

A Survey of Current Android Attacks

Timothy Vidas
ECE/CyLab
Carnegie Mellon
University

Daniel Votipka
INI/CyLab
Carnegie Mellon
University

Nicolas Christin INI/CyLab Carnegie Mellon University

Outline

- Introduction
- Android Security Model
- Security Model Analysis
- Attack Taxonomy
- Possible Mitigations

Introduction

- Adoption of smartphones has increased
 - Nearly 50% of cell phones sold are smartphones
- Ubiquity of the market
- Devices are faster, more connected, and always on
- Smartphones hold sensitive user information
 - Banking Information
 - Current Location

Introduction

- Major smartphones use a managed model of service
 - Google and Carrier control administration
- Closer to corporate-managed devices than personal machines
 - Managers control security instead of user

Android Security Model

- Android was designed with security in mind
- Sandboxes applications
 - Apps can only access their own data
 - Apps divided through privilege separation
- System resources accessed through permissions

Permission Model

- Applications require explicit permission from users at install time
- Intended to prevent unwanted access to user data

Android Market

- Un-moderated Market
- Users flag applications
- Remote Kill

Security Model Analysis

Android Permissions

- Hard for user to understand
 - ACCESS_SURFACE_FLICKER and BIND_APPWIDGET
- Permissions can be too general
- Unexpected consequences

RECEIVE_SMS

Malicious apps can take advantage of permissions

RECEIVE_SMS

Malicious apps can take advantage of

permissions

Patch Cycle

Patch Cycle

Patch Cycle

- Attacks stay viable longer
- Attackers can build exploits through analysis of early updating devices

Trusted USB Connection

- Android Debug Bridge (ADB) developer tool
 - Gives access to interactive shell
 - Allows developer to push applications directly to the device
- ADB doesn't require authentication
- Attacker can use ADB to bypass Android Market

Recovery Mode

- Circumvents standard boot partition
- Allows user to recover from "bricked" phone
- Attacker can use to install malicious image

Uniform Privilege Separation

- Security tools typically require root access
- Android restricts all apps the same

Attack Classes

Unprivileged Access

Operate within the permission system

Unprivileged Access

- pjapps (aka Andr)
- Geinimi
- FakePlayer
- DroidDream
- Bgserv
- Ggtracker
- Hipposms
- YZHCSMS
- HTCFakepatch

- GoldDream
- DroidKungFu
- DroidKungFu2
- jSMSHider
- BaseBridge
- DroidDreamLight
- EndOfDays
- Zsone
- zitmo (aka zues)

Remote Exploitation

RootStrap Attack*

Remote Exploitation

- Legitimate Rooting Applications
- WebKit Vulnerabilities*

Physical Access With ADB Enabled

Physical Access with ADB Enabled

- Super One-Click desktop application
- Minimal device modification
 - Hard for non-rooted devices to detect

Recovery Mode

- Create a custom recovery image to gain root access
- Bypass authentication by using the recovery mode

Recovery Mode

- Does not rely on a kernel exploit
- Large footprint, but simple to cover your tracks

Possible Mitigations

Reduce Patch Cycle Length

- Google produces patches relatively quickly
- Separate manufacturer modifications from core of Android

Adjusted Permission Model

Hierarchical permissions

Would require a re-structuring of the permission model

Barrera et al, In ACM Conference on Computer and Communications Security, 2010

Adjusted Permission Model

Check requested rules for possible malicious combinations

Enck et al, In ACM Conference on Computer and Communications Security, 2009

Adjusted Application Privilege

- Two classes of applications:
 - Standard Applications Same privileges and rights as current apps.
 - 2. Privileged Applications Root privileges, but must under-go a moderated review before publication
- Allows the user to trust some apps that watch the others

Leverage Existing Technology

- Port operating system concepts such as SELinux, ASLR, or Firewalls to the Android kernel.
- Implement something similar to TaintDroid* framework to give real-time information on permission usage
- Processing costs must be considered

Additional Authentication

- Require user credentials to install an Application
 - Currently done on the iPhone
- Require authentication for ADB tool
 - Removes backdoor around locking mechanism

Trusted Platform Module

- Provides ground truth for device security
- Mitigates recovery image attack

Conclusion

100M Android Devices sold

500,000 devices activated every day

Conclusion

100M Android Devices sold

500,000 devices activated every day

