Live Migration of Direct-Access Devices

Asim Kadav and Michael M. Swift
Computer Sciences Department, University of Wisconsin-Madison

Abstract chine B, 7, 12], or in the host operating systerg, [13].

Virtual machine migration greatly aids management byCOmplete mediation provides compatibility, because the
allowing flexible provisioning of resources and decom_thual _machlne monitor can provide a uniform m_terface
missioning of hardware for maintenance. However, ef-10 devices on all hardware platforms, and provides the

forts to improve network performance by granting vir- VMM ‘,’Vith access to the internal ;tate of the deYice'
tual machines direct access to hardware currently prevedthich is managed by the VMM or its delegated drivers
migration. This occurs because (1) the VMM cannot mi-2nd not by the guest.

grate the state of the device, and (2) the source and des- HOWeVer, complete mediation of network access is a
tination machines may haveftéirent network devices, Maor performance bottleneck due to the overhead of

requiring diferent drivers to run in the migrated virtual ransferring control and data in and out of the guest vir-
machine. tual machine®, 11]. As a result, several research groups
In this paper, we describe a lightweight software and vendors have proposed granting virtual machiies

mechanism for migrating virtual machines with direct rgct accesdo devices. For example,.lntel’s VT'c.j pro-
hardware access. We base our solution shadow vides safe access to hardware from virtual machitgs [

drivers which eficiently capture and reset the state of g However, direct device access, also called passthrough

device driver. On the source hardware, the shadow drivel/© ©r direct JO, prevents migration, because the device

continuously monitors the state of the driver and device Stt€ is not available to the VMM. Instead, a real de-

After migration, the shadow driver uses this information vice driver running in the guest manages the device state,
to configure a driver for the corresponding device on the®Paque to the VMM. .

destination. We implement our solution for Linux net- In_thls paper, we Ieyerage shz_;tdow dr|veﬂsl,[15]_
work drivers running on the Xen hypervisor. We show to migrate V|rtu_al machines that directly access dewcgs.
that the performance overhead, compared to direct hard-l-_he shadow driver executes in the guest virtual machine

ware access, is negligible and is much better than usin® @pture the relevant state of the device. After mi-
gration, the shadow driver disables and unloads the old

a virtual NIC. . S : :

_ driver and then initializes a driver for the device at the
1 Introduction migration destination. In addition, the shadow driver
Virtual machine migration, such as VMware VMo- configures the device driver at the destination host.
tion [8] and Xen and KVM Live Migration 10, 3], is We have a prototype implementation of shadow driver

a powerful tool for reducing energy consumption andmigration for network device drivers running in Linux

managing hardware. When hardware maintenance is réuest operating systems on the Xen hypervisor. In ex-

quired, running services can be migrated to other hargperiments, we find that shadow drivers have little impact

ware platforms without disrupting client access. Simi- N passthrough/® performance.

larly, when hardware is underutilized, management soft- N the following section, we describe the architecture

ware can consolidate virtual machines on a few physican I/O virtualization. Following that, we describe the ar-

machines, poweringfbunused computers. chitecture of our solution, then the implementation of
Virtual machine migration relies on complete hard- Passthrough/O migration, followed by a brief evalua-

ware mediation to allow an application using a devicetion and conclusions.

at the source of migration to be seamlessly connected tg 1/O Virtualization

an equivalent device at the destination. In the case of

disk storage, this is often done with network disk access"tual machine monitors and hypervisors must provide

so both the virtual machines refer to a network-hosteddUest virtual machines access to hardware devices. With

virtual disk. In the case of network devices, this is of- virtual I/0, operatiqns in a gue_st VM are interc_epted by
ten done with a virtual NIC, which invokes a driver in th€ VMM and carried out by either the hypervisdf7],
the virtual machine monitorl[7], in a driver virtual ma- & NOSt operating syster,[13], or a driver executing in

Guest VM Driver VM in the guest virtual machine at the source host, which
may not be possible in all migration mechanisms.

Guest Kernel Driver Kernel]
e 3 Architecture
Passthrough /10 —) . i
9 [| Driver | Driver Real Driver The primary goals of migration with shadow drivers are
/ ' (1) low performance cost when not migrating, (2) min-
Virtual /O | Virtual Machine ' imal downtime during migration, and (3) no assistance
| Monitor : from code in the guest virtual before migration. These
v v ensure that migration is not delayed the device driver.
We leverage shadow driver$4] to capture the state

of a passthrough/© driver in a virtual machine be-
fore migration and start a new driver after migration. A
Figure 1: JO paths in a virtual machine. shadow driver is a kernel agent that monitors and stores
the state of a driver by intercepting function calls be-
tween the driver and the kernel. While originally in-
tended to provide transparent recovery from driver fail-
ures, shadow drivers provide two critical features for mi-
gration. First, shadow drivers continuously capture the
tate of the driver. After migration, shadow drivers can
‘initialize a new driver and place it in the same state as the

a privileged virtual machineg| 7, 12]. The performance
of virtual I/O is lower than native/O on physical hard-
ware because the hypervisor must interpose on/@ll |
requests, adding additional traps. Figdrghows an ex-
ample system with two network cards, the left accesse

via passthroughyO and the right accessed via virtuADl pre-migration driver. Second, shadow drivers can clean

using a driver in a driver V|r§ual machme: up and unload a driver without executing any driver code.
With hardware t.ha't prowd.e safe device access froml'hus, for drivers without hotplug support, a shadow
guest VMs [, 2], it is possible to grant virtual ma- driver can unload the driver from the guest virtual ma-

chines direct access to hardware. _W|th_th|s hardwar%hine without executing any driver code, which may mal-
support, the guest VMs execute device drivers that COMf nction when the device is not present. Figarghows

municate with the device, bypassing the VMM. With this the use of shadow drivers before, during, and after migra-

pgsst?rom:jgh/o, performance is closi to native, nNon- 4, This approach relies grara-virtualization[18], as
virtualized YO [19). However, passthrough/® pre- the code in the guest VM patrticipates in virtualization.

vents migration because j[he VM_M has no information During normal operation between migrations, shadow
about the state of the device, which is controlled by thedriver taps intercept all function calls between the

guest VM. The destination host may have d#atent

h hO devi | ; passthrough/O driver and the guest OS kernel. In this
passthrough/O device or may only use virtugi®. Be- passive modehe shadow driver records operations that
cause the VMM does not have access to the state of th

@nange the state of the driver, such as configuration oper-

driver or device, it cannot correctly reconfigure the guest ;i -« o tracks packets that are outstandieg gent
OS to access afierent device at the destination host.) . no’t acknowledged by the device)

Recent work on migration of passthrougt®Idevices When migration occurs, the VMM suspends the vir-

Le!les gnfthe Lmux _PCl h(()jtplug mt_erff?ce tq rem;e thetual machine and copies its state from the source host to
river before migration and restart it after migrati@l]. e gestination host. At the destination, the VMM injects
This approach maintains connectivity with clients by an upcall (or returns from a previous hypercall), notify-

Led|(rfct|n(;;|_them to a wrtur?I network r¥V|th| the Lk'm;X ing the guest OS that migration just occurred. At this
on mg d”"?“ Howe\rqer,bt |sd.app;o_ac only Works for point, the guest OS notifies all shadow drivers that a mi-
network devices (as the bonding driver only works Orgration oceurred.

networks) and relies on an additional network interface Immediately after migration, shadow drivers transi-

W'th. cher(n; cqnnelctlwty to_ ma(ljntam serwce_durmg n:jld tion into active modewhere they perform two functions.
gration. Our implementation does not require any a First, they proxy for the device driver, fielding requests

tional interfaces with client access and can be applied tg ' +hq kernel until a new driver has been started. This
any class of devices. Intel has proposed additional hard;

o , ensures that the kernel and application software is un-
ware support for migration of passthrougldldevices, aware that the network device has been replaced. Sec-
but relies on hardware support in the devices and mod

ifind device dri Sl : ond, shadow drivers unload the existing passthrough-
ffied guest device drivers to S“ppoft ml_gratld_ks][_ n I/O driver and start a driver for the destination host’s
contrast, our approach supports migration with unmods, .ok device. When starting this driver, the shadow
ified drivers in the guest virtual machine. Furthermore

both of th h)) S d’driver uses its log to configure the destination driver sim-
oth of these approaches require running migration C0G, 4 the source driver, including injecting outstanding

Guest OS Kernel Guest OS Kernel Guest OS Kernel
Shadow y Shadow [~ Shadow
Driver Taps Driver Driver
Source Destination
Network Driver Network Driver
X
Y Y \/
———) ———
Source Source | Destination Destination
Network Card Network Card i Network Card Network Card
L J \ J \)
Before Migration During Migration After Migration

Figure 2: Migration with shadow drivers.

packets that may not have been sent. In addition, theult, migration would fail or the guest would not have
shadow is responsible for ensuring that local switches areetwork access after migration.
aware that the MAC address for the virtual machine has We currently address these problems in Xen by mod-
changed or migrated. Once this is complete, the shadovfying the migration scripts. In dom0, the management
driver transitions back to passive mode, and the networklomain, we modified migration code to detach the guest
is available for use. virtual machine in domuU from the virtual PCI bus prior
Using shadow drivers for migration provides severalto migration. Detaching allows Xen to migrate the do-
benefits over detaching the device before migration andanain, but as a sidefiect can cause the guest OS to un-
re-attaching it after migration. First, the shadow driverload the driver. The shadow driver therefore prevents the
is the agent in the guest VM that configures the drivernetwork driver from being unloaded and instead disables
after migration, ensuring that it is configured properly to the device.
its original state and has network connectivity. Second, We modified the migration code to unmag@Imemory
shadow drivers can reduce the downtime of migrationat the source after copying the virtual machine’s mem-
because we need not detach the driver prior to migrationgry but just prior to suspending the VM. This occurs just
allowing that to occur at the destination instead. before migration, which reduces the network downtime
. during migration as compared to detaching before copy-
4 Implementation ing data. However, the virtual machine state sent to the
We have prototyped shadow driver migration for networkdestination includes the passthrough device. We modi-
devices using Linux as a guest operating system withirfied the migration code at the destination to remove ref-
the Xen hypervisor. Our implementation consists of twoerences to the source device from the VM configuration
bodies of code: changes to the Xen hypervisor to enablgefore restarting the VM.
migration, and the shadow driver implementation within We also modified the migration code to re-attach the
the guest OS. We made no changes to device drivers. virtual PCI bus after migration and to create a virtual
4.1 Xen event channel to notify the migrated virtual machine, af-
ter it resumes, that a passthroug®-hetwork device is

We modified Xen 3.2 to remove restrictions that pro- available.

hibit migrating virtual machines using passthroug®.|

Because migration was not previously supported in thig*-2 Shadow Drivers

configuration, there were several places in Xen whereye ported the existing shadow driver implementation to

code had to be modified to enable this. For examplethe Linux 2.6.18.8 kernel and removed code not neces-
Xen refused to migrate virtual machines that map devicesary for migration. The remaining shadow driver code

I/O memory. Furthermore, after migration Xen does notprovides object tracking, to enable recovery; taps, to con-
automatically connect passthrougf®ldevices. As a re-

trol communication between the driver and the kernel;walks its table of kernel objects used by the driver and re-
and a log to store the state of the passthroy@hdriver. leases them itself, issuing the same kernel function calls

421 Passive Mode the driver would use. o _
The shadow then proceeds to initialize the new driver.

During passive mode, the shadow driver tracks kernel obyf the device at the migration destination is the same as
jects in use by the passthrougidldriver in a hash table. {he one at the source, the shadow driver restarts the exist-
We implement taps wittvrappersaround all functionsin - ing driver that is already in memory. The shadow stores
the kerne/driver interface by binding the driver to wrap- 5 copy of the driver’s data section from when it was first
pers at load time and by replacing function pointers withjoaded to avoid fetching it from disk during migration.
pointers to wrappers at run time. The wrappers invokes the device is diferent, necessitating aftéirent driver,
the shadow driver after executing the wrapped kemel ofe shadow driver pre-loads the new driver module into
driver function. _ _ memory. It then proceeds with the shadow driver replug-

The shadow driver records information to unload theging mechanism15], which allows replacing the driver
driv_er after m_igration. After each call from the ker- during recovery, to correctly start the new driver.
nel into the driver and each return from the kernel back ag the driver reinitializes, it invokes the kernel to reg-
into the driver, the shadow records the address and typRter and to acquire resources. The shadow driver inter-
of any kernel data structures passed to the driver and,ses on these requests and re-attach the new driver to
deletes from the table data structures released to the kekarnel resources used by the old driver. For example, the
nel. For example, the shadow records the addresses gf\y device driver re-uses the existinex_device struc-
sk-buffs containing packets when a network driver's yre causing it to be connected to the existing network
hard startxmit function is invoked. When the driver giack. This reduces the time spent reconfiguring the net-
releases the packet witlev kfree skb_irq, the shadow \yqrk after migration.
driver deletes thek buff from the hash table. Similarly, Finajly, the shadow driver restores the driver to its state
the_ shadow records the adc_iresses and types of all _kemﬁfe-migration by re-applying any associated configura-
objects allocated by the driver, such as device objects;gp, changes. We borrow code from Xen to make the
timers, or JO resources. o . network reachable by sending an unsolicited ARP reply

The shadow driver also maintains a small in-memorymessage from the destination network interface as soon
log of configuration operations, such as calls to set mulyg jt is up. In addition, the shadow invokes configuration
ticast addresses, MAC addresses, or the MTU. This logynctions, such aset multicast_list to set multicast
enables the shadow to restore these configuration settinggqresses. and retransmits any packets that were issued
after migration. _ to the device but not acknowledged as sent.

When a migration is initiated, the shadow driver con- At this stage, the shadow driver reverts to passive

tinues to capture the state of the device until the domainy,gde and allows the guest OS to execute normally.
is suspended. All recovery of the driver is performed L .)
4.3 Migration between different devices

at the destination host. At the source, just before the
guest suspends itself, we stop the netdevice and unmaphadow drivers also support live migration between het-
the driver's mapped®© memory. erogeneous NICs. No additional changes in the guest
4.2.2 Migration _OS are required. However, t.he shadow driV(_er must be
) o _informed that the dferent device at the guest is the tar-
The shadow driver mechanism is invoked after migra-get for migration, so it correctly transfers the state of the
tion to bring up the network driver. After the complete yevice from the source.
state of the virtual machine has been copied to the des- ope jssue that may arise if that source and destination
tination host, Xen returns from theuspend hypercall gevices may support fierent features, such checksum
into the guest OS. We modified the Linux .kern.el t0 iN- 5f0ad. We rely on the replugging support in shadow
voke the shadow driver recovery mechanism just aftegyivers [L5] to smooth the dierences. In most cases,
suspend returns successfully (an error indicates that mi'including checksum fiload. the Linux network stack
gration failed). The shadow driver then proceeds to (L)checks on every packet whether the device supports the
unload the existing driver, (2) initialize a new driver, and feature, so that features may be enabled and disabled
(3) transfer state to the new driver. safely.

After the guest virtual machine restarts, the shadow por features thatfeects kernel data structures and can-
driver unloads the old driver using the table of trackedgt pe simply enabled or disabled, the shadow replug
objects. This step is essential because after migratiofyechanism provides two options: if the feature was not
the original device is no longer attached, and the driveryesent at the source device, it is disabled at the destina-
may not function properly. Instead, the shadow driverion device: the shadow driver masks out bits notifying

Using Intel Pro/1000 gigabit NIC

__ of shadow driver taps and logging in passive mode. The
I/O Access Type | Throughput | CPU Utilization

cost of shadow drivers is the time spent monitoring driver

i i 0,
;21 Ziﬁi'rzoid rvy% 332 mg:gﬁ 1;,//0 state during passive mode. We measure the cost of
Passthroughlo 769 Mbitgs 40/2 shadow drivers compared to (1) fully virtualized network

access, where the device driver runs in Xen’s driver do-
main (dom0), and (2) passthrougfOlaccess without

with shadow driver

Using NVIDIA MCPSS Pro gigabit NIC shadow drivers, where the driver runs in guest domain
1/O Acc_ess Type Throughput CPU Utilization (domU) and migration is not possible.
lig:gq'ii%h% ;2(15 mg:zz 1;);/" We measure performance using netpdif pnd re-
)
Passihrough© 938 Mbitgs 9% port the bandwidth and CPU utilization in the guest for

TCP trdfic. The results in Tablé show throughput and
CPU utilization using dferent YO access methods for

Table 1: TCP streaming performance with netperf forboth network cards. Passthroug® Wwith shadow drivers
each driver configuration using two fiirent network for migration has throughput within 1% of passthrough
cards. Each test is the average of five runs. without shadow drivers, and 10-30% better than virtual-
ized JO. CPU utilization with shadow drivers was one
percentage point higher than normal passthrough, and
the kernel of the feature’s existence. In the reverse casel0-70% lower than virtualized®. Based on these re-
when a feature present at the source is missing at the desuilts, we conclude that shadow drivers incur a negligible
tination, the shadow replug mechanism will fail the re- performance overhead.
covery. While this should be rare in a managed environy ,, Latency of migration
ment, where all devices are known in advance, shadow
drivers support masking features when loading drivers td@ne strength of live migration is the minimal downtime
ensure that only least-common-denominator features aréue to migration, often measured in tenths of seco8ds [
used. This is possible because drivers for all devices at the des-

We have successful tested migration betwedfedi tination are already running in Dom0 before migration.
ent devices using the Intel FA®00 gigabit NIC to an With passthrough/O, though, the shadow driver at the
NVIDIA MCP55 Pro gigabit NIC. In addition, the same destination must unload the previously executing driver
mechanism supports migration to a virtual driver, so aand load the new driver before connectivity is restored.
VM using passthroughD on one host can be migrated As a result, the latency of migration is nofected by
to second host with a virtual device. the speed with which drivers initialize.

. In this section, we compare the duration of network
5 Evaluation outage using shadow driver migration against Xen's na-
In this section we evaluate our implementation of shadowtive live migration. We generate a workload against a vir-
drivers for its overheads and migration latency on Xen.tual machine and monitor the networkffia using Wire-
The following subsections describe the tests carried ouShark 0. We measure the duration of connectivity loss
for evaluating the overheads of logging due to passiveduring migration. We also measured the occurrence of
monitoring and the latency of migration introduced dueimportant events during the migration process using tim-
to device migration support. ing information generated kytintk calls.

We performed the tests on machines with a sin- Based on the monitoring experiments, we observe that
gle 2.2GHz AMD Opteron processor in 32-bit mode, the packets from a third host are dropped for 3 to 4 sec-
1GB memory, an Intel Pya000 gigabit Ethernet NIC onds while migration occurs, short enough to allow TCP
(€1000 driver) and an NVIDIA MCP55 Pro gigabit NIC connections to survive. In contrast, Xen with virtual de-
(forcedeth driver). We do most experiments with the In-vices can migrate in less than a second.
tel NIC configured for passthrougfd. We use the Xen We analyzed the causes for the expanded migration
3.2 unstable distribution with the linux-2.6.18-xen ker- time, and show a time line in FiguB This figure shows
nel in para-virtualized mode. We do not use hardwarehhe events between when network connectivity is lost and
protection against DMA in the guest VM, as recent workwhen it is restored. Severalftirences to Xen stand
shows its cost19]. out. First, we currently disable network accdssfore
migration begins, with the PCI unplug operation. Thus,
network connectivity is lost while the virtual machine is
Because migration is a rare event, preparing for migrazopied between hosts. This is required because Xen cur-

tion should cause only minimal overhead. In this sec-rently prevents migration while PCI devices are attached
tion, we present measurements of the performance cost

with shadow driver

5.1 Overhead of shadow logging

PCI Unplug —=

VM Migration —
PCI Replug f
Shadow Recovery —

Driver Uptime

—

ARP sent —
|
0 0.5 1 1.5

I I I I |
2 2.5 3 3.5 4

Events during migration versus Time (in seconds)

Figure 3: Timing breakdown of events during migration.

to a guest VM; with additional changes to Xen this time [2]
could be reduced.

Second, we observe that the majority of the time, over
two seconds, is spent waiting for the e1000 driver to
come up migration. This time can be reduced only by
modifying the driver, for example to implement a fast-
restart mode after migration. In addition, device support
for per-VM queues may reduce the driver initialization
cost within a VM [L1]. However, our experience with
other drivers suggests that for most devices the driver ini-
tialization latency is much shorter.

6 Conclusion

We propose using shadow drivers to migrate the state of
passthrough/O devices within a virtual machine. This
design has low complexity and overhead, requires no
driver and minimal guest OS modification, and provides [5]
low-latency migration. In addition, it supports migrat-
ing between passthrougfa devices and virtual/O de-
vices seamlessly. While we implement this solution for
Linux network drivers running over Xen, it can be readily
ported to other devices, operating systems, and hypervi-
sors.

[6]

[4]

Acknowledgments

This work is supported in part by the National Sci-
ence Foundation (NSF) grant CCF-0621487, the UW-
Madison Department of Computer Sciences, and dona-
tions from Sun Microsystems. Swift has a significant fi- [7]
nancial interest in Microsoft.

References

[1] Darren Abramson, J& Jackson, Sridhar 8]
Muthrasanallur, Gil Neiger, Greg Regnier, Rajesh
Sankran, lonnis Schoinas, Rich Uhlig, Balaji
Vembu, and John Weigert. Intel virtualization
technology for directed/O. Intel Technology
Journal, 10(3):179-191, August 2006. [9]

Advanced Micro Devices, Inc. AMD/O vir-
tualization technology (IOMMU) specification.
www.amd.com/us-en/assets/content_type/white
_papers_and_tech_docs/34434.pdf, February
2007. Publication # 34434.

3] Christopher Clark, Keir Fraser, Steven Hand, Ja-

cob Gorm Hansen, Eric Jul, Christian Limpach, lan
Pratt, and Andrew Warfield. Live migration of vir-
tual machines. IfProc. of the 2nd Symp. on Net-
worked Systems Design and Implementatiday
2005.

Information Networks Division. Net-
perf: A network performance benchmark.
http://www.netperf.org.

Keir Fraser, Steven Hand, Rolf Neugebauer, lan
Pratt, Andrew Warfield, and Mark Williamson.
Safe hardware access with the Xen virtual machine
monitor. InProceedings of the Workshop on Oper-
ating System and Architectural Support for the On-
Demand IT InfrastructureOctober 2004.

Aravind Menonand, Alan L. Cox, and Willy
Zwaenepoel. Optimizing network virtualization in
Xen. In Proceedings of the 2006 USENIX ATC
pages 15-28, May 2006.

Mike Neil. Hypervisor, virtualization stack, and
device virtualization architectures. Technical Re-
port WinHec 2006 Presentation VIR047, Microsoft
Corporation, May 2006.

Michael Nelson, Beng-Hong Lim, and Greg
Hutchins. Fast transparent migration for virtual ma-
chines. InProceedings of the annual conference on
USENIX Annual Technical Conferen@905.

Qumranet Inc. KVM: Kernel-based virtualization
driver. www. qumranet . com/wp/kvm_wp . pdf, 2006.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Quramnet Inc. KVM: Migrating a VM.
http://kvm.qumranet.com/kvmwiki/Migration,

2008.

Jose Renato Santos, Yoshio Turner, , G. John
Janakiraman, and lan Pratt. Bridging the gap be-
tween software and hardware techniques f@ |
virtualization. InProceedings of the annual con-
ference on USENIX Annual Technical Conference
2008.

Ashley Saulsbury. Your OS on the T1 hypervisor.
www.opensparc.net/publications/presentations

/your-os-on-the-tl-hypervisor.html, March
2006.

Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing /O devices on
VMware workstation’s hosted virtual machine
monitor. InProceedings of the 2001 USENIX ATC
Boston, Massachusetts, June 2001.

Michael Swift, Muthukaruppan Annamalau,
Brian N. Bershad, and Henry M. Levy. Recovering
device drivers. ACM Transactions on Computer
Systems24(4), November 2006.

Michael M. Swift, Damien Martin-Guillerez,
Muthukaruppan Annamalai, Brian N. Bershad, and
Henry M. Levy. Live update for device drivers.
Technical Report CS-TR-2008-1634, March 2008.

Sean Varley and Howie Xu. /@ pass-through
methologies for mainstream virtualization usage.
http://intel.wingateweb.com/US08/published/
sessions/I0SSO03/SFO8_I0SSO03_101r.pdf,

August 2008.

VMware Inc. VO compatibility guide for
ESX server 3.X. http://www.vmware.com/pdf/
vi3_io_guide.pdf, June 2007.

Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Denali: Lightweight virtual machines for
distributed and networked applications. Rro-
ceedings of the 5th USENIX OSbhges 195-209,
Boston, MA, December 2002.

Paul Willmann, Scott Rixner, and Alan L. Cox.
Protection strategies for direct access to virtualized
I/O devices. InProceedings of the annual con-
ference on USENIX Annual Technical Conference
2008.

WireShark: A network protocol
http://www.wireshark.org.

analyzer.

[21] Edwin Zhai, Gregory D. Cummings, and Yaozu

Dong. Live migration with pass-through device for
Linux VM. In Proceedings of the Ottawa Linux
Symposiumpages 261-267, 2008.

	Introduction
	I/O Virtualization
	Architecture
	Implementation
	Xen
	Shadow Drivers
	Passive Mode
	Migration

	Migration between different devices

	Evaluation
	Overhead of shadow logging
	Latency of migration

	Conclusion

