
book reviews
E L I Z A B E T H Z W I C K Y ,
S A M S T O V E R , A N D R I K F A R R O W

MANAGE IT ! YOUR GUIDE TO MODERN, PRAGMATIC PROJECT

MANAGEMENT

Johanna Rothman
The Pragmatic Bookshelf, 2007. 336 pages.

ISBN 978-0-97897392-4-9

This book is about reality-based project manage-
ment: what you do to try to get a project out the
door, with dignity and on a predictable time line. It
makes a strong argument that the only way to actu-
ally do this is to do some form of incremental
scheduling, where you plan only the stuff you ac-
tually know about. I’m conflicted about this. On
the one hand, I believe it’s true. On the other hand,
there are still organizations that just don’t work
this way, and although the book gives advice on
coping with and subverting these organizations, I
don’t think it would have been sufficient for me
when I was in one.

Manage It! is full of great advice about the realities
of project management. It talks about hallucinating
management, the realities of managing physically
separated teams, and how to get programmers to
provide estimates that mean something. It pushes
heavily for down-and-dirty techniques that use low
technology to represent what you actually know
and that involve gathering real data.

One of my very favorite parts involves actual mea-
surements on how much it costs to fix defects at
various stages of a project. Yes, on the projects
where she measured, it was more expensive to fix
a defect found after release. No, it was not 1000
times as expensive. It was generally more like 32
times as expensive as fixing a defect noticed early
on. The numbers were different for different proj-
ects, and they didn’t go in a straight line. It’s a small
thing, but it speaks to my need for real data. 32

times is bad enough; you don’t need to make up
numbers that say that it’s 1000 times.

The book is aimed at people who have project
management experience. If you’re coming at it
without experience, particularly if you’re at a com-
pany with an entrenched culture different from
the one the author espouses, you may be bewil-
dered by an alluring but not quite comprehensible
description of the promised land of project man-
agement. There are appendixes with lifecycle and
terminology definitions, but they’re probably not
going to suffice for somebody who hasn’t encoun-
tered the terms before. The book is also fairly
loosely organized.

I recommend this book for people with some proj-
ect management experience who want new tech-
niques or to improve their skills. It may also be in-
teresting for new project managers in agile or in-
cremental environments or those who just like
jumping into the deep end.

PRACTICAL PACKET ANALYSIS : US ING WIRESHARK TO SOLVE

REAL-WORLD NETWORK PROBLEMS

Chris Sanders
No Starch Press, 2007. 150 pages.

ISBN 978-1-59327-149-7

It’s hard to think of a more powerful tool for net-
work management than a packet sniffer. A good
packet sniffer makes all the difference; once you
know how to use one, it’s like taking a blindfold
off. Suddenly you can actually see what’s going on!
Unfortunately, the other way it’s like taking a blind-
fold off is that when you first do it, you’re so over-
whelmed with input that you can’t understand a
thing. Many people never get past that point.
There’s a crying need for a book that will move
such people forward.

If you’re the sort of person who used to cheat at
games with a hex editor, this book will give you the
information you need; it’s got a very basic intro-
duction to TCP/IP and higher-level protocols, a
good explanation of how to make a machine able
to see the packets you need and how to install and
use Wireshark (which is the successor to Ethereal),
and a quick run-through of some things you can
do with it.

The introduction to TCP/IP was written with more
practical than theoretical understanding, which is a
polite way of saying that, in point of fact, the au-
thor doesn’t understand what the OSI protocol
stack is, although he does a pretty good job of ex-
plaining its component parts. He states that it’s a
recommendation, not a standard. It’s not even a

; LOGIN: OCTOBER 2007 BOOK REVIEWS 63



64 ; LOG I N : VO L . 3 2 , NO . 5

recommendation; it’s a theoretical model, provid-
ing only a description.

The actual packet analyses vary. Most of them look
reasonable to me, and they give you some exam-
ples of how the tools work. I’m not sure how well
they’ll translate to further uses for somebody who
hasn’t done a lot of work with TCP/IP before. One
of them is downright wrong; it discusses a trace-
route where a router fails to return an acknowledg-
ment. The traceroute slows down at this point,
only to pick up to normal speed when it moves to
the next hop. The author suggests that this shows
that the performance problems on the network are
somehow caused by this router. In fact, it shows
that the router has an odd ICMP configuration, but
there’s no reason to believe that this is more than a
cosmetic problem with traceroute. It isn’t going to
affect anything that doesn’t do ICMP with the
router. It might be a useful clue (for instance, it
might point to a situation where all ICMP was dis-
abled, causing problems with path MTU determi-
nation); it might also be a complete red herring.
There’s no way to tell from the information given.

This book makes a nice starting point for some-
body who knows nothing about TCP/IP network-
ing and wants to get started with packet analysis. It
needs to be supplemented with a good TCP/IP re-
source if you’re really going to get anywhere in the
long term.

L INUX SYSTEM ADMIN ISTRATION

Tom Adelstein and Bill Lubanovic
O’Reilly, 2007. 272 pages.

ISBN 978-0-596-00952-6

I am getting to the point where I am a grizzled
old-timer. As such, I get hostile about statements
such as “For example, with almost every UNIX
distribution, Sendmail is the only choice of mail
transfer agent (MTA).” Fifteen seconds of research
suffices to tell me that Postfix, for example, is
available prepackaged for FreeBSD, NetBSD,
OpenBSD, IRIX, Mac OS X, and Solaris and ships
with NetBSD. I was still young and optimistic
when we started running other mail transfer agents
on UNIX. Without getting into long arguments
about what’s UNIX and what’s not, it’s safe to say
that Linux and UNIX have a strong family resem-
blance that extends to running pretty much the
same applications in most cases.

This resemblance then makes it puzzling that you
can cover Linux system administration in 272
pages, when Essential System Administration takes
1176. Admittedly, Essential System Administration

covers both UNIX and Linux, but given that the
Linux System Administration authors find Linux
more complex and capable than UNIX, it ought to
take up about half the space, or at least a third. The
reason it doesn’t is that the authors concentrate on
installation instructions for specific software pack-
ages. They do provide some explanation of con-
cepts, but not much, and what they do explain is
not always right.

For instance, they start right out by having the
reader install a bunch of services on an Internet-
connected machine, in their default configuration.
To do this, you’d have to be a lot more trusting
than I’d care to be; it’s a big bad Internet out there.
Then, they talk about not logging in as root, but
using su—so they have you create an admin ac-
count, so you can log in as that instead of root.
This completely misses the point of not logging in
as root, which is to log in as an identified individ-
ual user.

Not to obsess about mail, but their discussion of
mail transfer agents confuses a mail transfer agent
and a mail server. People don’t retrieve mail from
mail transfer agents. Mail delivery agents don’t re-
trieve mail from mail transfer agents. The mail
transfer agent shoves the mail somewhere and
leaves it there for the mail delivery agent or the
mail user agent to pick up, with no further involve-
ment. Their discussion of open relaying confuses it
with spam in general, showing an open relay as al-
lowing inbound spam; the problem with open re-
lays is that they pass spam, which is neither in-
bound nor outbound but merely passing through.

And it’s not just mail; the backup chapter advo-
cates writing your own backup scripts, without
discussing any of the risks involved, and then says
that databases “have their quirks” when it comes to
backups without clarifying what those quirks are.
(Their primary quirk is a violent, often fatal, aller-
gy to having files in an inconsistent state, accompa-
nied by behaviors that frequently result in backed-
up files being in such a state. Not knowing this will
probably get you into nasty trouble.)

If you have a solid conceptual background in sys-
tem administration but want a leg up installing a
Linux system, this is an interesting walk-through
of popular alternatives on Debian. If you don’t have
the conceptual background, it’s not very helpful. At
least couple it with a serious system administration
book.



VIRTUAL HONEYPOTS: FROM BOTNET TRACKING TO

INTRUSION DETECTION

Niels Provos and Thorsten Holz
Addison-Wesley Professional, 2007

ISBN 10: 0-321-33632-1; ISBN 13: 978-0-321-33632-3

R E V I E W E D B Y S A M S T O V E R

This book is so good that I haven’t finished it. I’ve
spent so much time actually doing the stuff that I
haven’t even touched a good third of the book. On
the one hand, that limits my ability to give a thor-
ough review, but on the other, I feel confident that
the bits I haven’t read will live up to the part I have
read. OK, enough syrup: let me tell you why I like
this book so much.

The book begins with almost 20 pages of honey-
pot and IP background, which I promptly skipped,
then went back and read because I have a responsi-
bility to my readership. It’s a good thing I did, be-
cause beyond the basic IP review, there’s a very suc-
cinct and appropriate comparison between high-
and low-interaction honeypots. This distinction
permeates the entire book: the sections are divided
between methods and uses for each type. As the
names suggest, the differences deal with the com-
plexity and capability of the honeypot: high-inter-
action systems require more care and feeding but
have the potential to collect different data from
low-interaction. It’s important to note that both
types have their uses: they just allow for different
applications of honeypot technology.

After the background, Chapter 2 jumps right into
high-interaction honeypots and tools such as Q,
Sebek, and Argos. Q is an open source virtual ma-
chine application very reminiscent of VMware. In
fact, the authors walk you through building a vir-
tual machine, using Q, that can be run from the
VMware Player. Sebek is basically a rootkit that
you install on your honeypot to monitor and col-
lect malicious activity. Argos, though, was the gem
of the chapter, in my humble opinion. Argos is a
new tool, developed by researchers from Vrije Uni-
versiteit Amsterdam, which monitors the honeypot
in a way that detects zero-day attacks. Yes, you read
that right, zero-day. Argos is a specific kind of vir-
tual honeypot, built using Q, which marks incom-
ing network traffic data, follows it through system
memory, and, if a buffer overflow occurs, creates a
report and memory dump. Memory dump analysis
has been a longtime hobby of mine, and I think
this is an excellent example of how that kind of
technique can be used to advance the detection of
malicious activity. I was impressed enough with

this tool that I’m going to try to work it into a fu-
ture ;login: article.

After the high-interaction honeypot chapter, the
low-interaction honeypot chapter takes you
through LaBrea, Tiny Honeypot, the Google Hack
Honeypot, and PHP.HoP, which is a “Web-Based
Deception Framework.” Interestingly enough, nei-
ther Honeyd nor Nepenthes is discussed in this
chapter, but, luckily for us, each has its own chap-
ter later in the book. I’m a big fan of Nepenthes as
low-interaction honeypots go, so I was really hap-
py to see a whole chapter devoted to deploying and
managing it. I must admit that I was so busy set-
ting up my Q/Argos setup that I just skimmed over
the low-interaction honeypot chapter, but I do plan
to go back and spend some time setting up some
low-interaction honeypots to see what I can col-
lect. There are definitely some sweet tools in that
arena that I want to learn more about. If your inter-
ests lie in that direction, there’s more than enough
in this book to get you started and keep you busy.

It follows logically that if there are high-interaction
and low-interaction honeypots, there have to be
hybrid systems. Sure enough, Chapter 7 is devoted
to tools such as Collapsar, Potemkin, and RolePlay-
er. Each of these systems tries to balance scalability
and capability in a way that gives options to the
prospective honeypotter who has needs outside of
the strict high- and low-interaction products.

Chapters 8 and 9 deal with honeypots for client-
side attacks and honeypot detection, respectively. I
think the client-side honeypot is definitely an area
of research that needs attention, and this chapter
gives a good intro. After all, you can’t just expect
all the good stuff to happen your way—sometimes
you have to go out there and collect it. Chapter 10
gives five different case studies which walk
through several different compromises, all of
which explore different vectors and targets. Chap-
ter 11 spends some time talking about tracking
botnets, and Chapter 12 deals with using CWSand-
box to analyze malware.

In all, this book is well written, proofed, and edit-
ed. No glaring spelling errors, and the text is con-
cise and to the point. Some of the material, such as
installing Argos, is not for beginners, but some of
the techniques, such as using Q to build a virtual
honeypot, are very accessible to just about anyone.
A truly great find: go buy your copy today.

; LOGIN: OCTOBER 2007 BOOK REVIEWS 65



66 ; LOG I N : VO L . 3 2 , NO . 5

MIN IMAL PERL FOR UNIX AND LINUX PEOPLE

Tim Maher
Manning Publications, 2007. 464 pages.

ISBN 1-932394-50-8

R E V I E W E D B Y R I K F A R R O W

I had wondered just what minimal Perl could be,
ever since I noticed a review about it on Slashdot.
So I tracked down the publisher and got a copy of
my own. I felt that my Perl skills could certainly
use some honing, and I would be motivated to read
and use this book, as long as it worked well.

Maher has done a fine job providing an alternative
path to learning Perl. The “minimal” in the title
has to do with Maher’s choice in how to present the
material, not in the sense of providing the minimal
amount of Perl. Maher starts right out by taking
the reader to the fictional land of Perlistan, where
there appear to be four different languages, but
everyone who lives there can understand each oth-
er. What he is referring to are different styles used
when writing Perl, and his teaching technique is to
stick with a single style that is both efficient to use
and easier to read for, say, a shell programmer.

The mention of UNIX and Linux people in the title
is not gratuitous, as Maher uses comparisons to
the Bourne, Bash, and Korn shells and the grep,
egrep, find, and awk commands to illustrate how
Perl works and how using Perl provides features
that you can’t get from using the shell and com-
mands alone. I found myself learning about new
features of commands (although keep in mind that

I learned how to use grep in 1982), as well as other
tidbits that may not be new to people who learned
Linux/UNIX in the past ten years.

And that’s just a side effect ofMinimal Perl. Maher
does a great job of presenting Perl, from command-
line arguments, one-liners, to scripts. The first part
of the book focuses on comparing Perl features to
those you can have with UNIX commands alone,
and it works very well at helping people who al-
ready know UNIX learn Perl. The second part of
the book works with Perl more as a programming
language: for example, Chapter 10 is about loop-
ing. You might wonder how someone could spend
nine chapters and notmention looping, but consid-
er just the intricacies of regular expressions and
how regular expressions function differently in
sed, grep, and Perl, and you will begin to under-
stand the gentle and thorough path Maher takes.

Maher does discuss using modules (early on, in
fact) and CPAN. Object-oriented programming
barely gets a mention, although the reader gets in-
troduced to the use of objects along the way.

I can recommend the book to people, like myself,
who want a thorough refresher course in Perl. I
imagine this book will work great for those who
have some grounding in UNIX/Linux but don’t yet
know Perl. In particular, if you know someone to
whom you handed the Camel book (Learning Perl,
by R.L. Schwartz) and he or she just didn’t get it,
then tryMinimal Perl. Its simpler approach may
provide just the trick needed.




