
conference
reports

14th USENIX
Security Symposium

Baltimore, Maryland
July 31–August 5, 2005

Keynote Address

Computer Security in the Real
World

Butler W. Lampson

Summarized by Stefan Kelm

As in the past, this year’s keynote
was given by someone well versed
in dealing with security issues. But-
ler Lampson opened his talk by
comparing real-world security to
computer security. Real-world
security is not usually about lock-
ing things (or people) up but,
rather, is about risk, locks, and
deterrence. Risk management,
Lampson argued, is important
there, since the main issue often is
how to recover from an incident at
an acceptable cost. Part of this is
accountability: unless you can
identify the bad guy, you will not be
able to deter him. Accountability
needs to be enforced at the “end
nodes,” i.e., “all trust is local.”

Senders of network packets need to
be held accountable for their
actions. ISPs, for example, should
cooperate when trying to stop
DDoS attacks. “How much secu-
rity?” Lampson asked, and argued
that the main goal should be feasi-
ble security, stating that “perfect
security is the worst enemy of real
security.” Applications or operating
systems must not become unusable
due to bad user interfaces.

Lampson then began a lengthy and
fairly technical discussion on
access control. His main example
was that of someone wanting to
access a Web page securely.
Authentication and authorization
are very often confused, he said,
but need to be clearly differenti-
ated. He said that fine-grained
access control was a mistake. More-
over, there is a need for solid audit-

ing mechanisms, which one espe-
cially needs for deterrence.

He also discussed secure channels,
which in his usage do not refer to
physical network channels or paths
but to a more general concept. He
provided a few examples, such as
SDSI/SPKI and ACLs. Closely
related is the issue of securely
authenticating programs upon load-
ing. Being with Microsoft, Lampson
brought up NGSCB/TPM and sur-
prised the audience by saying that
“it’s been put on the shelf” (“I do
not believe in the DRM stuff at all,”
he said), especially since nobody
has figured out how to keep the
TCB small, a key requirement.

Some of the questions and answers
focused on access control and the
problems of humans giving away
their identity. Curiously enough,
Lampson’s reply to one question,
“If you want your machine to be
moderately secure you need some
form of remote administration,”
seems to contradict his earlier “all
trust is local” statement. To a ques-
tion about being sure one’s configu-
ration is correct, Lampson replied,
laughing, “You want perfection and
you’re not gonna get it!”

His talk can be downloaded at
http://www.usenix.org/events/
sec05/tech/lampson.pdf.

For more information, see his
home page at http://research
.microsoft.com/lampson.

Refereed Papers

S E C U R I N G R E A L SYSTE M S

Summarized by Kevin Butler

An Analysis of a Cryptographically
Enabled RFID Device

Steve Bono, Matthew Green, Adam
Stubblefield, and Avi Rubin, Johns Hop-
kins University; Ari Juels and Michael
Szyydlo, RSA Laboratories

n Awarded Best Student Paper!

Steve Bono presented his group’s
work on analyzing Texas Instru-

TH A N KS TO TH E S U M M A R I Z E R S

Kevin Butler

Ming Chow

Jonathon Duerig

Serge Egelman

Boniface Hicks

Francis Hsu

Stefan Kelm

Mohan Rajagopalan

CO NTE NTS O F S U M M A R I E S

Keynote Address69

R E F E R E E D PA P E R S A N D PA N E LS
Wednesday 69, 72, 74

Thursday75, 78, 80, 81

Friday .84, 86

I N V ITE D TA L KS
Wednesday 71, 73, 75

Thursday76, 78, 81, 83

Friday .85, 87

B E ST PA P E R W I N N E R S
Best Paper .81

Best Student Paper 69

Work-in-Progress Reports88

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 69

ments’ (TI) Digital Signature
Transponder (DST). This is a pas-
sively powered device used in vehi-
cle immobilizers by automobile
manufacturers such as Ford. It is
also used in the ExxonMobil
Speedpass, a device that can be
used in lieu of cash or credit cards
at gas pumps. The DST provides
security based on a challenge-
response protocol, where a 40-bit
key challenge is issued from the
reader to the transponder and a 24-
bit response is returned by the
transponder, along with its 24-bit
serial number. The serial number
can only be written by the manu-
facturer, and the response is
encrypted by a 40-bit secret key.

Bono outlined the methodology
used to examine the security of the
DST system. They set out to dis-
cover whether it was possible to
recover the proprietary secret algo-
rithm used by the device, purchas-
ing an evaluation kit from TI and
testing against the device with
structured bit patterns for the chal-
lenge issued. A diagram published
by TI on the protocol was used as a
general schematic to verify against,
and through experimentation, the
group verified the diagram and
made tables outlining the operation
of the substitution boxes therein.
In this manner, the entire cipher
was uncovered.

The 40-bit key used was found to
be small enough to be vulnerable to
a brute-force attack. While general-
purpose CPUs proved to be slow,
requiring about 31 days to uncover
the key, the JHU team put together
16 FPGAs in parallel and were able
to uncover the key in about 35
minutes. Real-world applications
were shown by using the evalua-
tion kit in a briefcase and getting
close enough to a person to retrieve
the response from a challenge,
effectively making it possible to
scan victims for the RFIDs. Addi-
tionally, the team built a transpon-
der to circumvent an engine immo-
bilizer and spoofed a Speedpass
signal to purchase gasoline. To

their surprise, there was little push-
back from Ford, who made some
phone calls but no legal threats, or
TI, who did not want proprietary
information published but did not
threaten to sue.

It was noted during the Q&A that
the cost of the FPGAs used in the
attack have dropped to $150 each,
making this even more economi-
cally feasible. Bono expanded on
this by observing that the decoder
chip itself cost a mere $12. Rik Far-
row asked how much cryptanalysis
was performed to uncover the algo-
rithm, and Bono responded that
because the key was so weak, no
cryptanalysis was necessary at the
time, although it was performed
formally when the protocol was
broken.

Stronger Password Authentication
Using Browser Extensions

Blake Ross, Collin Jackson, Nick
Miyake, Dan Boneh, and John C.
Mitchell, Stanford University

Collin Jackson presented the pass-
word “phishing” problem, where
users cannot reliably identify fake
sites set up for purposes of stealing
credit card and other identity data.
In particular, the problem of pro-
tecting passwords used in multiple
venues was addressed. Some pass-
words are used for low-security
sites, such as high school reunions,
while others, oftentimes the same
password, are used for sites requir-
ing high security, such as banks,
where revelation of the password
has drastic consequences. If the
same password is used at both
types of sites, breaking a low-secu-
rity site could reveal the password
to a high-security site. Jackson and
his group investigated ways, as
transparent to the end user as pos-
sible, to ensure that high-security
passwords were not revealed.

The solution proposed, called Pwd-
Hash, is a lightweight browser
extension. It generates a unique
password that is a hash of the pass-
word employed and the domain
name of the Web site visited. This

provides a modicum of protection
against phishing, as the HMAC will
be different for the password given
to a spoofed site compared to the
real one, due to different domain
names. While other password hash-
ing schemes exist, Jackson asserted
that PwdHash was the only one
that remained invisible to the user.
One particular problem not
addressed by many solutions, how-
ever, is the spoofing problem,
where a malicious site employs
JavaScript or Flash in such a man-
ner that the user thinks he is enter-
ing information into an encrypted
password field, but the password is
sent in the clear, circumventing the
hashing mechanism. To handle
this, the tool is set up so that the
original password never touches
the Web site itself, with keystrokes
being intercepted by the browser
extension and the hashed result
sent to the site. A password prefix
(in this case, “@@”) is used to acti-
vate the browser extension. This is
the best method for securing users,
as they do not have to decide when
to make a trust decision.

Challenges in this scheme include
password resets, use in Internet
cafes, and dictionary attacks. Jack-
son clarified that this tool does not
protect against spyware or DNS
poisoning. To allow password
resets, the user must enter the
unhashed password into a change
page. Use of the password prefix
facilitates this, however, as the
prefix ensures that old passwords
will not be hashed and new ones
automatically will be. Because users
cannot install the software at Inter-
net cafes, an interim solution set
up by the authors is to create the
hashes from a secure Web page
(http://www.pwdhash.com). It was
asserted that dictionary attacks
work about 15% of the time, so if
the password was retrieved from a
low-security site and the attacker
knew the domain name, their odds
of retrieving the password are
much lower than the 100% rate
currently achievable. The ultimate

70 ; L O G I N : V O L . 3 0 , N O . 6

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 71

solution would be to use a better
authentication protocol.

In the Q&A period, a question was
raised about how to handle policy
requirements for different sites
(e.g., minimum number of pass-
word characters and use of num-
bers or caps). Jackson responded
that the best way would be to create
a policy repository for all sites.
Another way is to look at the user
password itself, but this gives up
some security. A following question
raised concerns about Javascript
focus-stealing attacks, where a user
could think they are using the
extension but the keystrokes are
being hijacked by a script. This is a
difficult problem to solve, but, the-
oretically, one could find all ways in
which focus-stealing may occur
and eliminate them; using longer
passwords is also beneficial.
Another question had to do with
user-interface issues. The group
found that, above all, end users
favored simplicity and ease of use
over any other factor.

Cryptographic Voting Protocols:
A Systems Perspective

Chris Karlof, Naveen Sastry, and David
Wagner, University of California,
Berkeley

An analysis of two new crypto-
graphic voting schemes was pre-
sented by Chris Karlof. DRE (direct
recording electronic) voting
machines are popular for a variety
of reasons, such as their ability to
display multiple languages and
allowance for disabled people to
vote more easily, as well as provid-
ing quick counts. However, the
software and hardware must be
fully trusted and the process trans-
parent, none of which is guaran-
teed by current DREs. Allowing a
voter-verified audit trail (VVAT)
can be done by issuing a paper
receipt. Election officials can use
these to verify recounts, but indi-
vidual voters cannot verify their
vote. David Chaum and Andrew
Neff have each proposed verifiably
cast-as-intended protocols, where

the voter can later check that their
vote was as they registered it. The
ballot is encrypted but can be veri-
fied later on public bulletin boards
by the voter. The analysis from
Karlof’s group focused on Neff’s
scheme, but is applicable to
Chaum’s as well. The DRE makes a
pledge that the row chosen by the
voter on the ballot (where a row
consists of a certain pattern of 1’s
and 0’s) is the one they chose, and
later the voter can match the candi-
date openings with the pledge
made. To circumvent vote-buying,
all candidate rows on the ballot are
opened, not just the one correspon-
ding with the chosen selection.

Karlof explained that both proto-
cols were subject to information
leakage through subliminal chan-
nels. The DRE can embed informa-
tion within the pledge values, con-
structing a ballot where a certain
bit pattern indicates the user’s
choice. Someone knowing the
encoding pattern could then look
at a ballot and know who the voter
selected, threatening privacy. An
analysis of the attack found, in the
worst case, it was possible to
encode up to 51KB per ballot
through a subliminal channel,
enough to provide plentiful infor-
mation on the voter. The only solu-
tion appears to be making the bal-
lot preparation more deterministic.
Another possible attack is to use
humans as cryptographic agents.
Humans are not generally good at
detecting subtle deviations, and a
DRE can produce a false ballot that
looks essentially similar to what the
voter would expect. Because the
protocols specify that the user
makes his pledge before the DRE
offers a challenge, the DRE is sus-
ceptible to cheating, as it can offer a
receipt with small differences that
the user will ignore. There is no
clear mitigation strategy other than
user education and testing during
elections.

Finally, these schemes can only
detect DoS attacks, not mitigate
them, though that is still better

than what DREs are capable of
doing today. A simple attack from
which recovery is impossible is to
plant a trojan horse in every DRE,
such that nationwide, the machines
selectively delete ballots and per-
form ballot stuffing. Alternately, a
machine can deny service selec-
tively, such as only when a chosen
candidate is losing. Such activities
would be enough to cast entire
elections in doubt, representing a
threat to the entire voting system.
Flexible recovery strategies includ-
ing the use of VVATs are required.
In summary, while the protocols
examined are a large improvement
over current implementations in
DREs, some issues remain to be
ironed out.

Invited Talk

Human-Computer Interaction
Opportunities for Improving Security

Ben Schneiderman, University of
Maryland

Summarized by Ming Chow

Professor Ben Schneiderman first
reminded the audience that the
goals of user interface design are to
be cognitively comprehensible and
to be effectively acceptable, not to
be adaptive, autonomous, or
anthropomorphic. The scientific
approach to designing user inter-
faces includes specifying users and
tasks, accommodating individual
differences, and predicting and
measuring learning, performance,
errors, and human retention.

Professor Schneiderman stressed
the importance of usability in con-
trolling security and privacy, as put
forth by the Computing Research
Association (CRA) and the 2005
President’s Information Technology
Advisory Committee (PITAC)
Report. One of the grand chal-
lenges established by the CRA in
2003 was “to give endusers security
they can understand and privacy
they can control,” and usability is
increasingly important in areas
such as patient health records, law

enforcement databases, and finan-
cial management. The 2005 PITAC
report noted similar challenges for
end users and operators. Professor
Schneiderman listed five goals of
security and privacy: availability,
confidentiality, data integrity, con-
trol, and auditability.

Professor Schneiderman presented
the security and privacy settings
interface in Microsoft Internet
Explorer, which, he noted is rid-
dled with usability problems, from
the tedious online help to the chal-
lenge of setting up a Virtual Private
Network (VPN). He also mentioned
the emerging research in the area of
usability and security/privacy.

Professor Schneiderman offered
several valuable strategies for
improving the usability of secu-
rity/privacy: use a multi-layer inter-
face that ties complexity to control
and that also permits evolutionary
learning; use a cleaner cognitive
model that has fewer objects and
actions; show the consequences
of decisions; and show activity
dynamics with a viewable log. He
urged improving commercial prac-
tices by putting more emphasis on
usability engineering and testing,
which will lead to improved prod-
uct quality, reduced costs, im-
proved organizational reputation,
and higher morale. Using his sug-
gestions and insights, he presented
a sample design of File-sharing On-
web with Realistic Tailorable Secu-
rity (FORTS), which uses the
multi-layer interface approach.

Finally, Professor Schneiderman
presented information visualization
for security and repeated the
mantra of information visualiza-
tion: overview, zoom-and-filter,
details-on-demand. Human percep-
tual skills are remarkable, and
human storage is fast and vast. He
suggested using information visual-
ization as a valuable opportunity
for security/privacy: for linking
relationships, profiling users and
traffic, and understanding hostile
events. A number of commercial
and academic visualization tools

were demonstrated, including
SpotFire, a rich and powerful com-
mercial visualization package.

Panel

National ID Cards

Niels Provos (moderator), Google; Drew
Dean, SRI International; Carl Ellison,
Microsoft; Daniel Weitzner, World Wide
Web Consortium

Summarized by Serge Egelman

With the passing into law of the
REAL ID Act (P.L. 109-13), many
Americans have started to become
aware of the concerns that come
with a national identity system. It
was only fitting that this year’s
USENIX Security Symposium fea-
tured a panel to discuss such con-
cerns. In his opening remarks,
moderator Niels Provos pointed
out that most European countries
already have had national identity
cards for quite some time. He has
had his card for his entire life and
he uses it regularly for such activi-
ties as traversing borders and vot-
ing without any hassles. He quite
likes his national identity card, in
fact. But Germany has strong laws
regulating the collection and shar-
ing of personal data. The United
States has no such laws, and that is
why there is a legitimate concern
regarding what a national identity
system will do to personal privacy
in this country.

Carl Ellison, an expert on authenti-
cation and authorization systems
who currently holds the title of
Security Architect at Microsoft, laid
out the arguments for and against
national identity cards. He went on
to say that both sides are wrong;
the opponents are wrong, in that
the defeat of such a system will not
in fact end data privacy problems,
and the proponents are wrong,
because they do not understand
that a national identity card will
not achieve the security goals for
which it was intended (i.e., the
card will never be a “not a terrorist”
card). To elucidate these argu-

ments, Ellison went over the
process of making a security deci-
sion: a channel is opened, an iden-
tifier is offered, and authentication
occurs. Authentication involves
proving that the client has a right
to the given identifier and is
authorized to access the requested
resource. Thus, such a security
decision cannot simply be based
on a name or identifier; it must
also involve determining whether
the person has appropriate permis-
sion. This problem can clearly be
seen with the proposed national
identity system in this country: it is
aiming to prevent terrorism, but
only knowing a name says very lit-
tle about whether someone is a ter-
rorist and what their intentions
may be.

Ellison then brought up the exam-
ple of Walton’s Mountain. It is a
fictional place where all of the resi-
dents are born and eventually die;
everyone knows each other. Thus,
when a security decision needs to
be made, any resident just needs
a name and can then recall memo-
ries about the person. National
identity cards are trying to accom-
plish the same thing through what
Ellison calls “faith-based security.”
Through the use of biometrics
and identity documents, the gov-
ernment is trying to make assur-
ances about names so that they
can recall “memories” about a per-
son from a nationwide database.
Unfortunately, such a database does
not exist, and even if it did, we
would not know anything about a
person we had never interacted
with before. This is not a proper
security decision; we are doing
authentication but not authoriza-
tion. Urbanization made this a very
difficult task, and the Internet has
made it impossible.

Drew Dean’s interest in the issue of
national identity cards can be seen
by his involvement in two separate
National Research Council studies
on authentication and national
identity systems. He mentioned
that in getting to the conference he

72 ; L O G I N : V O L . 3 0 , N O . 6

had to show two different forms of
identification: a passport to get on
the airplane and a state driver’s
license to rent a car. In this country,
a state driver’s license is recognized
by every state (although there is no
federal law mandating this, every
state has passed its own law to rec-
ognize out-of-state licenses for the
purpose of comity). However, out-
side of the U.S., it varies. One of the
NRC studies that he referred to
brought up the fact that a national
identity system needs to cover
more than just U.S. citizens. This
and other problems are often fail-
ures of the system, not just the
card. But before such a system can
be fixed (or properly imple-
mented), a few questions need to
be answered: What will the pur-
pose be? Who will be enrolled?
What information is stored? Who
has access to the information?
What are the implications with
regard to identity theft? While it is
clear that existing credentials are
very weak, it is even clearer that a
single nationwide system would
create a single point of failure.

Daniel Weitzner has also been
involved with National Research
Council studies on national iden-
tity systems. He started by men-
tioning that the Washington, D.C.,
sniper and the 9/11 hijackers have
been the biggest motivators for cre-
ating a national identity system. It
was largely the terrorist hijackings
that motivated the passage of the
REAL ID Act, which mandates
states to create uniform identity
cards within the next three years.
The law defines what is to be
included on the cards and what is
to be stored in the national data-
base, but it makes no mention of
how the data can be accessed or
used, and by whom. It is also
unclear if it will solve the problems
that it intends to.

Regarding the sniper case, the
license plate number was recorded
at least ten times near the sites of
the crimes, but the car wasn’t asso-
ciated with the crime. As Weitzner

put it, they were “looking for a
white truck with white people
instead of a blue car with black
people.” Had each license-spotting
been stored in a database which
was shared by all of the police
forces, they could have correlated
the fact that this car was spotted at
the scene of many of the shootings.
But at the same time, this chal-
lenges our current privacy model.
Many intrusive practices occur
from drawing inferences, rather
than from data collection alone.
Credit card transactions lead to
profiling, Web logs lead to user pat-
terns, and location-based systems
lead to discovering travel patterns.
What we need right now from a
technical standpoint is enforcement
of rules, as well as secure audit sys-
tems. From a policy standpoint we
need to shift from limits on data
collection to limits on data usage,
where we can require accounta-
bility and auditing. The current
threats to privacy are not coming
from the information itself, but
from the inferences. Thus, by
increasing exposure to the personal
information collected, we can actu-
ally advance personal privacy.

The question on everyone’s mind
for the panel was whether there
would be a benefit to being a
national identity cardholder. While
they differed in their reasoning, all
of the panel members agreed that
the costs would greatly outweigh
the benefits. Carl Ellison referred to
Walton’s Mountain again, remind-
ing everyone that implementing
authorization on the cheap is still
an unsolved problem. Issuing cards
in no way achieves authorization.
Daniel Weitzner drove home that
point, saying that when confronted
with a new technology that they
do not understand, government
treats it as a panacea. Such systems
are expensive to implement and
do not provide the solution that
their proponents claim. Drew Dean
mentioned that one of the biggest
privacy concerns is with regard to
secondary uses of personal infor-

mation. Originally, social security
numbers were to be only used
by the Social Security Agency, just
as a driver’s license was originally
meant to be a license to drive. But
since these systems exist, private
industries have used them for
other uses rather than spending
money to create their own systems.
All of these systems undergo func-
tion creep, and privacy concerns
abound.

Invited Talk

Homeland Security: Networking,
Security, and Policy

Douglas Maughan, DHS, HSARPA

Summarized by Ming Chow

Douglas Maughan, program man-
ager at the Department of Home-
land Security Science and Technol-
ogy Directorate, discussed some of
the issues and tools the department
is currently working on. Maughan
provided an overview of the organi-
zation of the DHS, and discussed its
research and deveopment priori-
ties. He also explained the differ-
ences between research and devel-
opment funding at DARPA and at
the DHS: at the DHS, 85–90% of
funds are tied to requirements, and
10–15% of funds are dedicated to
research. The five priorities of
cybersecurity in the department are
testing and evaluating threats, criti-
cal infrastructure, customer ser-
vice, coordinating research among
agencies, and creating partnerships.
Maughan engaged the audience in
discussion about two policy issues:
DNS, and securing protocols for
the routing infrastructure. He
acknowledged that people are
unhappy with ICANN’s model of
managing DNS, which is a key part
of the global Internet, and asked
the audience several questions,
including: What incentives should
be put in place for industries to use
DNSSec? Should the rootkey be
managed using threshold cryptog-
raphy or a single rootkey? Unlike
DNS, there is no governance for the
routing infrastructure. Maughan

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 73

acknowledged that ISPs are doing
the bare minimum to protect net-
works, and he asked the audience
what incentives should be provided
to industries to encourage their
adoption of a standard and develop-
ment of solutions for deployment.

Next, Maughan presented two DHS
projects, DETER and PREDICT.
DETER is a shared testbed infra-
structure for medium-scale security
research, including repeatable
experiments, especially for experi-
ments that may involve “risky”
code. The Protected Repository for
Defense of Infrastructure against
Cyber Threats (PREDICT) is a
repository of defense infrastructure
data, where the aim is to have pri-
vate corporations donate real inci-
dent data for security researchers
and academia to use. The goal of
these projects is to provide an
experimental infrastructure to aid
development of a large-scale
deployment security technology
sufficient to protect our vital infra-
structures. These projects are not
without controversy. Maughan
asked the audience to consider a
number of other questions, includ-
ing: What industries should be
involved with DETER, and how?
What is the level of anonymization
of the data? What should be the
level of institutional sponsorship of
PREDICT, and what happens if one
violates the terms of agreement?

Refereed Papers

D I AG N O S I N G TH E N E T

Summarized by Mohan Rajagopalan

Empirical Study of Tolerating
Denial-of-Service Attacks with a Proxy
Network

Ju Wang, Xin Liu, and Andrew A. Chien,
University of California, San Diego

Denial of service (DoS) attacks are
a key problem as Internet service
applications become an important
part of the enterprise. This work
focused on infrastructure-level DoS
attacks and was based on two key

ideas: enforced mediation, and
the notion of distributed front
ends. Since theoretical models can-
not capture the dynamics of net-
work and application behavior as
observed in large networks, the
authors’ work addressed these chal-
lenges and performed a realistic
study by using a large-scale packet-
level online simulator, MicroGrid,
that was better than NS2 and Plan-
etLab.

The experiments produced three
results: first, they showed that this
approach performed better in terms
of baseline performance. Second,
the proxy network was effective
against both “spread attacks” and
“concentrated attacks.” Finally, the
results showed that their system
was scalable.

The first questioner asked Ju to
compare their MicroGrid-based
approach to a simpler one based on
NS2. Ju replied that scale is impor-
tant for realism and NS2 could not
provide a realistic approximation.
He referred to the paper for further
details on what realism meant.
When asked to comment on the
switch over time he replied that
while they did not consider it, it
was something that would be seen
in a real system.

Robust TCP Stream Reassembly in the
Presence of Adversaries

Sarang Dharmapurikar, Washington
University; Vern Paxson, International
Computer Science Institute, Berkeley

Sarang Dharmapurikar described
the growing interest in higher-level
packet processing. The motivating
question for this work was whether
it’s possible to reassemble packets
at high speed. Previously, systems
either did not have a buffer and so
would drop packets (TCP instabil-
ity) or would guess the amount of
buffer required. The primary con-
tribution of this work was to ana-
lyze TCP traces in order to measure
buffer requirements that could then
be used to improve the system. The
objective was to optimize for the
average case by introducing an

inline hardware device that could
kill connections and allow normal-
ization while preserving TCP
dynamics.

This work presented three funda-
mental measurements: first, up to
15% of the connections may have
had out-of-order packets; second,
the maximum buffer required is
small; and, finally, 60% of the holes
lasted for less than 1ms. This indi-
cated that reordering and not drop-
ping was the right strategy. In order
to deal with adversarial connec-
tions they proposed a policy-based
defense; to prevent the attacker
from filling the buffer with a single
connection, they would restrict the
policy of each connection to a pre-
set threshold. Their policy would
prevent multiple connections from
a single host in order to prevent
the adversary from creating multi-
ple connections. The final policy
evicted a page randomly and killed
a connection in case of an over-
flow. The talk mentioned zombie
equations that would be used to
improve connection eviction pack-
ets. In conclusion, this work pre-
sented the facts that TCP reassem-
bly would be important for security
and that trace-driven analysis can
be used to design and tune the sys-
tem.

The first question dealt with an
adversary who would send a bunch
of holes and then a bunch of small
packets to fill the holes, thus flood-
ing the analyzer. Sarang replied that
this could be treated as an anomaly.
The second question concerned
the use of multi-path for group
resiliency. The response was it
would be difficult to handle.

Countering Targeted File Attacks
Using LocationGuard

Mudhakar Srivatsa and Ling Liu,
Georgia Institute of Technology

Mudhakar Srivatsa presented Loca-
tionGuard, which provides location
hiding to protect against DoS and
host-compromised attacks. There
are two major problems this work
tries to address: access control in a

74 ; L O G I N : V O L . 3 0 , N O . 6

wide area file-storage system, and
defending against targeted attacks.
The authors’ approach tries to hide
files, locate them for known users,
and prevent inference attacks. A
location key is used to hide the
location of the file (A:(file,loc_key)
-> location). The implementation
was based on files stored in a dis-
tributed hash table.

Their approach uses a probabilistic
look-up scheme which builds on a
“safe obfuscation” algorithm for
secure routing by never disclosing
the file ID. In order to prevent
inference attacks that are based
on observing file accesses and
frequency, files are divided into
chunks. Periodically, the location
key is changed, and this rekeying
nullifies all past file inferences. The
actual implementation is based on
Chord using AspectJ. The authors
found that their approach effec-
tively defended against DoS, DDoS,
and host compromise attacks and
incurred minimal overheads.

Invited Talk

Electronic Voting in the United States:
An Update

Avi Rubin, Johns Hopkins University

Summarized by Ming Chow and
Jonathon Duerig

Avi Rubin began by discussing his
recent experiences at an annual
conference of state chief justices
held in South Carolina, where he
served on a panel about electronic
voting. Surprisingly, most of the
chief justices were not aware of the
electronic voting problem, and
most do not even buy into the idea
of trojan horses. However, Rubin’s
talk pointed out some of the prob-
lems that result when voting tech-
nology loses transparency. It is
important to educate the chief jus-
tices in this area, since they will
increasingly be the arbiters of who
wins elections, as was seen in a
recent election in Washington
state. Rubin noted that it was diffi-
cult to explain the technical issues

of electronic voting to a mostly
nontechnical group at the confer-
ence. Several chief justices (of
Pennsylvania, Washington, Puerto
Rico, and Florida) praised Rubin’s
talk for making them believers
regarding the electronic voting
problem and for stressing the
importance of a paper trail.

Rubin reviewed the background of
the electronic voting problem.
Shortly after the debacle of the
2000 presidential election, Con-
gress passed the Help America Vote
Act (HAVA). The purpose of the act
was to establish a program to pro-
vide funds to states to replace the
punchcard voting program. In
2003, $1.4 billion was given to
states to buy electronic voting sys-
tems. Members of Congress
approved of the idea of electronic
voting and didn’t find any problems
with systems, rebuking Rubin.
However, before the 2004 presiden-
tial election, the controversy sur-
rounding electronic voting esca-
lated. Rubin noted numerous
problems, including weak require-
ments from independent testing
authorities (ITAs), no source code
review of systems, controversies
over the lack of a paper trail, lack
of accommodation for blind peo-
ple, and the fact that some people
do not even look at their receipts.

Rubin noted that there is still a dis-
connect between Congress and the
computer science community and
that the HAVA money is almost
gone: $4 billion has been spent.
Maryland commissioned several
studies to figure out how to retrofit
new voting safeguards onto the old
technology. The finding is that
things are being done wrong, but
there is no money to fix them.
Rubin recalled a trip to the Carter
Center in Atlanta, where he found
that the people are very concerned
about the fact that there is no way
to observe electronic voting. In
Oregon, everyone votes by mail;
there, voter coercion and resale are
problems. Except for Baltimore,
Maryland is still using the highly

controversial Diebold electronic
voting machines. In New Jersey,
legal battles over voting continue to
rage. Politicians in Washington do
not seem worried about these prob-
lems. People in positions of power
are invested in voting-machine
companies. Although progress is
being made in confronting the
problems in existing voting tech-
nology, the overall picture is mixed.
And the difficulties in disseminat-
ing information on the problem of
electronic voting means that many
people in this country still do not
believe there even is a problem.

Refereed Papers

M A N AG I N G S E C U R E N E T WO R KS

Summarized by Stefan Kelm

An Architecture for Generating
Semantics-Aware Signatures

Vinod Yegneswaran, Jonathon T. Giffin,
Paul Barford, and Somesh Jha, Univer-
sity of Wisconsin, Madison

In this talk Jonathon described
both the architecture and the
implementation of Nemean, a sys-
tem for automatic IDS signature
generation. One of the objectives of
Nemean is to take the human out
of the signature-generation loop in
order to reduce errors (both false
positives and false negatives). He
said that current solutions do not
make use of application-level pro-
tocol semantics, whereas Nemean
operates on the application layer,
working with what he called
semantics-aware signatures. In
doing so, it is able to aggregate TCP
flows, generate signatures for
attacks where the exploit is only a
small part of the payload, and pro-
duce generalized signatures. And it
is easy to understand and, impor-
tantly, to validate.

Nemean’s architecture consists of
data collection, flow aggregation,
service normalization, and cluster-
ing. The data collection component
takes its input from a honeynet; the
current implementation captures

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 75

HTTP and NetBIOS. The main part
of the flow aggregation component
is to manually assign weights to
single data packets, which are sub-
sequently used for automatic signa-
ture generation. Service normaliza-
tions take care of possible problems
within the data flow. Finally, the
clustering component is divided
into session clustering and connec-
tion clustering.

Jonathon then presented some very
impressive results of an experiment
that ran over two days: they trained
Nemean using captured honeynet
data and achieved a detection effec-
tiveness of about 99%, with 0 false
alarms. Their research suggested
that, depending on the attack, con-
nection-level clustering makes
sense at times and session-level
clustering seems appropriate at
others. For more information, see
http://www.cs.wisc.edu/~giffin/.

MulVAL: A Logic-Based Network
Security Analyzer

Xinming Ou, Sudhakar Govindavajhala,
and Andrew W. Appel, Princeton
University

Xinming Ou presented MulVAL, a
new approach to network security
analysis. The motivation behind
this approach is to find possible
security weaknesses in software
and/or network configurations
before running a particular service.
An administrator, Xinming argued,
should be able to put questions to a
so-called “reasoning engine”—for
example, is there an attack path
that could lead to exposure of con-
fidential data?

Input from sources such as CVE is
converted into input which may
subsequently be used through logic
programming. The authors chose
MulVAL, which is a subset of Pro-
log. Xinming gave two examples:
network and machine configura-
tions are being expressed as datalog
tuples—“serviceRunning(web-
server, httpd, tcp, 80, apache)”—
whereas the reasoning logic is
being specified as datalog rules—
“networkAccess(Attacker, Host2,

Protocol, Port . . .)”. Standard pro-
log engines then conduct the analy-
sis of configurations.

The basic idea behind the architec-
ture is to have a small scanner run-
ning on each host within a network
and an analyzer which looks for
new information sent by the scan-
ners. Xinming described various
reasoning rules such as possible
exploitation of known vulnerabili-
ties, OS semantics, and attack tech-
niques. He then presented some
real-world results of MulVAL and
argued that their system scales
pretty well, mainly because of Pro-
log’s system optimization. They
used MulVAL to check their depart-
ment’s network configuration and
immediately found a potential two-
stage attack path due to multiple
vulnerabilities that existed on a
single server.

Xinming said that future work
involves testing the system on more
networks and that reasoning rules
for Windows systems are needed,
too. He concluded that logic pro-
gramming is a good approach to
network security analysis.

For more information, go to
http://www.cs.princeton.edu/~xou/.

Detecting Targeted Attacks Using
Shadow Honeypots

K.G. Anagnostakis, University of Penn-
sylvania; S. Sidiroglou, and A.D.
Keromytis, Columbia University; P.
Akritidis, K. Xinidis, and E. Markatos,
Institute of Computer Science–FORTH

Stelios Sidiroglou presented
Shadow Honeypots, a security
architecture combining rule-based
intrusion detection systems (such
as snort) which are good at detect-
ing known attacks with honeypots
and other anomaly detection sys-
tems which are good at detecting
zero-day attacks. By taking “the
best of both worlds” one should be
able to minimize both false posi-
tives and false negatives.

Unlike the traditional approach,
shadow honeypots allow for two
modes of operation: client-side and

server-side. The basic idea is to
have a filtering component as well
as anomaly detection sensors. Sit-
ting behind those sensors is the
shadow honeypot, which is an
instance of the system or software
to be protected. It is basically a
modified version of the software
itself, with various hooks intro-
duced throughout the source code.

The prototype implementation pre-
sented by Stelios introduces a few
new system calls such as transac-
tion() and shadow_enable(): if the
shadow honeypot classifies input as
malicious, the corresponding pack-
ets are discarded; if the packets are
regarded as okay, they will be han-
dled correctly and transparently by
the system.

Stelios presented two widely used
prototype implementations modi-
fied by those shadow honeypot
system calls: the Apache Web
server and the Firefox browser. In
this implementation they focused
on memory violations such as
buffer overflows. And although
benchmarking the modified ver-
sions showed an overhead of 20%
and 35%, respectively, Stelios said
that the ability to significantly
reduce the rate of false positives is
a good reason to improve shadow
honeypots.

For more information, see
http://www1.cs.columbia.edu/
~ss1759/.

Invited Talk

Cybersecurity: Opportunity and
Challenges

Pradeep K. Khosla, CyLab, Carnegie
Mellon University

Summarized by Boniface Hicks, OSB

Pradeep Khosla discussed various
elements of CMU’s CyLab
(http://www.cylab.cmu.edu/), of
which he is the director. CyLab not
only studies the technological
aspects of computer security, but
also integrates efforts with the Tep-
per School of Business and the
Heinz School of Public Policy. It

76 ; L O G I N : V O L . 3 0 , N O . 6

extends internationally and in-
cludes the efforts of 150 security
professionals and more than 50
industrial affiliate member compa-
nies. It is an ambitious and wide-
reaching research center, embrac-
ing both short- and long-term
projects.

Khosla himself is helping to build
survivable storage systems. In
hopes of making storage perpe-
tually available, even in the face
of failure or compromise of some
disk arrays, the team, led by Greg
Ganger, is using redundancy in a
novel way. A naive approach would
be merely to break up a file into a
thousand pieces, like a jigsaw puz-
zle, and store the pieces on differ-
ent disk arrays. In this way, if one
piece were compromised, no in-
formation would be gained. An
improvement is to duplicate the
storage and break it up into four
1000-piece puzzles. In this way,
even failure of a disk will cause
minimal damage, and the degrada-
tion will be graceful over the failure
of multiple disks. Furthermore,
their system is self-healing, recog-
nizing what has been lost and
recovering it by using redundant
information. In this way, they have
been able to build a robust system
using only non-robust compo-
nents. As expected, however,
increased safety is paid for with
slower access rates.

Another CyLab project is the Grey
System. Khosla showed a demo of
this system, which is already being
deployed in the computer science
buildings at CMU. A person can get
into his own office using a cell
phone with Bluetooth. Further-
more, a person can remotely give
authority for someone else to enter
his office over the cell phone. The
system allows for one cell phone to
provide a certificate to another cell
phone, which can then use the cer-
tificate to authenticate with the
door. The logic for this delegation
system is handled using automated
theorem-proving software devel-

oped by Pfenning and Lee some 10
years ago. This novel application is
one they never expected; it demon-
strates how pure research produces
unexpected results, even a decade
after it has been developed. Khosla
used this opportunity to petition
for government agencies to be will-
ing to provide funds for the sake of
long-term results.

Using the Grey System, what pre-
vents someone from stealing a cell
phone and breaking into that per-
son’s office? Ideally, the cell phone
would authenticate its user—using
biometrics, for example. Khosla
recognized that no biometric is per-
fect, but perhaps a combination of
face and fingerprint, voice and iris
recognition would make a robust
system. One group in the CyLab
has been making great progress in
face recognition. Although there
are an impossible number of vari-
ables (pose, illumination, expres-
sion, occlusion, time lapse, etc.),
the lab has made significant pro-
gress in gaining excellent accuracy
with the help of very few training
images. Their software has pro-
duced far better results than cur-
rent commercial software. There is
still the challenge, however, of
incorporating this resource-rich
technology into resource-con-
strained devices such as cell phones
or PDAs. Also, there is need for
better user input for these devices,
such as voice recognition. Further-
more, as this technology becomes
more advanced and is more broadly
trusted (biometrics will be required
on passports by the year 2010),
there are various business and pol-
icy issues which must be explored.
It may be desirable to encrypt the
biometrics on a passport, for
example.

The last significant area covered by
Khosla was education. Using exam-
ples from his own experiences with
his son, he described the need for
children to be made “cyberaware.”
Since it is so easy for a teenager to
get a malicious script from the

Internet and cause great damage, it
is important to educate children in
ethics and norms for Internet use.
CyLab has taken on this social
responsibility by forming a pro-
gram that seeks to educate 20,000
young people in the Pittsburgh
area, with the hopes of educating
10 million in the future. They’re
trying to reach kids aged 5 to 10
by incorporating ethics into an
interactive game, which is available
at http://mysecurecyberspace.com.
In this game, the player interacts
with characters such as Elvirus and
MC Spammer. A study of the
20,000 children who will be
required to play this game is being
conducted scientifically, with a
long-term evaluation of the effec-
tiveness of this approach.

Throughout his presentation,
Khosla made some observations
about open areas and the waves of
the future. He claimed that Human-
Computer Interaction (HCI) is now
the hot field in computer science.
He identified the emerging field of
resource-constrained devices such
as mobile phones and even RFIDs,
and believes they will be ubiqui-
tous in the near future. Mobile
access is the new wave, he said; it
holds the promise of providing
telephony in developing nations—
77% of the world is already within
range of a mobile network. At the
same time, privacy, security, and
capture resilience are needed for
mobile technologies. Finally, there
were comments about the reduc-
tion in funding for these projects.
Khosla reiterated how important it
is that there be ongoing funding for
security—it is a problem that will
never simply be solved. He also
challenged DARPA not to require
so many projects to be classified,
since that leads to duplication of
effort. Finally, there was an audi-
ence comment encouraging incen-
tives to get kids involved in bug
reporting as well as in reporting
malicious activity. Khosla wel-
comed this idea.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 77

Panel

Sniffing Conference Networks: Is It
Legal? Is It Right?

Abe Singer, San Diego Supercomputer
Center; Bill Cheswick, Lumeta Corp.;
Paul Ohm, U.S. Department of Justice;
Michael Scher, Nexum, Inc.

Summarized by Serge Egelman

At many security conferences,
intercepting wireless network traf-
fic has become commonplace. Def-
Con is at the extreme—passwords
are annually written down and
taped to a “wall of shame.” But
USENIX Security has not been very
different. Often the motivation cal-
imed is that of educating users
about poor security habits, but one
thing is fairly certain: this behavior
is illegal. This panel examined both
the ethical and the legal impact of
sniffing wireless conference net-
works.

Bill Cheswick, currently the chief
scientist at Lumeta Corporation, is
well known for his 1991 paper “An
Evening with Berferd,” in which he
lures a hacker to a machine that is
being monitored. For months
Cheswick watched as this cracker
would attack other machines from
the honeypot he had set up. At one
point during this study Army Intel-
ligence came to Cheswick and read
him his Miranda rights; they saw
attacks coming from his machine
and assumed that he had some-
thing to do with it. He was let off
the hook after explaining the proj-
ect. While Cheswick learned many
of this particular cracker’s tech-
niques, he had received little ethi-
cal guidance on how to proceed.
Was what he was doing illegal?
Was it ethical? After all, it was his
own machine and this cracker had
accessed it without authority
(which certainly is illegal). While
this example falls into a gray area,
Cheswick mentioned how he used
to sniff conference networks for
plaintext passwords so that he
could educate people about inse-
cure protocols. Upon finding out

that this activity was illegal, he has
restricted his sniffing to networks
that he owns.

Paul Ohm, an attorney for the
United States Department of Jus-
tice, gave an overview and history
of the various federal computer
crime laws. Starting in 1968, Con-
gress passed regulations about
eavesdropping after being outraged
by the egregious activities of the
FBI in monitoring citizens without
any legal oversight. This law made
it illegal both to tap phone lines
without a warrant and to bug. This
is commonly referred to as the
Wiretap Act (Title III of the
Omnibus Crime Control and Safe
Street Act of 1968). In 1986 Con-
gress passed the Electronic Com-
munications Privacy Act (ECPA, 18
U.S.C. §§ 2510-2521). With a few
exceptions, this law made it illegal
to intercept electronic communica-
tions. Monitoring one’s own net-
work to protect rights and property
is permissible, as is monitoring a
network with consent from the
users. Ohm pointed out that some
might argue that by broadcasting
passwords through the air in plain-
text, the user is essentially “asking
for it.” Although it is entirely possi-
ble that this might eventually win
in court, such a victory would be at
the cost of thousands of dollars in
legal fees for the defendant. At the
same time, the likelihood of some-
one being arrested at a conference
for sniffing traffic is very small.
Ohm explained that when deciding
to prosecute such a case, intent is
crucial. But sniffing conference
traffic also raises many ethical
questions: even if it were legal,
would this behavior be acceptable
for someone not in attendance at
the conference? What is the differ-
ence between a conference attendee
sniffing traffic and an FBI agent
sniffing traffic? The laws are in
place to protect everyone equally.

Abe Singer of the San Diego Super-
computer Center chose to concen-
trate on the ethical questions. Some
of the common justifications range

from “It’s not a wiretap if there’s no
wire” to “I’m protecting the net-
work.” Of course this begs the
question of what exactly is being
protected by acquiring someone
else’s passwords. Another justifica-
tion, “The user deserved it for
using plaintext passwords,” is simi-
lar to “She deserved it for walking
down a dark alley alone.” This sort
of behavior embarrasses those who
are subjected to it. These are often
new users who do not know any
better. Instead of alienating them,
our time would be better spent
educating them. Of course, one
way around this would be to force
all conference attendees to sign
waivers of consent. Just imagine
an ISP requiring this of all its
customers.

Mike Scher, general counsel and
compliance architect for Nexum,
Inc., chose to focus on enforcing
normative behavior. Before a law
is passed, there is always some
consensus that the law serves to
prohibit behavior in violation of
ethical norms. We will often tell
colleagues when they are behaving
improperly. But in this community,
sniffing is an ethical gray area, and
it is therefore very difficult to
become watchdogs. On the one
hand, there are security luminaries
who are using plaintext passwords,
and on the other, there are other
security luminaries who are sniff-
ing. As a community, we need to
reach a consensus as to whether
this is unethical.

Invited Talk

Treacherous or Trusted Computing:
Black Helicopters, an Increase in
Assurance, or Both?

William Arbaugh, University of
Maryland

Summarized by Kevin Butler

The debate about trusted comput-
ing is passionate and pointed; as
Arbaugh states, it is good when
people debate issues, but bad when
people make unsubstantiated

78 ; L O G I N : V O L . 3 0 , N O . 6

claims. Arbaugh presented an
overview of trusted computing and
spoke of the positive effects and
possible negative ramifications.
Much of the debate centers on who
controls one’s computing and one’s
information. There is a tension
between owners and users of infor-
mation. Owners want to control
information (e.g., patient data) and
while this seems laudable, there are
scenarios where data leakage is
important, such as with whistle-
blowers in a company (e.g.,
tobacco companies wanting to keep
their documents secret). Trusted
computing is inherently a “dual-
use” technology, which can used
for good purposes or ill. A user’s
expectations for what trusted com-
puting might be will differ in many
ways from what a larger company’s
expectations will be. An object is
trusted and trustworthy if and only
if it operates, and can be expected
to operate, as expected. Therefore,
one definition is that trusted com-
puting is when your computer
operates as expected. Note that the
expectations themselves are not
included in this definition.

What is a trusted computing base
(TCB)? It’s the totality of compo-
nents responsible for enforcing
security policy, including hardware,
firmware, and software. A key com-
ponent of a TCB, the reference
monitor, mediates all access to
objects from subjects. The imple-
mentation of a reference monitor is
known as a reference validation
mechanism (RVM); it should be
tamper-proof and unable to be
bypassed, but small enough to be
well analyzed and tested. The refer-
ence monitor acts as a base case;
i.e., if the base case fails, the proof
falls apart. These concepts and oth-
ers were codified in 1983 in the
“Orange Book,” which provided
good definitions and theory but
was unwieldy in practice. Trusted
computing was not seriously con-
sidered again until 2002, when
the Trusted Computing Group
(TCPA/TCG) went public. There
has been a flurry of recent activity:

next year may bring virtualization
software from Intel, secure execu-
tion mode from AMD, and other
efforts.

The TCG features as its core ele-
ment the Trusted Platform Module
(TPM), a passive device that only
does something if commanded over
the system bus. This means it can’t
perform actions such as raining and
interrupt to stop processing, can’t
take over a machine, and can’t
delete files. It’s essentially a smart-
card soldered to the computer, so it
has lots of interesting crypto func-
tions implemented in hardware,
including random number genera-
tion and symmetric and asymmet-
ric encryption. Storage is protected
through on- and off-device shielded
locations, and protected execution
provides an environment for pro-
tected crypto functions to execute
without modifications or exposure
of key information. A key function
of the TPM is attestation, in which
the current status of both the TPM
and the machine on which it re-
sides is attested to by the TPM.
Platform configuration registers
(PCRs) are held in volatile storage
in the TPM, and can be initialized
to zero but not directly written to.
The other operation permissible is
extension, in which an extended
value is hashed with the old value
of the PCR to create a new value.

Arbaugh suggested that trusted
computing can be broken into two
phases: getting started (the pre-
boot phase) and the operational, or
post-boot, phase, where the system
must remain trustworthy. Authenti-
cated boot can be performed by the
TPM; it ensures that at boot time
the system is in a secure initial
state, assuming that the measured
software is trustworthy. This latter
concept is problematic, as nobody
to this point is capable of making
such a guarantee. Authenticated
boot is a passive method; if the
bootstrap process detects malicious
activity, it cannot stop the system
from booting, and it might not even
be able to detect if there is malice.
Briefly, the operation breaks boot-

strapping into several steps, where
a hash is taken at each step and the
PCR extended. Integrity measures
are stored in a write-once register,
so the hashes can be securely com-
pared. While it can be proven to
another authority, there is no way
to prove to the user that they are in
a trusted configuration, due to the
lack of a trusted path between the
hardware and the user (e.g., an OS
can spoof values as displayed to the
monitor). Secure boot, by contrast,
is an active process that can pre-
vent malice from executing. It pro-
ceeds similarly to authenticated
boot, but proves that it is in the
correct configuration existentially,
as execution is halted if the hashes
do not match. However, it cannot
prove a trusted configuration to a
third party. Arbaugh suggested that
what is needed is a trusted boot,
combining authenticated and
secure boot. There are times when
being able to provide the system
configuration to a third party is
helpful, though this is open to
abuse. However, malice should
never be executed if it can be
detected, no matter how good the
protection is. The addition of a
trusted path to the user is the only
way to implement this.

Post-boot methods include IBM’s
extension of the TCG into runtime
operation and software to use the
TCG past boot virtualization, such
as Vanderpool and Pacifica. In
IBM’s work, presented at the 2004
USENIX Security Symposium, all
objects are measured and a list is
maintained in kernel data, with
measured values going into a PCR.
This only works if all software is
trustworthy, meaning that much
more software than just the BIOS
and boot routine must be verified.
Virtualization modifications are
proposed by Intel and AMD; how-
ever, previous work showed that
some instructions in the x86
instruction set cannot be virtual-
ized without breaking the virtual-
ization itself. Domain managers
such as VMware and Xen act like
reference monitors, where each OS

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 79

runs in a partition, firewalled from
each other. Multi-level security
could be implemented effectively
through this scheme, but there is
still a problem of moving informa-
tion between partitions, and partic-
ularly of covert channels between
the virtualized OSes. The Vander-
pool specification includes the
highly problematic virtualization of
I/O. Lagrande includes processor
and I/O modifications to increase
security and has trusted I/O paths
to the video and keyboard plus pro-
tected execution and additional
memory protection.

The main thesis of the talk was that
trusted computing can be used in
good and bad ways, and Arbaugh
considered examples of each. Elec-
tronic voting is a particularly good
application, as attestations with a
trusted boot are what one wants
from a voting machine. However,
digital rights management (DRM)
restrictions can be brought into
place, thanks to the configuration
attestations. The ability to lock files
and protect crypto keys with the
TPM prevents key escrow, and the
police cannot access your keys.
However, files can be locked to
applications to limit competition.
Strong authentication can be pro-
vided to the platform, which can
help parental controls, but could
provide a loss of anonymity. The
only way to get lawmakers to do
the right thing is either through
generous campaign donations or by
explaining things without extrem-
ism in a way that they will under-
stand. Arbaugh put forth the idea
that, contrary to current claims, the
TCG could be beneficial to GNU
software: evaluation and certifica-
tion on an approved platform
might eliminate government resis-
tance to its use.

Arbaugh made some predictions
for trusted computing. Improve-
ments will come from virtualiza-
tion, but Lagrande will not survive,
as the market will not understand
the need for trusted paths, nor will

it be willing to spend the money.
The TCG will be hacked; looking at
the XBox as an example shows that
hardware hacking is just a different
skill set from software, though
some tools are more expensive. In
conclusion, all technology is essen-
tially dual use, and while laws and
policies attempt to limit evil uses,
they cannot be completely elimi-
nated. One has to decide for oneself
if the good provided by trusted
computing outweighs the bad.

Refereed Papers

AT TAC KS

Summarized by Mohan Rajagopalan

Where’s the FEEB?: The Effectiveness
of Instruction Set Randomization

Ana Nora Sovarel, David Evans, and
Nathanael Paul, University of Virginia

The authors’ objective in this paper,
presented by Ana Nora Sovarel, was
to evaluate whether an attacker
could detect the randomization key
remotely and then spread a worm
on a network of instruction-set ran-
domized machines. Their attack
was based on exploiting incremen-
tal behavior by guessing instruc-
tions that corresponded to short
control flow. They concentrated on
a two-byte sequence that was used
for a jump attack. A prime assump-
tion in this work was that the same
key would be used each time the
application was randomized.
Experiments were performed on
Fedora without Address Space Lay-
out Randomization. In particular
the experiments evaluated whether
it would be practical to spread a
worm in such a deployment.

Comments generally targeted the
assumption that the same random-
ization key would be used each
time. It was pointed out that ISR
schemes re-randomize on each fork
operation, and re-randomization
is performed at load time, so the
underlying assumption was incor-
rect.

Automating Mimicry Attacks Using
Static Binary Analysis

Christopher Kruegel and Engin Kirda,
Technical University Vienna; Darren
Mutz, William Robertson, and Giovanni
Vigna, University of California, Santa
Barbara

This paper, presented by Chris
Kruegel, discussed automating con-
trol flow attacks by analyzing appli-
cations to identify locations that an
attacker could exploit.

In particular, the authors hoped to
defeat host-based intrusion detec-
tion systems through mimicry
attacks, such as hijacking PLT
entries. The goal was to set up an
environment in which the attacker
could regain control after executing
the first system call. Symbolic exe-
cution was used to perform static
analysis. They identified several
instances where the attack would
succeed on real programs.

Someone asked whether this tech-
nique would work for non–buffer-
overflow attacks. Chris replied that
all that matters is the ability to
inject code.

Non-Control-Data Attacks Are Realis-
tic Threats

Shuo Chen, Prachi Gauriar, and
Ravishankar K. Iyer, University of
Illinois at Urbana-Champaign; Jun Xu
and Emre C. Sezer, North Carolina State
University

Shuo Chen from UIUC presented
the last paper of this session, which
explored how data flow can be
exploited in order to compromise
systems.

The premise of this work was that
several types of data, such as con-
figuration inputs and user inputs,
are security-critical and can be used
to drive exploits. While it has been
known that such attacks exist, the
extent to which they are applicable
has not yet been assessed. The
authors show that many non-con-
trol vulnerabilities exist and the
extent of damage is comparable to
traditional attacks. Their experi-

80 ; L O G I N : V O L . 3 0 , N O . 6

ments indicated that several real-
world programs, such as FTP, SSH,
and Web servers, were vulnerable
to such attacks. They were evalu-
ated along two dimensions: the
type of security-critical data, and
the specific memory vulnerability
that can be used to access the data.

Several defenses to protect against
control data tampering were pre-
sented, ranging from the enforce-
ment of non-executable pages to
using low-level hardware infra-
structure to protect control data.
In general, memory corruption
attacks remain a difficult problem.

Invited Talk

How to Find Serious Bugs in Real Code

Dawson Engler, Stanford University

Summarized by Francis Hsu

Dawson Engler shared his experi-
ences using two dynamic tech-
niques, implementation-level
model checking and execution-
generated testing, to find as many
serious bugs as possible in real
code. His earlier experiences with
static techniques proved effective at
checking surface visible properties
like proper locking semantics.
Since no code needed to be run or
even compiled in static checking
and it scaled well, it worked well in
finding thousands of errors in code.
Dawson successfully commercial-
ized these two years ago by found-
ing Coverity, a self-funded com-
pany with over 70 customers.
However, this talk was not about
his static analysis successes. While
his dynamic techniques required all
the code to run and took hours to
diagnose a single bug when found,
they did address a failing of static
techniques: checking properties
implied by code.

Implementation-level model check-
ing is a mutation of formal method
techniques, adapted for real code.
Model checking is like testing on
steroids, where every possible ac-
tion is done to every possible sys-
tem state. Since model checking

makes low-probability events as
common as high-probability events
by exhausting the state space, cor-
ner-case errors could be found
quickly. Dawson had several years
of mixed results, but finally had a
breakthrough success in checking
three heavily used Linux file sys-
tems. He ran the entire Linux ker-
nel with a virtual formatted disk in
the model checker, applied each
possible operation to the file sys-
tem with failures at any point,
and checked for proper crash
recovery. Although the file systems
would normally recover correctly
after a crash, Dawson discovered
that they usually broke when
crashes occurred during the crash
recovery process. In the end, he
found 32 errors, including 10
places where a poorly timed crash
would result in complete data loss.

An attendee wanted to get a handle
on how much human and compu-
tational time was needed to apply
the model checking for bug find-
ing. Dawson said he wouldn’t be
surprised if it took a couple of
weeks up front, since it’s hard to
figure out correct behavior of the
code and understand any discov-
ered bugs. The computational time
could be infinite for a run and
would also require lots of memory
for searching the large state space,
but in his experience Dawson usu-
ally found useful results in seconds
or minutes of a run. Not finding
any results in that time would
likely be caused by a problem in
the testing and not because the
code was bug-free.

Another person asked if Dawson
had seen cases in his testing where
the access to the disk was not
trusted to write the data it was
given, and if he had seen any differ-
ences between brands. Dawson
responded that he had tested the
file system on RAM disks for per-
formance reasons, but it could have
been done on physical disks. A
third attendee asked if Dawson had
mode-checked fsck. Dawson con-
firmed that he did perform an end-

to-end check of all the components
of the file system, including fsck.

In the second half of the talk, Daw-
son described his more recent work
with execution-generated testing,
or “how to make code blow itself
up.” Creating good test cases for
system code is hard work. Manual
construction of test cases is labori-
ous, and automated random “fuzz”
testing may not hit corner cases or
errors that require structured
inputs. Execution-generated testing
solves these problems by running
the code to generate its own input
test cases. Starting with an initial
value of anything for the input, the
program execution generates con-
straints for the values at fork points
in the code. The collection of these
constraints can then be used to
generate inputs which, in turn, are
used to test the code. With this
technique Dawson generated for-
mat strings to test printf and net-
work input to test an MP3 server,
and discovered bugs in both.

Dawson has made the slides of his
talk available at http://www.stan-
ford.edu/~engler/usenix-secu-
rity05.pdf.

Refereed Papers

P ROTE C TI N G TH E N E T WO R K

Summarized by Kevin Butler

Mapping Internet Sensors with Probe
Response Attacks

John Bethencourt, Jason Franklin, and
Mary Vernon, University of Wisconsin,
Madison

n Awarded Best Paper!

Internet sensor networks are col-
lections of systems monitoring the
Internet, producing statistics
related to traffic patterns and
anomalies. Examples include col-
laborative intrusion detection sys-
tems and worm monitoring cen-
ters. Network integrity is based
on the assumption that the IP
addresses of the systems serving as
sensors are secret; otherwise the

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 81

integrity of the produced data is
reduced. Attempts to maintain
anonymity include hashing or
eliminating sensitive report fields
(e.g., the IP address where an
attack arrived), prefix-preserving
permutations, and bloom filters.
However, John Bethencourt pre-
sented a new class of attacks dis-
covered by his group, called probe
response attacks, which are capable
of compromising the anonymity
and privacy of Internet sensors.

Using the SANS Internet Storm
Center (ISC) as an example, Beth-
encourt showed that given an IP
address, if a probe is sent to the
address then one can wait for the
sensor network to report activity; if
it doesn’t, the address is monitored.
With the ISC, only one TCP packet
is necessary to initiate a probe con-
nection, as incomplete SYNs are
monitored. It is possible to send
packets to every potential address,
though this is not possible in a
serial manner, given that most par-
ticipants make only hourly reports
and there are 2.1 billion routable
addresses. Checking in parallel,
however, is feasible. Starting with
the full list of addresses, the search
space is divided into intervals. Af-
ter sending a series of probes and
waiting two hours, the reports can
be checked for activity, and those
reporting none are discarded. For
the others, a divide-and-conquer
strategy can be used to further
subdivide the intervals and make
probes until, ultimately, all moni-
tored IP addresses are found. Simu-
lation results show that an attacker
using a T3 can complete the attack
in five days. With this information,
an attacker can avoid monitored
addresses in malicious activities
such as port scanning or propagat-
ing worms, avoiding detection.
Sensors can also be flooded with
errant data. While the ISC was pri-
marily considered, similar attacks
are possible against other sensor
networks, such as Symantec’s
DeepSight site.

While hashing, encryption, and
omitting certain report fields can
make attacks more difficult, they
are still possible. Private reports
would be effective but would
severely limit utility. Top lists could
publish only the most significant
events, providing some useful
information but not a complete pic-
ture, allowing attackers to avoid
detection by keeping activity below
threshold levels. Puzzles, captchas,
and random log sampling are other
techniques to prevent information
attacks. One question posed was
whether sensing in the core would
be more useful than at the edge.
This is more difficult to implement,
as was mentioned in other papers.
Another questioner asked about
biasing data, as clever attackers can
attack sensors from a variety of
locations. More investigation into
these forms of attack is needed.

Vulnerabilities of Passive Internet
Threat Monitors

Yoichi Shinoda, Japan Advanced Insti-
tute of Science and Technology; Ko Ikai,
National Police Agency of Japan;
Motomu Itoh, Japan Computer Emer-
gency Response Team Coordination
Center (JPCERT/CC)

Yoichi Shinoda described still other
methods of finding vulnerabilities
in threat-monitoring networks.
Passive threat monitors were
inspired by the successes of Inter-
net telescopes; results have been
published in graph and table form.
Determining where sensors are can
compromise the monitoring net-
work’s integrity and can be per-
formed by looking for feedback to
induced input. By propagating a
number of UDP packets at four /24
address blocks, they graphed the
monitoring system, showing a
spike four hours afterward. By tar-
geting a particular system and
looking at information such as
company white papers and hand-
outs, the basic system properties
can be determined. Combined with
packet-marking algorithms, which
can be customized to the type of

feedback from the network, sensors
can be found efficiently. This was
backed up by case studies.

Protecting the monitors is not easy.
Methods include throttling infor-
mation flow, providing less infor-
mation, and, in particular, detect-
ing marking activity, looking for
statistical anomalies where flurries
of similar messages are sent. While
system protection methods have
been proposed, their effectiveness
and completeness have not yet
been verified, and unknown attacks
may yet exist. Information leaks
can still occur even with protec-
tion, and continuous assessment is
necessary to study attacks and pro-
tection methods.

A question about correlating sensor
information was posed during the
Q&A session. If sensor output is
normalized as a countermeasure
based on sensors looking at differ-
ent networks, could similar pat-
terns still be observed? Shinoda
responded that while this was
explored in the paper, the problem
is that different monitors have dif-
ferent sets of sensors providing dif-
ferent results, and knowing why
different results are provided is still
a work in progress.

On the Effectiveness of Distributed
Worm Monitoring

Moheeb Abu Rajab, Fabian Monrose,
and Andreas Terzis, Johns Hopkins
University

To protect against threats, moni-
toring active networks, and the
routable unused IP address space in
particular, is attractive, since no
legitimate traffic should occur in
these areas. With a single monitor,
backscatter patterns can be found if
a DoS attack is initiated; it is also
useful for worm detection. How-
ever, a single monitor view is too
limited, as worm scans that hit
other parts of the network will be
missed. Moheeb Abu Rajab pre-
sented methods of monitoring for
worms using multiple, distributed
models, concentrating on the fact

82 ; L O G I N : V O L . 3 0 , N O . 6

that non-uniform distributions
more accurately model the real
world. For an extended worm
propagation model, the model
must incorporate population den-
sity distribution, especially non-
uniform worm propagation.

Equations were derived for the
number of infected hosts in a /16
subnet, with the total infection
being the sum of infected hosts.
Abu Rajab presented simulations
that showed that while non-uni-
form scanning worms propagated
slightly more slowly than uniform
scanning worms over uniformly
distributed hosts, they spread
much faster when a real data set
was used. Based on this, better
worm detection can be imple-
mented by concentrating on differ-
ent evaluation metrics. System
detection time—the time for the
monitoring system to detect a new
scanner with a particular level of
confidence—is important. Deploy-
ing distributed monitors with
smaller address blocks, giving a
finer level of granularity, produced
optimal response times. Even par-
tial knowledge of population distri-
bution was found to improve detec-
tion times by a factor of 30.

In the Q&A, an audience member
asked whether the worm will take
longer to propagate if it starts in
very sparse populations under a
skewed population distribution.
Abu Rajab responded that because
worms have a random component
to their dissemination, even if some
start in sparse areas, at some point
they will target heavily populated
subnets and propagate much faster
from there onward. Another ques-
tion concerned the speed of detec-
tion as a metric; has the communi-
cation overhead between probes
been considered as a factor reduc-
ing the speed at which the worm
can be detected? This is a good
question, agreed Abu Rajab. The
research to this point concentrated
on evaluating space requirements
and assumed that an infrastructure

was in place; for distributed sys-
tems, an adaptive routing system
that minimized overhead would
have to be implemented.

Invited Talk

Open Problems with Certifying
Compilation

Greg Morrisett, Harvard University

Summarized by Mohan Rajagopalan

Greg began the talk by stating that
mobile code is not the basic secu-
rity problem. The real difficulty lies
in understanding the semantic
properties of code rather than its
syntactic properties. For example,
even simple policies are undecid-
able. Proof-carrying code (PCC) is
an approach where each program
is accompanied by a proof. The
advantage here is that functionality
is moved from the trusted comput-
ing base to the proof checker. Certi-
fying compilers are programs that
systematically transform proofs
along with source. The question
now is how to derive initial proofs.

One approach is to use type systems
in such a way that they map to poli-
cies. Citing Microsoft Research’s
Singularity project as an example,
he mentioned that some high-level
language-based approaches have
suggested eliminating C altogether.
Software fault isolation is another
approach; it checks that all memory
accesses are to valid locations
within a program’s address space.
The idea here is to track mapping
from source to target address. Con-
trol flow isolation was mentioned as
an implementation for the x86 plat-
form. This approach meant that
policies were relatively simple and
easy to enforce—for example, by
rewriting the binary.

The remainder of the talk dealt
with C and type safety, focusing on
two approaches: CCured (Necula et
al.) and Cyclone (Morisset et al.).
The first idea proposed was to
insert code to box all values and tag
them at runtime to check the right

types. This approach was rejected
due to the excessive overhead it
imposed. A better idea would be to
enforce soft typing—do type infer-
ence at compile time. Any statically
inferred code need not be checked.
CCured is based on this principle
and introduces three types: T_safe,
which corresponds to a single value
that need not be checked at run-
time; T_seq, which evaluates to a
sequence of values that may be
traced using fat pointers (perform
bounds checks); and T_wild,
which indicates a pointer to a
tagged value. Security constraints
are generated based on how point-
ers should work. A disadvantage of
this approach is that the compiler
may insert undesirable checks—
within inner loops, for example.

Cyclone, on the other hand, aims
to be the type-safe language that
CCured maps to. Programmers
control where and when to tag val-
ues, allocate memory, etc. The
downside is that much more infor-
mation is required from the pro-
grammer. For example, there are
two ways to do bounds checks,
either through the fat keyword or
by placing an assertion. Floyt-
Hoare Logic is used for verification,
and the key challenges that need to
be addressed are scalability and
soundness. For example, when
translating diamonds there is an
exponential blowup. Loop invari-
ants pose another problem, and the
solution here is to rely on iterative
fixed-point computations.

A challenge they have to cope with
is that of unsound assumptions.
Current work is targeted at increas-
ing the trustworthiness (mismatch
in assertions), extensibility, and
completeness. Extensibility deals
with the problem of using a variety
of techniques to check the VCs that
are generated. There are three key
domain-specific problems that
Greg mentioned in terms of com-
pleteness: first-order logic does not
work; concurrency; and, finally,
substructural languages.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 83

PCC is a powerful principle: It
minimizes the TCB and places the
burden on the code producer. Cer-
tifying compilers are a good step in
that direction, but they are weak
and their theorems are loose. In
response to questions, Greg men-
tioned that Cyclone is currently
available and that software mainte-
nance is an interesting direction to
explore with VCs.

Refereed Papers

D E F E N S E S

Summarized by Francis Hsu

Protecting Against Unexpected System
Calls

C.M. Linn, M. Rajagopalan, S. Baker, C.
Collberg, S.K. Debray, and J.H. Hart-
man, University of Arizona

Mohan Rajagopalan presented
work on a collection of host-based
techniques to limit the scope of
remote code injection attacks, by
denying a remote attacker use of
the system calls.

By recording in an Interrupt
Address Table all the addresses of
all the legal system calls of an exe-
cutable before it is run, the tech-
nique prevents the use of any
newly inserted system calls from
injected code. To deter mimicry
attacks of injected code using the
legitimate system calls in the pro-
gram, the actual syscall instruction
is disguised as other instructions
that trap into the kernel. Additional
binary obfuscation techniques,
such as dead code insertion and
layout randomization, make it
more difficult to scan for the sys-
tem calls. To thwart scanning
attacks against the code, a pocket-
ing technique splits the code sec-
tion into noncontinuous segments
and unmaps the unused regions of
process address space.

The authors implemented these
techniques with a binary rewriting
tool that analyzed executables and
embedded a new ELF section and a

modified OS kernel that made the
checks. The techniques worked to
protect an executable subjected to
synthetic attacks written by the
authors, while imposing less than
15% overhead in performance and
an increased memory cost of 25%.

Efficient Techniques for Comprehen-
sive Protection from Memory Error
Exploits

Sandeep Bhatkar, R. Sekar, and Daniel
C. DuVarney, Stony Brook University

Exploitation of memory errors has
been responsible for 80% of CERT
advisories over the last two years.
Although prior work in address
space randomization removes the
predictability of memory locations,
it still allows attacks using existing
pointers to calculate relative
addresses and does not prevent
data overwriting or leakage. San-
deep Bhatkar presented a way to
address this problem with a set of
transformations on the stack, static
data, code, and heap to randomize
the absolute location and relative
distances of all objects.

The authors produced a modified
compiler and loader to rewrite the
C source of existing programs to
support the randomization. The
actual randomization of the pro-
gram’s objects then only occurs at
runtime, enabling the same binary
produced by the compiler to be dis-
tributed to all users. Experiments
have shown that the transforma-
tions add an average overhead of
11%, which is comparable to previ-
ous address space randomization
techniques that did not address all
the other attacks mentioned above.

Finding Security Vulnerabilities in
Java Application with Static Analysis

V. Benjamin Livshits and Monica S.
Lam, Stanford University

While Java has addressed the prob-
lem of buffer overruns from un-
checked input, Java Web applica-
tions are still vulnerable when data
in the input buffer is not properly
validated. Ben Livshits listed the
many sources of injected data to

such a Web application, such as
parameter manipulation, hidden
field manipulation, header manipu-
lation, and cookie poisoning. Once
the injected data is in the program,
it can be used to exploit the appli-
cation through SQL command
injections, cross-site scripting, and
arbitrary command injections. To
address the multitude of injection
and exploit techniques, Livshits
presented a framework for formal-
izing the vulnerabilities and a static
analysis tool to discover vulnerabil-
ities in these applications.

Vulnerabilities such as SQL injec-
tion caused by parameter manipu-
lation can be described at a high
level in a Program Query Language
(PQL), and these specifications
are automatically transformed into
a static analysis. The static analysis
is both sound and precise, guaran-
teed to find all the vulnerabilities
described in such a specification
while limiting the number of false
positives. More precision is gained
through use of both a context-sen-
sitive analysis and an improved
object-naming scheme to help with
pointer analysis.

The authors have collected a set of
open source Web applications to
form Stanford SecuriBench, a
benchmark on which their and oth-
ers’ security tools could be evalu-
ated. Livshits reported that static
analysis of this code found a total
of 29 security vulnerabilities with
only 12 false positives with their
most precise analysis.

OPUS: Online Patches and Updates for
Security

Gautam Altekar, Ilya Bagrak, Paul
Burstein, and Andrew Schultz,
University of California, Berkeley

While software vendors may race to
provide patches after a discovered
security vulnerability, users fre-
quently do not respond with the
same urgency. Gautam Altekar sug-
gested that the current patching
mechanism is responsible, since
patches are unreliable, irreversible,
and disruptive. Altekar introduced

84 ; L O G I N : V O L . 3 0 , N O . 6

OPUS as a practical dynamic patch-
ing system to address the problem
of patches, making the patch safer
and removing the need for a user to
restart the patched application.

OPUS consists of three compo-
nents: a static analysis tool to
address the safety of dynamic
patches, a dynamic patch genera-
tion tool integrated with the GNU
build environments, and a runtime
patch installation tool. The static
analysis identifies a patch’s unsafe
side effects (e.g., writes to non-
local data such as the heap or
return values). To install the patch,
the new, modified function is
copied to memory and a forward-
ing jump is added to the start of the
old function. To ensure that the old
and new code are not mixed, the
redirection is done only after the
old function is no longer on the call
stack.

To date, the authors have generated
dynamic patches for 30 vulnerabili-
ties from vendor-supplied patches
without modification. Altekar re-
ported that they could not generate
dynamic patches in some instances.
These were for cases such as modi-
fications to global values, input
configuration files, functions at the
top of the call stack, and inline
functions.

An attendee asked if restarting
applications was such a large prob-
lem that online patching would
be necessary. Altekar responded
that they address a usability issue,
where patching has gotten to be so
annoying that users are ignoring
them. Another attendee suggested
that online patching is useful in sit-
uations where an administrator
patching the system isn’t the one
sitting at the computer. Such an
administrator would not want to
disrupt the users and might need to
wait for the users to restart the
applications on their own.

More information about OPUS is
available at http://patch.cs
.berkeley.edu.

Invited Talk

What Are We Trying to Prove?
Confessions About Certified Code

Peter Lee, Carnegie Mellon University

Summarized by Boniface Hicks, OSB

Peter Lee gave an excellent
overview of the work that has been
done in proof-carrying code (PCC)
and outlined the challenges that
remain. PCC developed as a way to
say something concrete about a
software artifact (e.g., mobile code)
without the use of a third party or
the heavy overheads of execution
monitoring, while still maintaining
a small Trusted Computing Base
(TCB). Peter Lee and George Nec-
ula accomplished this by providing
proofs of safety properties, which
can be small even for large pro-
grams. A proof for the theorem
“There are no buffer overflows”
would be an example. These proofs
are tied into the program text in
such a way that they are tamper-
proof (one can’t change the proof
without changing the program).
Furthermore, because the burden
of proof is placed on the software
producer, they are lightweight to
check. Lee gave the example of a
maze. For an infinite-width maze,
it might be impossible automati-
cally to find a path from start to fin-
ish, but given a path, it is trivial to
verify it. For real programs, the
“path” can be expressed as an ML
program which can be verified
merely by ensuring that it type-
checks. At this point Lee rhap-
sodized on the sheer beauty of this
simple, yet powerful solution.

Unfortunately, the proofs get
oppressively large. As an optimiza-
tion, the proofs can be turned into
“oracle strings.” To return to the
maze analogy, an oracle string
would provide only the answers to
queries about which way to go at
each intersection. Thus, the oracle
string, which would express only
“Left,” “Right,” “Right,” for exam-
ple, could be encoded as a binary
string. This gives the proof a very

compact form, requiring only
slightly more work on the part of
the automatic verifier. In a real pro-
gram, the oracle strings are tied to
the program itself. The verifier iter-
ates through the program text, and
when it finds a dangerous com-
mand (STORE, for instance), it
queries the oracle string about
whether this command is safe. The
oracle string provides the needed
evidence. This turns out to be very
effective. The checker is less than
52KB and the proofs are generally
0–10% of the program size. In some
tests the oracle strings were much
smaller than the checksum for the
programs. The SpecialJ compiler,
which compiles Java class files with
oracle strings into x86 binaries,
using heavy optimizations justified
by proofs, outperformed Java,
JavaML, and the JIT compiler. The
TCB for PCC is only approximately
100KB.

Unfortunately, the picture is not all
so rosy. Lee made his confessions
during the second part of the talk.
The first major obstacle is that the
module that checks the code
(VCgen+) is rather beastly. The
core of VCgen is 20,000 lines of C
code, designed specifically for x86
code output from a Java compiler
with a specific policy. To change the
policy, one must change the VCgen
code. Andrew Appel et al. came up
with another solution to alleviate
this problem. By finding the right
global invariant (a long, compli-
cated thing) and proving that the
start state and each future state
obeys it, one can use PCC to prove
safety properties about programs.
They call this Foundational PCC.
Other variants of this approach,
including TALT and TL-PCC, have
been developed as well. Unfortu-
nately, none of the foundational
systems are practical yet, because
of large proof size or slow proof-
checking times.

Another confession Lee made con-
cerned the safety policy. What is
the “right” safety policy, and how
can it be specified? Currently, the

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 85

two key properties that have been
used are type safety and memory
safety. This is certainly valuable; it
eliminates one of the most often
exploited security vulnerabilities,
buffer overflows. On the other
hand, as one member of the audi-
ence pointed out, this kind of bug
accounts for only 50% of security
failures. PCC is fundamentally lim-
ited to safety properties. Although
safety properties can be used to
approximate liveness and informa-
tion flow properties, this approxi-
mation leaves something to be
desired. When specifying policy,
one really wants to say something
direct: that no program should
write to the kernel, for example. In
PCC such a property can only be
expressed in an indirect way, by
specifying programs’ structural
rules that imply this condition.
Some promising directions for
developing solutions to this prob-
lem are use of first-order temporal
logic, and model checking.

In conclusion, Lee asserted that
certified code is a great way to
ensure safe code. Proof-carrying
code is able to eliminate the most
basic program flaws exploited in
security attacks. Engineering PCC
into a practical system, however, is
challenging. Furthermore, some
attacks are not (yet!) able to be
addressed by PCC. For example,
one would like to guard against tro-
jan horses. It is usually the case,
however, that trojan horses are safe
and live. In this case, PCC may not
be very useful, because it may only
verify that the trojans won’t crash.
Vergil Gligor asked a question
about the limitations of approxi-
mating information flow policies
with safety policies. He noted, for
example, that Bell-LaPadula and
Biba are both approximations of
information flow policies. Each
eliminates a different covert chan-
nel. Their composition, however,
introduces a new covert channel.
This goes to show that one of the
hard problems in certifying code is
getting the security policy right—

hopefully, PCC can make some
headway in this.

Refereed Papers

B U I L D I N G S E C U R E SYSTE M S

Summarized by Francis Hsu

Fixing Races for Fun and Profit: How
to Abuse atime

Nikita Borisov, Rob Johnson, Naveen
Sastry, and David Wagner, University of
California, Berkeley

In “Fixing Races for Fun and Profit:
How to Use access(2)” at last year’s
USENIX Security Symposium,
Dean and Hu presented a counter-
measure to a race condition attack,
where an adversary is required to
win k-races instead of just one for
an attack to succeed. They accom-
plish that by making the access and
open calls in a loop, so that an
attacker would need to change the
symbolic links to point to the cor-
rect files many times. This year
Naveen Sastry presented an attack
on such a defense by constructing a
filesystem maze to win the races
against the loop and synchronizing
with the access and open system
calls.

Filesystem mazes ensnare the vic-
tim process making the access and
open checks, forcing the process
to block for I/O and allowing the
attacker to win the race. The attack
was constructed by creating chains
of deep directory trees and placing
the target at the end of it. If one of
the directories was not in the buffer
cache, the victim process would
need to block and incur disk I/O.
To reliably detect when each access
or open call began, the authors
monitored the atime of a symbolic
link in the path given to the victim
process. Even against a k-race algo-
rithm where k=100, the author’s
attack succeeded 100 out of 100
trials on one of the platforms
tested.

An attendee observed that the
order of the access and open calls

was built into the assumptions of
the attack and asked what would
happen if the order was random-
ized. Sastry deftly advanced to a
backup slide that described the
attack on a randomized k-race
using system call distinguishers. He
explained that the information on
the system call being made can be
gathered from the process ID under
the /proc file system. Another
attendee noted that having deep
directories of hundreds or thou-
sands of directories for the attack
might be detected as unusual
behavior. Sastry reported that while
mazes of size 800 were used in the
attacks, he speculated that much
smaller mazes of 10 or 20 might
work if an effective strategy for
flushing the buffer cache at the
same time was used.

Building an Application-Aware IPSec
Policy System

Heng Yin and Haining Wang, College of
William and Mary

Heng Yin began his presentation
by describing the security benefits
of IPSec, but noted the failing that
the transport mode of IPSec is not
widely used because of the lack of
PKI deployment and poor applica-
tion support. The IPSec policy
support lacked knowledge about
application context, disallowing
fine-grained policy that might be
needed by applications such as
peer-to-peer systems that deal with
unpredictable remote hosts and
dynamic port usage. Additionally,
the application API support of
IPSec is inferior compared to the
more popular SSL/TLS.

The authors addressed these weak-
nesses of IPSec by creating an
application-aware IPSec policy sys-
tem, and they implemented it on a
Linux 2.6 system. Evaluation of the
system revealed that IPSec could
counter network-level attacks such
as SYN flooding using fewer CPU
cycles than other mechanisms such
as SYN cookies. The authors also
secured the FTP protocol with an
IPSec policy to provide privacy for

86 ; L O G I N : V O L . 3 0 , N O . 6

the communications, and they
observed that files could be trans-
ferred faster under the secured FTP
than with sftp, a protocol secured
at the application level.

Shredding Your Garbage: Reducing
Data Lifetime Through Secure
Deallocation

Jim Chow, Ben Pfaff, Tal Garfinkel, and
Mendel Rosenblum, Stanford University

Jim Chow began his presentation
by posing the following rhetorical
question: How good are computers
at keeping secrets? To gauge the
lifetime of data in a computer’s
memory, the authors ran a small
program that filled several mega-
bytes of memory with markers,
then freed it. They then continued
to use their machines normally. At
the end of each day, they would
observe the memory contents. Sur-
prisingly, they were able to recover
kilobytes to megabytes of data,
weeks afterward, even after the
machines were rebooted.

Chow noted that good application
programmers may remember to
properly overwrite memory that
may have contained sensitive data.
However, he argued that protecting
sensitive data is a whole-system
property, since data in memory may
be copied by the system to many
different buffers or flushed to a
swapfile on disk. To remedy this,
the authors propose secure deallo-
cation of the memory by explicitly
clearing the contents of any mem-
ory whenever it is freed by the sys-
tem. Chow reported that such a
system incurred 0–7% performance
overhead even in the worst cases.
He explained this minimal over-
head was because while data would
be free in kilobytes or megabytes
per second, the system could zero
out memory in gigabytes per sec-
ond.

The talk was followed by a lively
Q&A session. An attendee asked if
the authors had looked at the
latency overhead of their system.
Chow replied that the paper did
not specifically address latency, but

noted that applications didn’t nor-
mally batch free operations, so the
overhead was spread out. Another
attendee noticed that some bench-
marks reportedly ran faster with
the secure deallocation system,
which Chow attributed to noise in
the benchmarks since overheads
were very small. When asked about
the half-life of data in their mark-
ing experiment, Chow said that it
was very short, within seconds, but
the time to live for some bits were
very long. An attendee wondered if
the experiments demonstrated that
the buffer caches on the tested
operating systems were inefficient,
since the unified virtual memory
should have allowed the regular
memory to be used for buffering
I/O. Chow explained that holes in
the pages used were responsible for
allowing data to survive usage by
the buffer cache. While pages were
reused and reclaimed, they were
not completely overwritten in the
process.

Invited Talk

Six Lightning Talks (and a long one)

Ben Laurie, The Bunker

Summarized by Stefan Kelm

Ben opened his remarks by admit-
ting that he thought he’d have to
give a one-hour presentation until
he was told that his session would
cover 90 minutes. He therefore
added some topics and changed the
title of his talk from “Four Light-
ning Talks.” (Ben impressed the
audience with some extremely
fancy animations throughout his
talk, most of which he apparently
hadn’t seen before himself.)

Ben delved into the first of his six
(plus one) topics: “Why open
source vendors are bad for secu-
rity.” He argued that vendors of
open source software often cause
security problems because they
change default installation directo-
ries, split software packages, fail to
change version numbers correctly,
and sometimes even introduce

security flaws during packaging.
This in turn makes it hard for the
user or administrator to apply secu-
rity patches. Ben stated that ven-
dors create the myth that they are
needed for reliability, which, in his
opinion, is not true. Ben then
talked about the much-discussed
issue of full disclosure and argued
that the role of coordinating bodies
such as CERT or NISCC in practice
is reduced to protecting their stake-
holders. With respect to the open
source vendors the solution he pro-
posed was that “packagers should
make themselves redundant.”

His next topic was on an almost
ancient rule of thumb, first defined
in RFC 760: “An implementation
should be conservative in its send-
ing behavior and liberal in its
receiving behavior.” He gave some
examples of servers which, in his
opinion, are way too liberal in what
they accept as an incoming connec-
tion. He cited HTTP Request Smug-
gling, a real-life attack scenario that
has not garnered much public dis-
cussion. He concluded that being
liberal in what a server accepts is
bad for security.

DNSSec, which Ben covered next,
has been in the IETF standards for
quite some time but is not being
used by anyone, due to several
(mostly organizational) problems.
Ben described some of those prob-
lems: the size of DNSSec packets,
islands of trust, the key-rollover
problem, and issuing DNSSec-
secured negative responses without
allowing what is called “zone walk-
ing” DNS servers. He pointed out
solutions to those problems, even
though some of them remain in the
standards.

Next, Ben discussed privacy-
enhanced identity management
(PEIM) and a library he and a col-
league are currently writing to
implement a bit-commitment
scheme which is related to zero-
knowledge (ZK) proofs. As an
example, he mentioned the infa-
mous “Where’s Waldo?” question
in which I want to prove I know

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 87

where Waldo is without revealing
Waldo’s location. The library
they’re writing implements several
ZK proofs and provides low-level
functions to do the necessary
crypto operations, but no protocols.

Ben moved to his next sub-talk, the
focus of which was an OpenPGP
SDK he is currently writing. The
SDK will be a BSD-licensed free C
implementation of OpenPGP
which aims to be complete, flexi-
ble, storage agnostic, protocol
agnostic, and correct (in contrast to
being too liberal, as proposed in
RFC 760). Since an end-user appli-
cation already exists with gpg, all
they’ll be providing is a library, not
an application.

Before starting with his “real” talk,
Ben briefly discussed anonymous
presence, another solution to
secretly communicating with oth-
ers. In this example a so-called
“rendezvous server” allows Alice
(who else?) to rendezvous with
(guess who) Bob. The two main
objectives are that Alice doesn’t
want anyone to know she’s talking
to Bob, and Alice and Bob don’t
want their conversations to be
linked, even in the presence of a
global passive adversary. Even
though the rendezvous server is
not regarded as trusted, the proto-
col allows for these goals to be
achieved. Apres, an anonymous-
presence implementation, is a Perl
library written by Ben and imple-
mented for plain TCP and IRC.

After these short talks Ben tried to
squeeze his remaining “long talk”
into the final minutes but failed
to do so. His final talk was on
another implementation of his
called CaPerl, which implements
capabilities in the Perl program-
ming language. If one wants to run
possibly hostile code safely, tradi-
tional approaches such as sand-
boxes and jails often fail for several
reasons: they often are either too
restrictive or too lax; moreover,
there’s no easy way to specify access
to a file by a certain program while

disallowing access by any other
program.

A solution to this problem is capa-
bilities (not to be confused with
POSIX capabilities), nicely de-
scribed by Ben as “an opaque thing
that represents the ability to do
something.” Using capabilities, an
environment can choose exactly
what the visiting code can do. He
went on to talk about how to
implement capabilities in different
programming languages and,
finally, presented CaPerl, his “sur-
prisingly small” implementation:
CaPerl is able to convert standard
Perl into a capabilities language,
and it compiles into standard Perl,
the main modification being the
introduction of trusted vs. un-
trusted code within CaPerl. (Ben’s
explanation of trusted vs. untrusted
code was way too short, so the
interested user should check both
his slides and his Web site for fur-
ther information.) On using CaPerl
the output is Perl, which one runs
the normal way, with the CaPerl
libraries in the path.

For more information, have a look
at Ben’s home page at http://www
.apache-ssl.org/ben.html.

Work-in-Progress Reports

Summarized by Jonathon Duerig

The Program Counter Security Model:
Automatic Detection and Removal of
Control-Flow Side Channel Attacks

David Molnar, Matt Piotrowski, David
Schultz, and David Wagner

In a regular cryptographic attack
model, the adversary has access to
a box with a key and an arbitrary
mechanism. The adversary sees
output given known inputs. In the
real world, other characteristics can
be used, such as time or power
usage. This WiP is about prevent-
ing attacks based on side channels
that leak control flow information.
Suppose that the adversary can
track the program counter as a
given algorithm is executed. Given

this model, a system is secure if the
adversary learns nothing in spite of
this extra information. The authors
are developing a system to auto-
matically detect and fix algorithms
(in C) that are insecure in the face
of a leaked program counter. The
cost of modifying an algorithm to
resist an attack using the program
counter is a fivefold increase in
time and a twofold increase in
space. They are also developing a
static analyzer for assembler code
based on taint. This can detect
insecurities introduced by an opti-
mizing compiler.

Implementing N-Variant Systems

Benjamin Cox, University of Virginia

Benjamin Cox is developing a sys-
tem to protect vulnerable Web ser-
vices. An input replicator splits
input from the user to several vari-
ants of a Web server. These variants
are artificially diverse, running in
disjoint address spaces and with
potentially different instruction
sets. A monitor detects when sys-
tem call parameters disagree and
shuts all Web servers down if they
do. A simultaneous attack is
required to compromise the system
as a whole, and the artificial diver-
sity makes simultaneity more diffi-
cult. He has thwarted an attack on
a vulnerable Web server (a format
string attack). Open questions
remain: What kinds of variations
work well? What kinds of classes of
attacks can we prevent? Can the
system perform acceptably? There
are two current problems with the
system. First, some input and out-
put can be done without resorting
to system calls. The monitor may
therefore be bypassed by such
methods. Second, while the server
is harder to compromise, it is easier
to kill. The long-term goal is to get
some provable security that doesn’t
rely on secrets: for instance, a sys-
tem where even if the variations
were known, the system would still
be secure.

88 ; L O G I N : V O L . 3 0 , N O . 6

Effortless Secure Enrollment for Wire-
less Networks Using Location-Limited
Channels

Jeff Shirley, University of Virginia

How do you enroll temporary users
into wireless networks? Such a sys-
tem must be easy and provide
mutual authentication, ensuring
that the enrollee is an authorized
user and that the wireless network
is trusted. The solution is location-
limited channels. The author pro-
poses audio tones as such a chan-
nel. It is human-evident, the range
is limited, and it is available on all
systems. Previously authorized
users act as intermediaries. They
verify through the audio property
that the authorized new users are at
the same place. This leverages the
relationship between the current
user and the prospective user. The
author has a working implementa-
tion. There are several open issues:
How should the client software be
distributed? How can interoper-
ability be ensured? Can the reliabil-
ity and transmission speed of the
channel be improved?

Revamping Security Patching with
Virtual Patches

Gautam Altekar, University of
California, Berkeley

Patching is ineffective because it is
unreliable, disruptive, and irre-
versible. There is no extant work
that addresses all of these issues.
Many kinds of patches have two
basic parts: a check and a fix. The
check is a test added to the original
code to determine if the vulnera-
bility will be triggered. The fix is
the code to handle the anomalous
situation. The author presents the
notion of a virtual patch, where the
developer denotes which part of
the patch is the check and which
part is the fix. The check is sand-
boxed to prevent a side effect from
affecting the rest of the program
unless the vulnerability is trig-
gered. Each check and fix can be
represented as a nested C function.
Much of the overhead can be opti-
mized away. Virtual patches are

nondisruptive, because they are
simple additions to the program
and can be inserted dynamically.
The limitation is that the program-
mer must explicitly annotate the
code to indicate which part of the
patch is the check and which part
is the fix. Is there a virtual patch
that is equivalent to any conven-
tional one? If so, conversion is pos-
sible. Given a patch for some bug,
is there some way to change the
behavior of the program to allow a
single check and fix?

Automatically Hardening Web
Applications Using Precise Tainting

Salvatore Guarnieri, University of
Virginia

The goal of the system is to prevent
PHP and SQL injection attacks. An
example of the relevance of this
problem is the recent attack on
phpBB which was based on PHP
injection. The problem was that
the programmer called “http-
decode” one too many times. This
allowed code to be inserted. The
solution is to insert a dynamic fine-
grained taint analysis. All user-sup-
plied data is marked as dangerous.
Taint is determined on a character
granularity rather than the coarser-
grained string granularity. The sys-
tem is implemented in PHP. It mod-
ifies taint info in the same way that
the string is modified. It prevents
tainted data from being used for
system state. The system detects
what the tainted information will
be interpreted as. Dangerous
tokens, such as unexpected delim-
iters, can be detected. Server
administrators can install this sys-
tem merely by switching the ver-
sion. Application developers need
do nothing.

Automatic IP Address Assignment for
Efficient, Correct Firewalls

Jonathon Duerig, Robert Ricci, John
Byers, and Jay Lepreau

Having worked on optimizing the
assignment of IP addresses to nodes
in a network so as to minimize the
size of routing tables, the authors
are now looking at extending this

work into minimizing firewall rule
sets. Firewalls typically match IP
addresses using subnets, but this
approach scales poorly if the sets of
hosts that are protected by a partic-
ular firewall rule have discontinu-
ous subnets. In addition to effi-
ciency concerns, this produces
correctness problems. The more
firewall rules there are, the more
likely it is that one of them is incor-
rect (i.e., does not express the
desired policy). Given a complex
topology with a large number of
hosts and policies, an organization
can end up with a huge number of
rules. The authors’ work on rout-
ing-table minimization uses a met-
ric called Routing Equivalent Sets
(RES), which quantifies the extent
to which routes to sets of destina-
tions can be aggregated. Using this
metric, they achieve a two- or
threefold decrease in the number
of routes. There are two basic
approaches to adapting RES to fire-
wall rule sets, depending on how
much information is supplied. If
the only information is the firewall
locations as annotations, then
when evaluating RES, count only
the firewalls. If the firewall rule sets
are also provided, then the algo-
rithm can assign addresses using
sets of nodes covered by a common
policy. Both of these approaches
look promising, but need to be
evaluated.

Turtle: Safe and Private Data Sharing

Bogdan C. Popescu, Bruno Crispo, and
Andrew S. Tanenbaum, Vrije Univer-
siteit, Amsterdam, The Netherlands;
Petr Matejka, Charles University,
Prague, Czech Republic

The goal of Turtle is to use a peer-
to-peer network for safe sharing
of sensitive data which cannot be
censored by an adversary. The best
current example of this kind of sys-
tem is Freenet, but even it fails to
provide complete protection. The
connectivity model is open and
good nodes can interact with cen-
sored nodes when exchanging data.
When a good node is so exposed,
the owner of the good node is open

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 89

90 ; L O G I N : V O L . 3 0 , N O . 6

to legal harassment. Turtle creates
a peer-to-peer overlay network
based on social links. Communica-
tion between links is encrypted.
The key distribution must be com-
pletely decentralized, and messages
must go hop by hop across the
overlay network. To start a virtual
connection, flood query is used to
find the endpoint. Only parties that
trust each other communicate.
There is no direct link between the
source and the destination of the
virtual circuit. This means that
even if the destination is compro-
mised, there is no way to find out
which node the source is and vice
versa. Though node compromises
cause only local damage and this
system is immune to Sibyl attacks,
the system is still susceptible to a
subpoena attack.

Towards an Online Flow-Level Anom-
aly/Intrusion Detection System for
High-Speed Networks

Yan Chen, Northwestern University

Most intrusion detection systems
are end-host-based. Rapidly and
accurately identifying attacks is
critical for large network operators.
Therefore the author proposes a
system which detects network
anomalies at the routers. The sys-
tem stores data-streaming compu-
tation in reversible sketches. This
allows millions of flows to be
recorded. So far, the author has
focused on TCP SYN scanning.
Existing schemes for detection
have high false-positive rates. The
system infers key characteristics of
malicious flows for mitigation. This
is the first flow-level intrusion
detection system that can sustain
tens of gigabytes per second. The
input streams are summarized and
values are forecast for the next
intervals. If the incoming value is
different from the forecast, then an
anomaly has been detected. This
was evaluated on 239 million hosts
with worst-case traffic.

Mitigating DoS Through Basic TPM
Operations

William Enck, SIIS Lab, Penn State
University

Denial of service (DoS) attacks are
an ever-increasing problem. One
way of avoiding DoS attacks is by
requiring clients to solve computa-
tional puzzles, which slows down
the rate at which a client can make
requests. There is an inherent un-
fairness about this system because
some computers are orders of mag-
nitude more efficient than others.
One way to level the playing field
is by requiring the puzzles to be
calculated by the Trusted Platform
Module (TPM), the hardware
processor behind trusted com-
puting. There are fundamental
characteristics of the TPM: access-
ing it is slow and it cannot execute
arbitrary code. This slow access can
be used as a rate limiter. The puz-
zle that the client must solve can
involve accessing the TPM a certain
number of times. This would pro-
vide a constant delay. TPMs will be
ubiquitous; therefore they can be
used as an efficient and effective
resource limit.

PorKI: Making PKI Portable in
Enterprise Environments

Sara Sinclair and Sean Smith,
Dartmouth College PKI/Trust Lab

The goal of PorKI is to attack the
problem of usability in public key
infrastructures. Users need their
keys to be portable. Whether they
actually move from one computer
to another or whether they are run-
ning a number of virtual machines
on the same physical workstation,
they want to use their standard key
pairs everywhere. One solution is
to have a key dongle, but these
require special software. PorKI puts
the key pairs on a Palm Pilot and
transfers them via Bluetooth
(though they do not rely on the
Bluetooth security model). The
Palm Pilots can generate short-
lived keys and these can interact
with keys on the workstations

themselves. The information can be
used to customize the user experi-
ence, for instance by not authenti-
cating sensitive data on a public
computer (notifying the user
appropriately). Some trust informa-
tion can be stored in the machine
without requiring user effort. There
are many other applications. Open
issues include protecting the key
repository, finding a good way to
establish trust between the work-
station and the PDA, and extending
the key-transfer protocol beyond
Bluetooth.

DETER

Terry V. Benzel, University of Southern
California

In the past, most network security
research has been done in small or
isolated labs. DETER aims to pro-
vide more objective, scientific, and
reproducible measurements.
DETER provides a secure infra-
structure with networks, tools,
methodologies, and supporting
processes, plus reusable libraries
for conducting realistic experi-
ments. It takes concepts from sci-
ence and math where results are
reproducible. DETER, which is
accessible over the wide area net-
work, also allows canned topolo-
gies and attacks, and quick runs of
different experiments. Based on
Emulab, DETER has 201 nodes of
four different types. It contains a
control plane and various types of
PCs and switches. Each node can
run virtualized. Clients can run
FreeBSD and Linux, and soon will
be able to run Windows. DETER is
hosting an upcoming workshop.
More information about DETER
and the workshop can be found at
http://www.isi.edu/deter/.

Minimizing the TCB

David Lie, University of Toronto

The Trusted Computing Base
(TCB) is the group of components
of a system that a segment of code
must trust to function correctly and
securely. The operating system,

libraries, and other applications are
all part of the TCB. For most sys-
tems the TCB is millions of lines of
code. The author shows how to
minimize the TCB for a particular
security-critical section of code. He
does this by running that piece of
code in its own virtual machine
with a custom operating system.
Since the operating system is sin-
gle-threaded and need not optimize
heavily, it can be much simpler
than a general-purpose operating
system. This can reduce the size of
the TCB from millions of lines of
code to around ten thousand. At
that scale, it becomes feasible to
run static analysis tools and gain
even more confidence in the cor-
rectness of the code. The security-
critical section can even be imple-
mented in a safer language. The
only remaining issue is that the
developer has to select the portion
of the program that is security-criti-
cal, which may be nontrivial.

Strider HoneyMonkeys: Active Client-
Side Honeypots for Finding Web Sites
That Exploit Browser Vulnerabilities

Yi-Ming Wang, Microsoft Research
(Strider Research Group)

A user visits a URL with a Web
browser. Since Web sites can
transparently redirect the browser,
a malicious URL can send the
browser to many different interme-
diate URLs. Each intermediate URL
can try a different exploit on the
browser. HoneyMonkeys are pro-
grams that emulate a human using
a browser. They seek out Web sites

with various versions of the
browser software, trying to get
infected. A HoneyMonkey is inside
a virtual machine for quick reset
after an infection. Infections are
detected because their payload
compromises the host by modify-
ing the registry or the file system.
HoneyMonkeys use previously
developed software (Strider Gate-
keeper and Strider Ghostbuster) to
determine whether the payload has
been delivered. HoneyMonkeys
detect the payload rather than the
vulnerability. This means that they
can detect an exploit even if the
vulnerability is unknown (zero
day). Several versions of the
browser are used: an unpatched
version to detect all malicious
URLs, partially patched versions
to detect how effective patching is,
and fully patched versions to detect
zero-day exploits. The HoneyMon-
key crawls when it detects a site
with many exploits. Malicious sites
tend to be well connected with
each other. The sites that host the
original URLs redirect to the spy-
ware sites who pay them. Informa-
tion is frequently stored in the
redirected URLs, including vulner-
ability names and account names.
Many malicious sites are among
the top click-through links from a
search engine. They are most likely
to occur on sites about celebrities,
game cheats, song lyrics, and wall-
paper. Because HoneyMonkeys
detect zero-day exploits, they can
be used to discourage such ex-
ploits.

Making Intrusion Detection Systems
Interactive and Collaborative

Scott Campbell and Steve Chan,
Lawrence Berkeley National Laboratory,
NERSC

Most open source applications are
controlled by text configuration
files. They are often non-interac-
tive. This applies to security moni-
toring response software as well.
The lack of interactivity makes
adaptive changes more difficult and
makes it much harder to teach or
train new operators to use them.
The presented work improves upon
Bro, a stateful network intrusion
detection system, in two ways.
First, the authors added an interac-
tive command line interface to it.
This allowed state, such as memory
or CPU usage, or host characteris-
tics to be queried. It also enabled,
among other things, additional
monitoring of particular connec-
tions. Second, they turned the com-
mand line interface into a Jabber
bot. The system can be monitored
and controlled through an instant
messenger conference. This allows
many interactive sessions to be run
simultaneously. Each bot can join
the same conference and be con-
trolled and monitored in tandem.
Logs can be saved easily in any chat
program. New operators can
observe firsthand the interactions
of more experienced administra-
tors. This also allows the network
intrusion detection system to be
run easily from anywhere using any
Jabber client.

; LO G I N : D E C E M B E R 2 0 0 5 S U M M A R I E S : 1 4 TH U S E N I X S E C U R IT Y SYM P O S I U M 91

