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Abstract

Moving device virtualization from the virtual machine
monitor (VMM) to the devices improves virtual-machine
performance significantly, but it requires support from
the devices. PCI and PCI Express (PCIe) devices can
provide VMs with direct and secure I/O through the use
of multiple functions per card, but at significant cost and
inflexibility. One solution to help reduce the costs is the
PCIe SR-IOV standard, which introduces lightweight,
virtual PCIe functions.

We are currently developing a highly configurable
and programmable PCIe networking device which can
change its behavior at runtime and which can provide
a number of different types of device functions to the
host system (e.g., standard NIC, specialized packet cap-
turing devices, or crypto offload engines). We have found
the PCIe SR-IOV standard to be too inflexible to support
these types of devices, primarily due to its mechanism
for configuring virtual functions.

In this paper we propose an alternative approach
which does not require additional silicon and provides
significantly higher flexibility than SR-IOV. We achieve
this by delegating enumeration and configuration of
“software configurable virtual functions” to the main de-
vice driver for the device. Our solution is compatible
with the higher layers of the PCI device stack of modern
operating systems and hypervisors so that we can lever-
age all the existing mechanisms for hot-plugging, discov-
ering devices, loading device drivers, and assigning PCI
devices to virtual machines (including providing DMA
isolation with IO-MMUs). We present details of a proto-
type implementation for Linux and Xen.

1 Introduction

I/O virtualization, especially for network devices, incurs
significant overheads when performed in software, re-
sulting in lower performance or significantly higher re-
source utilization [21, 14, 20]. We observe three key

technologies which help to reduce these overheads:

1. Self-virtualizing devices are being developed which
move virtualization logic from the VMM to the de-
vice [9, 5, 6, 12, 25, 19]. In the case of network-
ing they typically perform some form of filtering or
even simple Ethernet bridging to de-multiplex in-
coming traffic to a number of queues, or host end-
points.

2. Several hypervisors allow PCI device functions to
be assigned to different virtual machines by vir-
tualizing the PCI configuration space and by giv-
ing VMs limited access to parts of the IO address
space [13, 11, 7].

3. While a hypervisor can restrict which physical re-
sources a VM has direct access to, it requires ad-
vanced IO-MMUs to protect and isolate the host and
VMs from arbitrary accesses from the device [10, 4,
1, 2, 24]. Contemporary chipsets typically include
such IO-MMUs, which determine based on a device
function’s PCI ID which host resources the device
function has access to.

To tie these three technologies together the host end-
points of self-virtualizing devices need to appear as dis-
tinct PCI device functions to both the hypervisor and the
IO-MMU. This allows the hypervisor to manage the end-
points using its standard mechanism and setup IO-MMU
protection to isolate the host from devices.

SR-IOV [17] is one such mechanism to associate de-
vice endpoints with PCI function IDs. It provides an
extension to the PCI configuration space enabling the
enumeration of relatively lightweight virtual functions
which share some configuration information with the
physical function representing the actual device. Self-
virtualizing devices with SR-IOV support represent their
endpoints as virtual functions in the extended PCI con-
figuration space.

In this paper we propose an alternative mechanism to
associate device endpoints with PCI IDs. Our approach
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is motivated by a highly flexible and configurable net-
work processing device which we are currently develop-
ing. SR-IOV proved to be too inflexible to support such a
device and was relatively immature when we started de-
veloping the device. We make use of most of the PCIe
features SR-IOV utilizes, however we require less sup-
port from the PCI device as host endpoint enumeration
is performed in software (and not by the device). We
call these host endpoints software configurable virtual
functions and their enumeration is performed in a man-
ner compatible with and transparent to the host OSes and
hypervisors.

In the next section we briefly review SR-IOV and re-
lated PCIe technologies and motivate the need for a more
flexible mechanism. We also recap PCI device function
assignment in hypervisors. In Section 3 we provide de-
tails on our alternative approach and in Section 4 we
briefly describe our implementation for Linux and Xen.

2 Background

2.1 SR-IOV and PCI Express

PCIe already provides a variety of technologies which
SR-IOV builds upon. Standard PCI allows up to eight ad-
dressable physical functions per device (so-called multi-
function devices). The Alternative Routing-ID Inter-
pretation (ARI) [16] extends the number of addressable
functions per device to 256 by merging the device and
function ID bits in the PCI Requester ID to a single en-
tity (the device ID is assumed to be 0).

SR-IOV also builds on the Address Translation Ser-
vices [18], which provide an interface to a chipset’s Ad-
dress Translation and Protection Table (ATPT viz. IO-
MMU) to translate DMA addresses to host addresses and
defines a Address Translation Cache (ATC) for devices to
cache these DMA translations.

Further relevant PCIe technologies are MSI-X for pro-
viding a large number of interrupts that can target differ-
ent cores, interrupt remapping, access control services
(ACS), and function-level reset (FLR).

SR-IOV builds upon these existing technologies by
adding configuration and management of light weight
virtual functions [17]. A physical device may have one or
more physical functions (PFs), each of which may pro-
vide several virtual functions (VFs). A VF has a signif-
icantly simplified configuration space. All VFs associ-
ated with a PF share the device type of the PF, however,
host software can largely treat them as normal PCI func-
tions. For example, if a hypervisor allows assignment of
PCI functions to VMs, it should be able to assign VFs to
VMs without major modifications, including setting up
IO-MMUs.

A simple SR-IOV device only provides a single PF
through which its VFs are managed. We are developing
a highly programmable and configurable network pro-
cessing device which exposes a large number (currently
64) of endpoints to the host. We are currently develop-
ing endpoints which act as normal network interfaces,
specialized network interfaces tuned for packet captur-
ing, and different crypto endpoints. The type of a given
host endpoint can be controlled by software and can be
changed dynamically at runtime.

A simple SR-IOV device is not suitable to support
such a device since all VFs have to have the same type
as the PF they are associated with. From a host software
perspective this means that the same device driver will be
loaded for all VFs. With host endpoints of the diversity
we are developing this is not feasible. An SR-IOV de-
vice with several PFs, e.g., one per endpoint type, would
be able to accommodate the diversity of endpoints but
would significantly increase the complexity of the device
itself and the control software on the host. Further, it is
unclear from the specification if SR-IOV allows moving
VFs between PFs on the same device, i.e., to change the
type of a host endpoint, and how complex such an oper-
ation would be. Enabling such support would certainly
increase device complexity further.

In the Section 3 we describe an alternative approach
which builds very much on the same PCIe technologies
as SR-IOV, but provides more flexibility, satisfying the
requirements for highly configurable devices. Our ap-
proach requires less support on the device itself. This
flexibility is mainly achieved by looking at device vir-
tualization from host software perspective, which we
briefly recap next.

2.2 OS Support and PCI Device Assign-
ment

In a typical system, an OS probes a bus to discover the
peripherals installed in the machine, and uses a device-
neutral algorithm to identify the devices for loading their
respective drivers. PCI provides this via a configuration
space that each PCI function participates within. Device
probing may be repeated at run-time if the OS and bus
support hot-plugging of devices.

In a virtual environment, a privileged entity, e.g., the
hypervisor, a host OS for hosted VMMs [8], or a service
OS like Xen’s Dom0 [7], performs the device discovery.
We refer to this entity as OS/hypervisor in the remainder
of the paper to accommodate native OS execution and
the different virtualization environments.

Hypervisors which support assigning PCI functions to
VMs have to provide a virtual PCI (vPCI) bus for each
VM so that the guest OS in the VM can discover the
assigned PCI devices. Typically the following steps are
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performed:

1. A device is chosen from the PCI bus to be assigned
to a VM.

2. The OS/hypervisor arranges for the device’s inter-
rupts to be forwarded to the VM.

3. The OS/hypervisor configures the IO-MMU to per-
mit the device to access the VM’s memory.

4. The OS/hypervisor attaches the device to a VM’s
vPCI bus.

5. The guest OS discovers the device on its vPCI bus,
and loads the device’s PCI driver.

The OS/hypervisor has to intercept all PCI configura-
tion space accesses by the guest OS to the assigned de-
vice’s configuration space as these represent privileged
operations. Most of these access are typically passed
through directly to the real configuration space, however,
some accesses need to be emulated and modified.

3 Software Configurable VFs
For software configurable virtual functions we borrow
heavily from the mechanisms used by a OS/hypervisor
to assign physical PCI functions to VMs. As pointed out
in the introduction, the endpoints of self-virtualizing de-
vices need to appear to both the hypervisor and the IO-
MMU as distinct PCI functions to enable safe hardware
based I/O virtualization. SR-IOV achieves this by enu-
merating virtual functions within the device’s configura-
tion space.

Just like SR-IOV’s PFs, in our approach a physical
PCIe device offers one master or control function which
manages a number of virtual functions. The control func-
tion is a real PCIe function implemented on the device
with its own PCI configuration space and IO resources.
However, virtual functions in our approach are only par-
tially implemented on the device: they have device func-
tionality, such as DMA and I/O registers, but they lack
the PCI configuration records. Thus the virtual func-
tions are initially hidden from the OS/hypervisor bus-
probing logic. We call these virtual functions software
configurable virtual functions to distinguish them from
SR-IOVs hardware based VFs.

Probing of software configurable virtual functions is
deferred until the OS/hypervisor has loaded the device
driver for the control function. Once this control driver
has been loaded, it assists the OS/hypervisor to enumer-
ate the virtual functions. The control driver first ini-
tializes the device, optionally loading a firmware image.
It then probes the device to discover configured virtual

functions. Note that this discovery process is device spe-
cific and can be implemented in a manner suitable for
the device. Finally, the control driver activates a vir-
tual configuration space in which the virtual functions
are enumerated. To the OS/hypervisor the virtual func-
tions appear on the same bus as the control function and
the OS/hypervisor can probe them using its existing PCI
probe logic. Since the virtual configuration space is man-
aged by the control driver it can place arbitrary virtual de-
vice functions in the configuration space, including func-
tions with different device and vendor IDs as well as de-
vice types. This provides significantly more flexibility
than SR-IOV’s VF enumeration.

The virtual configuration space is a software repre-
sentation of a standard PCI configuration space. The
way it is activated is OS/hypervisor specific. However,
most OSes provide either hooks for different PCI probing
functions or a framework for implementing bus drivers,
which is what some hypervisors exploit to implement
the vPCI bus used to provide device assignment to VMs.
The control driver may utilize the same hooks to activate
the virtual configuration space. Once the OS/hypervisor
can enumerate virtual functions it can apply its stan-
dard mechanisms for device assignment provided that the
physical device and virtual functions behave in a certain
way. We discuss the details in the following sections.

3.1 Real Device Behavior
Although the software configurable virtual functions lack
physical configuration spaces, they still have to partic-
ipate on the PCIe bus: they need to receive memory-
mapped read and write operations, they need to initiate
and terminate DMA requests, and they need to raise in-
terrupts.

Read and Write Operations: We use I/O memory ad-
dresses to correlate read/write requests with virtual func-
tions. The memory-mapped region of the physical device
function is divided into page-aligned blocks assigned to
the virtual functions. Since they are page-aligned, they
can be assigned to separate VMs while preserving iso-
lation. The host driver assigns the appropriate blocks to
the virtual configuration spaces of the virtual functions,
so that the OS can make those regions available to the
drivers. The PCIe logic block on the card uses the ad-
dress of the PCIe read/write operation to determine the
target virtual function.

DMA: For DMA isolation, each virtual function needs
a different PCIe routing number (i.e., a PCI requester-id),
so that the OS/hypervisor can assign the virtual functions
to VMs and prohibit the DMA of one VM from accessing
the memory of another VM. Since the card initiates the
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DMA requests, it can use any function number available
to the card. PCIe permits a total of 256 function numbers
via ARI and the physical function is assigned function
number 0. Unlike SR-IOV the control driver can assign
IDs arbitrarily to virtual functions. The control driver
just needs to ensure consistency between the host side
virtual configuration space and the assignment of IDs to
virtual functions numbers on the device.

Interrupts: The control function has access to many
interrupts through the use of PCI MSI-X. The control
driver assigns the allocated interrupts to the virtual func-
tions so that each virtual function can raise different in-
terrupts. Interrupt assignment is communicated to the
host via the virtual configuration space.

3.2 Virtual Device Behavior

Each virtual function has real device resources published
to the OS through the virtual PCI configuration space.
This includes the virtual function’s memory mapped re-
gion, and its interrupt assignment. Additionally, if the
OS/hypervisor changes the configuration spaces for the
virtual functions, the control driver propagates neces-
sary changes to the device. Normally a device recon-
figures itself when it sees PCI configuration space ac-
cesses; instead, the control driver forwards the changes
via a device-specific protocol.

Memory-mapped Region: Each virtual function has
a dedicated block within the control function’s memory-
mapped region. This memory-mapped block is published
within the virtual function’s configuration space. While
it is possible for the OS/hypervisor to request the device
to relocate its memory-mapped region, the virtual func-
tion’s memory region is immutable since it must reside
within the region of the physical function.

Interrupt Assignment: Each virtual function has an
MSI interrupt assigned to it. The interrupt could be
unique or shared (sharing within a VM is preferable to
sharing across VMs). The MSI interrupt configuration
resides within the virtual configuration space for the vir-
tual function. Thus, the control driver can intercept all
MSI configuration attempts and map them to the real
MSI-X interrupt configuration1.

1Our current Xen implementation does not allow virtual function
drivers to use MSIs since in Xen the MSI configuration is not passed
through the control driver’s virtual configuration space. Instead we
configure MSI interrupt vectors in the control driver and pass the vector
to the virtual function driver via the configuration space.

4 Implementation
We have developed an implementation of software con-
figurable virtual functions for Linux and Xen [3]. Our
development is motivated by the flexibility offered by
the network processing device we are currently devel-
oping: the Netronome Flow Processor (NFP) 3200 (the
successor for the Intel IXP network processor). It is a
programmable, self-virtualizing device. The NFP 3200
provides 10-gigabit networking with typical network in-
terface card (NIC) functionality, plus offloaded nanonets
such as bridging for inter-VM communication, flow clas-
sification, routing, firewalling, etc. Additionally, the de-
vice can change virtual functions on the fly, e.g., pro-
viding an arbitrary mix of NICs, cryptography offload
units, network bridges, and other device behavior. Thus
the hardware requires the flexibility provided by the soft-
ware configurable virtual functions outlined above.

4.1 Linux and Xen Device Models
Linux represents each device with an in-kernel abstrac-
tion, struct device, and a user-visible file-system ab-
straction, sysfs. The sysfs abstraction permits the
user to configure or query the device. It also permits the
user to unbind a device from one driver and to bind it to
another.

Xen permits assigning devices directly to VMs, and
does so by building upon Linux’s device model: the user
unbinds the device from its Linux driver in domain 0, and
binds it to Xen’s virtual PCI subsystem for use by Xen’s
VMs.

To assign a device’s virtual function to a VM, the vir-
tual function must have a dedicated struct device

instance. Since software configurable virtual functions
are enumerated on a PCI bus, Linux treats them as nor-
mal PCI device and creates a struct device for them.
All further interactions the kernel has with a device, in-
cluding driver loading, hot-plugging, and assignment to
VMs, “just works”.

4.2 Virtual Configuration Space
Linux, as other OSes, provides a flexible bus abstraction
allowing device drivers to act as bus drivers. With PCIe
each device has a dedicated bus [15]. Thus, in Linux the
control driver which gets loaded when the kernel discov-
ers the physical device function can act as a bus driver.
All probing functions the kernel performs for devices on
this bus are channelled through the control driver. The
control driver can then easily enumerate the virtual func-
tions and intercept configuration space accesses for vir-
tual functions. Only when the kernel accesses the control
function, they are forwarded directly to the device.
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Figure 1: System setup with a privileged control driver (c) and three virtual functions (v0, v1, v2). The control function
has been assigned PCI device ID b:0.0, and the virtual functions are assigned device IDs on the same logical bus b.
Each device driver has access to some device memory, but only the control driver can access the PCI configuration
space of the device. Configuration space accesses from the virtual function drivers are forwarded to the control driver.

With Xen, VMs with assigned devices have the de-
vices enumerated on a virtual PCI bus and configuration
accesses to the assigned devices are forwarded to the PCI
backend driver, typically to a Linux VM in Domain 0. If
the device is enumerated in a virtual configuration space
the PCI backend driver would thus automatically forward
configuration accesses originating in a VM to the control
driver. This scenario is depicted in Figure 1.

4.3 Discussion
As our implementation for Linux and Xen demonstrates,
software configurable virtual functions can be supported
by an operating system purely within the device driver
for the control function, without requiring changes to
the rest of the OS/hypervisor. However, it requires the
OS to provide a flexible bus abstraction, allowing device
drivers to provide bus functionality. While this is true
for Linux and *BSD, we are currently investigating the
applicability for other OS/hypervisors such as KVM [8]
and VMWare ESX server [23], both of which generally
support PCI device assignment. We would expect these
systems to provide similar flexible device and bus ab-
stractions partly because support for SR-IOV requires
support for at least some of the OS/hypervisor features
we exploit in the Linux/Xen implementation.

5 Related Work
SR-IOV [17] aims to improve PCIe’s support for PCI
device assignment to VMs. Like our solution, it builds

upon many existing PCIe standards (e.g., address trans-
lation and protection). SR-IOV adds to the existing fea-
tures by reducing the incremental hardware cost of ad-
ditional functions by introducing virtual functions; and
it supports more than 256 virtual functions without us-
ing a PCIe switch. Yet SR-IOV requires development of
a new silicon logic block. It encodes configuration in-
formation within silicon which interferes with flexibility,
particularly for programmable devices. The hardcoded
configuration information permits a device-neutral driver
to probe and discover SR-IOV’s virtual functions — in
contrast to our software configurable virtual functions
— but many self-virtualized devices need a driver pres-
ence in the OS/hypervisor to manage global and privi-
leged device resources. Further, software configurable
virtual functions can be used alongside SR-IOV’s virtual
functions provided that the control driver allocates non-
overlapping ranges for virtual functions.

Rather than use device assignment, Santos et al. [20]
argue that software-based device virtualization has fea-
tures worth preserving and show how to improve
software-based network performance. They also demon-
strates that Xen device assignment has lower perfor-
mance than native I/O due to hypervisor overheads.

Several projects use paravirtual drivers for direct I/O
with self-virtualizing devices [12, 9, 25, 19, 22]. It is the
most flexible solution: like our solution, it works without
SR-IOV support; unlike our solution, it does not require
the hypervisor to support PCI device assignment. How-
ever, the use of paravirtual drivers requires development
and maintenance of additional drivers for each hypervi-
sor and guest OS environment, whereas software config-
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urable devices can use the same device driver irrespective
of the hypervisor used. Support for seamless VM mi-
gration between machines with different hardware con-
figurations while offering accelerated IO access is often
cited as another advantage of paravirtual drivers. How-
ever, NIC bonding accomplishes the same when using
NIC direct I/O [5, 26].

6 Conclusion
In this paper we have proposed a more flexible alter-
native to SR-IOV which requires less hardware support
from the device. The key insight is that SR-IOV makes
use of many standard PCIe features and primarily adds
a hardware based (virtual) function enumeration mecha-
nism. Our software configurable virtual functions do not
require such a hardware-based configuration space; it is
implemented by a device driver. This software solution
provides more flexibility as it does not have to conform
to the restrictions imposed by SR-IOV. In particular, soft-
ware configurable virtual functions can be enumerated
with different device types, which is highly desirable for
configurable and programmable PCI devices. We have
argued and demonstrated with a sample implementation
for Linux and Xen, that our alternative proposal can be
implemented in software without requiring changes to
the operating system and/or hypervisor.
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