, although overall throughput is much re-
ple, while the bottom plot shows the first second of theduced. The reason for this is in the detailed USD sched-
sample in more detail. The darkest gray squares represegler trace on the right hand side of Figure 8. This clearly
transactions from the application with the smallest guarshows that almost every transaction is taking on the order
antee (10%), while the lightest gray show those from theof 10ms, with some clearly taking an additional rotational
application with the highest (40%). The small arrows indelay. This is most likely due to the fact that individual
each colour represent the point at which the relevant clienfransactions are separated by a small amount of time, hence
received a new allocation. preventing the driver from performing any transaction coa-

, . . . lescing.
Each filled box shows a transaction carried out by a given 9

client — the width of the box represents the amount ofOne may also observe the fact that the client with the small-
time the transaction took. All transactions in the sampleest slice (which is 25ms) tends to complete three transac-
given take roughly the same time; this is most likely due totions (totalling more than 25ms) in some periods, but then
the fact that the sequential reads are working well with thewill obtain less time in the following period. This is since

cache. we employ a roll-over accounting scheme: clients are al-

e each time a given client domain was scheduled to per
form a transaction,



) . L Rpuim e
BM 3400 3600 X 3800 4000
4 ZM 2400 2600 X 2800 3000
.
3 . Wl:llllmwmwwm | [L] ]
5‘ 4 1t 1400 1600 X 1800 2000
g ;
:
g | i .
o 3 200 400 600 800 1000
£
3
g
8 2
T 800 850 900 950 1000
: A O I
g
3 |
g i Sy g g g b b b ) 500 P T T
. T N oI
P ey p p o

150 200 250 300 350
Time (in Seconds)

Figure 8: Paging Outlfis shows sustained bandwidttis shows a USD Scheduler Trace)

lowed to complete a transaction if they have a reasonablments have shown that it is possible to accurately isolate the
amount of time remaining in the current period. Shouldeffects of application paging, which allows the coexistence
their transaction take more than this amount of time, theof paging along with time-sensitive applications. Most of
client will end with a negative amount of remaining time the VM system is provided by unprivileged user-level mod-
which will count against its next allocation. ules which are explicitly and dynamically linked, thus sup-

Using this technique prevents an application deterministi-portmg extensibility.

cally exceeding its guarantee. It is not perfect — since it al-performance can definitely be improved. For example, the
lows jitter to be introduced into the schedule — but it is not3,s overhead in user-space trap-handling could probably
clear that there is a better way to proceed without intimateye cut in half. Additionally the current stretch driver im-
knowledge of the disk caching and scheduling policies.  plementation is immature and could be extended to handle
additional pipe-lining via a “stream-paging” scheme such

. . as that described in [24].
7.3 File-System Isolation ibedin [24]

A more difficult problem with the self-paging approach,
The final experiment presented here adds another factor taowever, is that ofjlobal performance. The strategy of
the equation: a client domain reading data from anothegllocating resources directly to applications certainly gives
partition on the same disk. This client performs significantthem more control, but means that optimisations for global
pipeliningof its transaction requests (i.e. it trades off addi- benefit are not directly enforced. Ongoing work is looking
tional buffer space against disk latency), and so is expectealt both centralised and devolved solutions to this issue.

to perform well. For homogeneity, its transactions are eacrlw\I thel th iti isina: virtual tech
the same size as a page. onetheless, the result is promising: virtual memory tech-

niques such as demand-paging and memory mapped files
The file-system client is guaranteed 50% of the disk (i.ehave proved useful in the commodity systems of the past.
125ms per 250ms). It is first run on its own (i.e. with Failing to support them in the continuous media operat-
no other disk activity occuring) and achieves the sustaineéhg systems of the future would detract value, yet support-
bandwidth shown in the left hand side of Figure 9. Subseing them is widely perceived to add unacceptable unpre-
quently it was run again, this time concurrently with two dictability. Self-paging offers a solution to this dilemma.
paging applications having 10% and 20% guarantees re-

spectively. The resulting sustained bandwidth is shown in

the right hand side of Figure 9. Acknowledgments
As can be seen, the throughput observed by the file-system

client remains almost exactly the same despite the addition . .
of two heavily paging applications. I should like to express my extreme gratitude to Paul

Barham who encouraged me to write this paper, and wrote
the tools to log and post-process the USD scheduler traces.
8 Conclusion Without his help, this paper would not have been possible.

I would also like to thank the anonymous reviewers and my
This paper has presented the ideaelf-pagingas a tech- shepherd, Paul Leach, for their constructive comments and
nique to provide Quality of Service to applications. Experi- suggestions.



File-System Throughput With No Paging
T T T

File-System Throughput With Paging
T T T

FS: Guaranteed 125ms/250ms ——

MBits per Second / Sampled Every 55
MBits per Second / Sampled Every 55

FS: Guaranteed 125ms/250ms ——
SWAP: Guaranteed 50ms/250ms -+--
SWAP: Guaranteed 25ms/250ms -8--

R e e o T e

. .
100 150 200 300
Time (in Seconds)

0

. . . .
50 100 150 200 250 300
Time (in Seconds)

Figure 9: File-System Isolation

Availability

The Nemesis Operating System has been developed as paﬁ
of the Pegasus Il project, supported by the European Com-
munities’ ESPRIT programme. A public release of the
source code will be made in 1999.

(8]

References

[1] E. Hyden. Operating System Support for Quality of
Service PhD thesis, University of Cambridge Com-

puter Laboratory, February 1994, [l

[2] T. Roscoe. The Structure of a Multi-Service Oper-
ating System PhD thesis, University of Cambridge
Computer Laboratory, April 1995. [10]

[3] I. M. Leslie, D. McAuley, R. Black, T. Roscoe,
P. Barham, D. Evers, R. Fairbairns, and E. Hyden.
The design and implementation of an operating sys-
tem to support distributed multimedia applications.
IEEE Journal on Selected Areas In Communicatjons
14(7):1280-1297, September 1996. Article describes
state in May 1995. [11]

M. B. Jones, P. J. Leach, R. P. Draves, and Il
J. S. Barrera. Modular Real-Time Resource Manage-
ment in the Rialto Operating System. Pnocessings
of the Fifth Workshop on Hot Topics in Operating Sys-
tems (HotOS-\pages 12-17, May 1995.

M. B. Jones, lll J. S. Barrera, A. Forin, P. J. Leach,
D. Rosu, and M. Rosu. An Overview of the Rialto
Real-Time Architecture. IfProceedings of the Sev-
enth ACM SIGOPS European Workshppages 249—
256, September 1996.

M. B. Jones, D. Rosu, and M. Rosu. CPU Reser-
vations and Time Constraints: Efficient, Predictable
Scheduling of Independent Activities. Rroceedings

(4]

[12]
(5]

(13]

(6]

of the 16th ACM SIGOPS Symposium on Operating
Systems Principlepages 198-211, October 1997.

] D. Mosberger.Scout: A Path-Based Operating Sys-

tem PhD thesis, University of Arizona, Department
of Computer Science, 1997.

J. Nieh and M. S. Lam. The Design, Implementation
and Evaluation of SMART: A Scheduler for Multi-
media Applications. IfProceedings of the 16th ACM
SIGOPS Symposium on Operating Systems Princi-
ples pages 184-197, October 1997.

D. Engler, S. K. Gupta, and F. Kaashoek. AVM:
Application-Level Virtual Memory. IfProcessings of
the Fifth Workshop on Hot Topics in Operating Sys-
tems (HotOS-\\)May 1995.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility, Safety and Performance in
the SPIN Operating System. RProceedings of the
15th ACM SIGOPS Symposium on Operating Systems
Principles December 1995.

M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing With Disaster: Surviving Misbehaved Ker-
nel Extensions. IrProceedings of the 2nd Sympo-
sium on Operating Systems Design and Implementa-
tion, pages 213-227, October 1996.

R. P. Draves, G. Odinak, and S. M. Cutshall. The Ri-
alto Virtual Memory System. Technical Report MSR-
TR-97-04, Microsoft Research, Advanced Technol-
ogy Division, February 1997.

C. W. Mercer, S. Savage, and H. Tokuda. Proces-
sor Capacity Reserves: Operating System Support for
Multimedia Applications. IrProceedings of the IEEE
International Conference on Multimedia Computing
and Systemdviay 1994.



[14] P. R. Barham. A Fresh Approach to Filesystem Qual-{25] P. Cao. Application-Controlled File Caching and

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

ity of Service. In7th International Workshop on Net-
work and Operating System Support for Digital Audio
and Videg pages 119-128, St. Louis, Missouri, USA,
May 1997.

P. Shenoy and H. M. Vin. Cello: A Disk Scheduling
Framework for Next-Generation Operating Systems.
In Proceedings of ACM SIGMETRICS’98, the Inter-
national Conference on Measurement and Modeling
of Computer Systemdune 1998.

M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The Duality of Memory and Communication in the
Implementation of a Multiprocessor Operating Sys-

tem. InProceedings of the 11th ACM SIGOPS Sym—[28]

posium on Operating Systems Principlesges 63—
76, November 1987.

K. Harty and D. R. Cheriton. Application-Controlled
Physical Memory using External Page-Cache Man-
agement. InProceedings of the Fifth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-
V), pages 187-197, October 1992.

Y. A. Khalidi and M. N. Nelson. The Spring Virtual
Memory System. Technical Report SMLI TR-93-9,
Sun Microsystems Laboratories Inc., February 1993.

J. Liedtke. Oru-Kernel Construction. liProceedings
of the 15th ACM SIGOPS Symposium on Operating
Systems Principlepages 237-250, December 1995.

Y. Endo, J. Gwertzman, M. Seltzer, C. Small, K. A.
Small, and D. Tang. VINO: the 1994 Fall Harvest.
Technical Report TR-34-94, Center for Research in
Computing Technology, Harvard University, Decem-
ber 1994. Compilation of six short papers.

D. R. Cheriton and K. J. Duda. A Caching Model of [32] P. BarhamDevices in a Multi-Service Operating Sys-

Operating System Kernel Functionality. Broceed-
ings of the 1st Symposium on Operating Systems De-
sign and Implementatigmpages 179-194, November
1994,

M. Stonebraker. Operating System Support for
Database Managemeommunications of the ACM
24(7):412-418, July 1981.

A. W. Appel and K. Li. Virtual memory primitives
for user programs. IrProceedings of the Fourth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-IV)pages 96-107, April 1991.

G. E. Mapp. An Object-Oriented Approach to Vir-
tual Memory ManagemenPhD thesis, University of
Cambridge Computer Laboratory, January 1992.

(26]

[27]

[29]

(30]

31

(33]

Prefetching PhD thesis, Princeton University, Jan-
uary 1996.

C. A. Thekkath and H. M. Levy. Hardware and Soft-
ware Support for Efficient Exception Handling. In
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS;\fjpges 110-
121, October 1994.

D. Engler, F. Kaashoek, and J. O'Toole Jr. Exoker-
nel: an operating system architecture for application-
level resource management. Rroceedings of the
15th ACM SIGOPS Symposium on Operating Systems
Principles December 1995.

R. Black, P. Barham, A. Donnelly, and N. Stratford.
Protocol Implementation in a Vertically Structured
Operating System. IRroceedings of the 22nd Con-
ference on Local Computer Networksages 179—
188, November 1997.

M. F. Kaashoek, D. R. Engler, G. R. Granger,
H. M. Bricefio, R. Hunt, D. Maztes, T. Pinckney,

R. Grimm, J. Jannotti, and K. Mackenzie. Application
Performance and Flexibility on Exokernel Systems.
In Proceedings of the 16th ACM SIGOPS Symposium
on Operating Systems Principlgmges 52—65, Octo-
ber 1997.

B. N. Bershad, D. Lee, T. H. Romer, and J. Bradley
Chen. Avoiding Conflict Misses Dynamically in
Large Direct-Mapped Caches. Rroceedings of the
Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS-VIpages 158-170, October 1994.

Architecture Projects Management Limited, Poseidon
House, Castle Park, Cambridge, CB3 ORD, UAN-
SAware/RT 1.0 ManuaMarch 1995.

tem PhD thesis, University of Cambridge Computer
Laboratory, July 1996.

R. J. Black.Explicit Network Schedulind?hD thesis,
University of Cambridge Computer Laboratory, April
1995.

C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environ-
ment. Journal of the ACM 20(1):46-61, January
1973.



