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Abstract
Virtual machine migration greatly aids management by
allowing flexible provisioning of resources and decom-
missioning of hardware for maintenance. However, ef-
forts to improve network performance by granting vir-
tual machines direct access to hardware currently prevent
migration. This occurs because (1) the VMM cannot mi-
grate the state of the device, and (2) the source and des-
tination machines may have different network devices,
requiring different drivers to run in the migrated virtual
machine.

In this paper, we describe a lightweight software
mechanism for migrating virtual machines with direct
hardware access. We base our solution onshadow
drivers, which efficiently capture and reset the state of a
device driver. On the source hardware, the shadow driver
continuously monitors the state of the driver and device.
After migration, the shadow driver uses this information
to configure a driver for the corresponding device on the
destination. We implement our solution for Linux net-
work drivers running on the Xen hypervisor. We show
that the performance overhead, compared to direct hard-
ware access, is negligible and is much better than using
a virtual NIC.

1 Introduction
Virtual machine migration, such as VMware VMo-
tion [8] and Xen and KVM Live Migration [10, 3], is
a powerful tool for reducing energy consumption and
managing hardware. When hardware maintenance is re-
quired, running services can be migrated to other hard-
ware platforms without disrupting client access. Simi-
larly, when hardware is underutilized, management soft-
ware can consolidate virtual machines on a few physical
machines, powering off unused computers.

Virtual machine migration relies on complete hard-
ware mediation to allow an application using a device
at the source of migration to be seamlessly connected to
an equivalent device at the destination. In the case of
disk storage, this is often done with network disk access,
so both the virtual machines refer to a network-hosted
virtual disk. In the case of network devices, this is of-
ten done with a virtual NIC, which invokes a driver in
the virtual machine monitor [17], in a driver virtual ma-

chine [5, 7, 12], or in the host operating system [9, 13].
Complete mediation provides compatibility, because the
virtual machine monitor can provide a uniform interface
to devices on all hardware platforms, and provides the
VMM with access to the internal state of the device,
which is managed by the VMM or its delegated drivers
and not by the guest.

However, complete mediation of network access is a
major performance bottleneck due to the overhead of
transferring control and data in and out of the guest vir-
tual machine [6, 11]. As a result, several research groups
and vendors have proposed granting virtual machinesdi-
rect accessto devices. For example, Intel’s VT-d pro-
vides safe access to hardware from virtual machines [1].
However, direct device access, also called passthrough
I/O or direct I/O, prevents migration, because the device
state is not available to the VMM. Instead, a real de-
vice driver running in the guest manages the device state,
opaque to the VMM.

In this paper, we leverage shadow drivers [14, 15]
to migrate virtual machines that directly access devices.
The shadow driver executes in the guest virtual machine
to capture the relevant state of the device. After mi-
gration, the shadow driver disables and unloads the old
driver and then initializes a driver for the device at the
migration destination. In addition, the shadow driver
configures the device driver at the destination host.

We have a prototype implementation of shadow driver
migration for network device drivers running in Linux
guest operating systems on the Xen hypervisor. In ex-
periments, we find that shadow drivers have little impact
on passthrough-I/O performance.

In the following section, we describe the architecture
of I/O virtualization. Following that, we describe the ar-
chitecture of our solution, then the implementation of
passthrough-I/O migration, followed by a brief evalua-
tion and conclusions.

2 I /O Virtualization
Virtual machine monitors and hypervisors must provide
guest virtual machines access to hardware devices. With
virtual I /O, operations in a guest VM are intercepted by
the VMM and carried out by either the hypervisor [17],
a host operating system [9, 13], or a driver executing in
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Figure 1: I/O paths in a virtual machine.

a privileged virtual machine [5, 7, 12]. The performance
of virtual I/O is lower than native I/O on physical hard-
ware because the hypervisor must interpose on all I/O
requests, adding additional traps. Figure1 shows an ex-
ample system with two network cards, the left accessed
via passthrough I/O and the right accessed via virtual I/O
using a driver in a driver virtual machine.

With hardware that provide safe device access from
guest VMs [1, 2], it is possible to grant virtual ma-
chines direct access to hardware. With this hardware
support, the guest VMs execute device drivers that com-
municate with the device, bypassing the VMM. With this
passthrough I/O, performance is close to native, non-
virtualized I/O [19]. However, passthrough I/O pre-
vents migration because the VMM has no information
about the state of the device, which is controlled by the
guest VM. The destination host may have a different
passthrough-I/O device or may only use virtual I/O. Be-
cause the VMM does not have access to the state of the
driver or device, it cannot correctly reconfigure the guest
OS to access a different device at the destination host.

Recent work on migration of passthrough-I/O devices
relies on the Linux PCI hotplug interface to remove the
driver before migration and restart it after migration [21].
This approach maintains connectivity with clients by
redirecting them to a virtual network with the Linux
bonding driver. However, this approach only works for
network devices (as the bonding driver only works for
networks) and relies on an additional network interface
with client connectivity to maintain service during mi-
gration. Our implementation does not require any addi-
tional interfaces with client access and can be applied to
any class of devices. Intel has proposed additional hard-
ware support for migration of passthrough-I/O devices,
but relies on hardware support in the devices and mod-
ified guest device drivers to support migration [16]. In
contrast, our approach supports migration with unmod-
ified drivers in the guest virtual machine. Furthermore,
both of these approaches require running migration code

in the guest virtual machine at the source host, which
may not be possible in all migration mechanisms.

3 Architecture
The primary goals of migration with shadow drivers are
(1) low performance cost when not migrating, (2) min-
imal downtime during migration, and (3) no assistance
from code in the guest virtual before migration. These
ensure that migration is not delayed the device driver.

We leverage shadow drivers [14] to capture the state
of a passthrough I/O driver in a virtual machine be-
fore migration and start a new driver after migration. A
shadow driver is a kernel agent that monitors and stores
the state of a driver by intercepting function calls be-
tween the driver and the kernel. While originally in-
tended to provide transparent recovery from driver fail-
ures, shadow drivers provide two critical features for mi-
gration. First, shadow drivers continuously capture the
state of the driver. After migration, shadow drivers can
initialize a new driver and place it in the same state as the
pre-migration driver. Second, shadow drivers can clean
up and unload a driver without executing any driver code.
Thus, for drivers without hotplug support, a shadow
driver can unload the driver from the guest virtual ma-
chine without executing any driver code, which may mal-
function when the device is not present. Figure2 shows
the use of shadow drivers before, during, and after migra-
tion. This approach relies onpara-virtualization[18], as
the code in the guest VM participates in virtualization.

During normal operation between migrations, shadow
driver taps intercept all function calls between the
passthrough-I/O driver and the guest OS kernel. In this
passive mode, the shadow driver records operations that
change the state of the driver, such as configuration oper-
ations, and tracks packets that are outstanding (i.e., sent
but not acknowledged by the device).

When migration occurs, the VMM suspends the vir-
tual machine and copies its state from the source host to
the destination host. At the destination, the VMM injects
an upcall (or returns from a previous hypercall), notify-
ing the guest OS that migration just occurred. At this
point, the guest OS notifies all shadow drivers that a mi-
gration occurred.

Immediately after migration, shadow drivers transi-
tion intoactive mode, where they perform two functions.
First, they proxy for the device driver, fielding requests
from the kernel until a new driver has been started. This
ensures that the kernel and application software is un-
aware that the network device has been replaced. Sec-
ond, shadow drivers unload the existing passthrough-
I/O driver and start a driver for the destination host’s
network device. When starting this driver, the shadow
driver uses its log to configure the destination driver sim-
ilar to the source driver, including injecting outstanding
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Figure 2: Migration with shadow drivers.

packets that may not have been sent. In addition, the
shadow is responsible for ensuring that local switches are
aware that the MAC address for the virtual machine has
changed or migrated. Once this is complete, the shadow
driver transitions back to passive mode, and the network
is available for use.

Using shadow drivers for migration provides several
benefits over detaching the device before migration and
re-attaching it after migration. First, the shadow driver
is the agent in the guest VM that configures the driver
after migration, ensuring that it is configured properly to
its original state and has network connectivity. Second,
shadow drivers can reduce the downtime of migration,
because we need not detach the driver prior to migration,
allowing that to occur at the destination instead.

4 Implementation
We have prototyped shadow driver migration for network
devices using Linux as a guest operating system within
the Xen hypervisor. Our implementation consists of two
bodies of code: changes to the Xen hypervisor to enable
migration, and the shadow driver implementation within
the guest OS. We made no changes to device drivers.

4.1 Xen

We modified Xen 3.2 to remove restrictions that pro-
hibit migrating virtual machines using passthrough I/O.
Because migration was not previously supported in this
configuration, there were several places in Xen where
code had to be modified to enable this. For example,
Xen refused to migrate virtual machines that map device-
I/O memory. Furthermore, after migration Xen does not
automatically connect passthrough-I/O devices. As a re-

sult, migration would fail or the guest would not have
network access after migration.

We currently address these problems in Xen by mod-
ifying the migration scripts. In dom0, the management
domain, we modified migration code to detach the guest
virtual machine in domU from the virtual PCI bus prior
to migration. Detaching allows Xen to migrate the do-
main, but as a side effect can cause the guest OS to un-
load the driver. The shadow driver therefore prevents the
network driver from being unloaded and instead disables
the device.

We modified the migration code to unmap I/O memory
at the source after copying the virtual machine’s mem-
ory but just prior to suspending the VM. This occurs just
before migration, which reduces the network downtime
during migration as compared to detaching before copy-
ing data. However, the virtual machine state sent to the
destination includes the passthrough device. We modi-
fied the migration code at the destination to remove ref-
erences to the source device from the VM configuration
before restarting the VM.

We also modified the migration code to re-attach the
virtual PCI bus after migration and to create a virtual
event channel to notify the migrated virtual machine, af-
ter it resumes, that a passthrough-I/O network device is
available.

4.2 Shadow Drivers

We ported the existing shadow driver implementation to
the Linux 2.6.18.8 kernel and removed code not neces-
sary for migration. The remaining shadow driver code
provides object tracking, to enable recovery; taps, to con-



trol communication between the driver and the kernel;
and a log to store the state of the passthrough-I/O driver.

4.2.1 Passive Mode

During passive mode, the shadow driver tracks kernel ob-
jects in use by the passthrough-I/O driver in a hash table.
We implement taps withwrappersaround all functions in
the kernel/driver interface by binding the driver to wrap-
pers at load time and by replacing function pointers with
pointers to wrappers at run time. The wrappers invoke
the shadow driver after executing the wrapped kernel or
driver function.

The shadow driver records information to unload the
driver after migration. After each call from the ker-
nel into the driver and each return from the kernel back
into the driver, the shadow records the address and type
of any kernel data structures passed to the driver and
deletes from the table data structures released to the ker-
nel. For example, the shadow records the addresses of
sk buffs containing packets when a network driver’s
hard start xmit function is invoked. When the driver
releases the packet withdev kfree skb irq, the shadow
driver deletes thesk buff from the hash table. Similarly,
the shadow records the addresses and types of all kernel
objects allocated by the driver, such as device objects,
timers, or I/O resources.

The shadow driver also maintains a small in-memory
log of configuration operations, such as calls to set mul-
ticast addresses, MAC addresses, or the MTU. This log
enables the shadow to restore these configuration settings
after migration.

When a migration is initiated, the shadow driver con-
tinues to capture the state of the device until the domain
is suspended. All recovery of the driver is performed
at the destination host. At the source, just before the
guest suspends itself, we stop the netdevice and unmap
the driver’s mapped I/O memory.

4.2.2 Migration

The shadow driver mechanism is invoked after migra-
tion to bring up the network driver. After the complete
state of the virtual machine has been copied to the des-
tination host, Xen returns from thesuspend hypercall
into the guest OS. We modified the Linux kernel to in-
voke the shadow driver recovery mechanism just after
suspend returns successfully (an error indicates that mi-
gration failed). The shadow driver then proceeds to (1)
unload the existing driver, (2) initialize a new driver, and
(3) transfer state to the new driver.

After the guest virtual machine restarts, the shadow
driver unloads the old driver using the table of tracked
objects. This step is essential because after migration
the original device is no longer attached, and the driver
may not function properly. Instead, the shadow driver

walks its table of kernel objects used by the driver and re-
leases them itself, issuing the same kernel function calls
the driver would use.

The shadow then proceeds to initialize the new driver.
If the device at the migration destination is the same as
the one at the source, the shadow driver restarts the exist-
ing driver that is already in memory. The shadow stores
a copy of the driver’s data section from when it was first
loaded to avoid fetching it from disk during migration.
If the device is different, necessitating a different driver,
the shadow driver pre-loads the new driver module into
memory. It then proceeds with the shadow driver replug-
ging mechanism [15], which allows replacing the driver
during recovery, to correctly start the new driver.

As the driver reinitializes, it invokes the kernel to reg-
ister and to acquire resources. The shadow driver inter-
poses on these requests and re-attach the new driver to
kernel resources used by the old driver. For example, the
new device driver re-uses the existingnet device struc-
ture, causing it to be connected to the existing network
stack. This reduces the time spent reconfiguring the net-
work after migration.

Finally, the shadow driver restores the driver to its state
pre-migration by re-applying any associated configura-
tion changes. We borrow code from Xen to make the
network reachable by sending an unsolicited ARP reply
message from the destination network interface as soon
as it is up. In addition, the shadow invokes configuration
functions, such asset multicast list to set multicast
addresses, and retransmits any packets that were issued
to the device but not acknowledged as sent.

At this stage, the shadow driver reverts to passive
mode, and allows the guest OS to execute normally.

4.3 Migration between different devices

Shadow drivers also support live migration between het-
erogeneous NICs. No additional changes in the guest
OS are required. However, the shadow driver must be
informed that the different device at the guest is the tar-
get for migration, so it correctly transfers the state of the
device from the source.

One issue that may arise if that source and destination
devices may support different features, such checksum
offload. We rely on the replugging support in shadow
drivers [15] to smooth the differences. In most cases,
including checksum offload, the Linux network stack
checks on every packet whether the device supports the
feature, so that features may be enabled and disabled
safely.

For features that affects kernel data structures and can-
not be simply enabled or disabled, the shadow replug
mechanism provides two options: if the feature was not
present at the source device, it is disabled at the destina-
tion device; the shadow driver masks out bits notifying



Using Intel Pro/1000 gigabit NIC
I /O Access Type Throughput CPU Utilization
Virtualized I/O 698 Mbits/s 14%
Passthrough I/O 773 Mbits/s 3%
Passthrough I/O 769 Mbits/s 4%

with shadow driver

Using NVIDIA MCP55 Pro gigabit NIC
I /O Access Type Throughput CPU Utilization
Virtualized I/O 706 Mbits/s 18%
Passthrough I/O 941 Mbits/s 8%
Passthrough I/O 938 Mbits/s 9%

with shadow driver

Table 1: TCP streaming performance with netperf for
each driver configuration using two different network
cards. Each test is the average of five runs.

the kernel of the feature’s existence. In the reverse case,
when a feature present at the source is missing at the des-
tination, the shadow replug mechanism will fail the re-
covery. While this should be rare in a managed environ-
ment, where all devices are known in advance, shadow
drivers support masking features when loading drivers to
ensure that only least-common-denominator features are
used.

We have successful tested migration between differ-
ent devices using the Intel Pro/1000 gigabit NIC to an
NVIDIA MCP55 Pro gigabit NIC. In addition, the same
mechanism supports migration to a virtual driver, so a
VM using passthrough-I/O on one host can be migrated
to second host with a virtual device.

5 Evaluation
In this section we evaluate our implementation of shadow
drivers for its overheads and migration latency on Xen.
The following subsections describe the tests carried out
for evaluating the overheads of logging due to passive
monitoring and the latency of migration introduced due
to device migration support.

We performed the tests on machines with a sin-
gle 2.2GHz AMD Opteron processor in 32-bit mode,
1GB memory, an Intel Pro/1000 gigabit Ethernet NIC
(e1000 driver) and an NVIDIA MCP55 Pro gigabit NIC
(forcedeth driver). We do most experiments with the In-
tel NIC configured for passthrough I/O. We use the Xen
3.2 unstable distribution with the linux-2.6.18-xen ker-
nel in para-virtualized mode. We do not use hardware
protection against DMA in the guest VM, as recent work
shows its cost [19].

5.1 Overhead of shadow logging

Because migration is a rare event, preparing for migra-
tion should cause only minimal overhead. In this sec-
tion, we present measurements of the performance cost

of shadow driver taps and logging in passive mode. The
cost of shadow drivers is the time spent monitoring driver
state during passive mode. We measure the cost of
shadow drivers compared to (1) fully virtualized network
access, where the device driver runs in Xen’s driver do-
main (dom0), and (2) passthrough I/O access without
shadow drivers, where the driver runs in guest domain
(domU) and migration is not possible.

We measure performance using netperf [4], and re-
port the bandwidth and CPU utilization in the guest for
TCP traffic. The results in Table1 show throughput and
CPU utilization using different I/O access methods for
both network cards. Passthrough I/O with shadow drivers
for migration has throughput within 1% of passthrough
without shadow drivers, and 10-30% better than virtual-
ized I/O. CPU utilization with shadow drivers was one
percentage point higher than normal passthrough, and
40-70% lower than virtualized I/O. Based on these re-
sults, we conclude that shadow drivers incur a negligible
performance overhead.

5.2 Latency of migration

One strength of live migration is the minimal downtime
due to migration, often measured in tenths of seconds [3].
This is possible because drivers for all devices at the des-
tination are already running in Dom0 before migration.
With passthrough I/O, though, the shadow driver at the
destination must unload the previously executing driver
and load the new driver before connectivity is restored.
As a result, the latency of migration is now affected by
the speed with which drivers initialize.

In this section, we compare the duration of network
outage using shadow driver migration against Xen’s na-
tive live migration. We generate a workload against a vir-
tual machine and monitor the network traffic using Wire-
Shark [20]. We measure the duration of connectivity loss
during migration. We also measured the occurrence of
important events during the migration process using tim-
ing information generated byprintk calls.

Based on the monitoring experiments, we observe that
the packets from a third host are dropped for 3 to 4 sec-
onds while migration occurs, short enough to allow TCP
connections to survive. In contrast, Xen with virtual de-
vices can migrate in less than a second.

We analyzed the causes for the expanded migration
time, and show a time line in Figure3. This figure shows
the events between when network connectivity is lost and
when it is restored. Several differences to Xen stand
out. First, we currently disable network accessbefore
migration begins, with the PCI unplug operation. Thus,
network connectivity is lost while the virtual machine is
copied between hosts. This is required because Xen cur-
rently prevents migration while PCI devices are attached
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Figure 3: Timing breakdown of events during migration.

to a guest VM; with additional changes to Xen this time
could be reduced.

Second, we observe that the majority of the time, over
two seconds, is spent waiting for the e1000 driver to
come up migration. This time can be reduced only by
modifying the driver, for example to implement a fast-
restart mode after migration. In addition, device support
for per-VM queues may reduce the driver initialization
cost within a VM [11]. However, our experience with
other drivers suggests that for most devices the driver ini-
tialization latency is much shorter.

6 Conclusion
We propose using shadow drivers to migrate the state of
passthrough I/O devices within a virtual machine. This
design has low complexity and overhead, requires no
driver and minimal guest OS modification, and provides
low-latency migration. In addition, it supports migrat-
ing between passthrough-I/O devices and virtual-I/O de-
vices seamlessly. While we implement this solution for
Linux network drivers running over Xen, it can be readily
ported to other devices, operating systems, and hypervi-
sors.
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