JustRunIt: Experiment-Based Management of Virtualized Data Centers

Wei Zheng

Ricardo Bianchini

Rutgers University

Yoshio Turner

Renato Santos

John Janakiraman

HP Labs

Motivation

- Managing data center is a challenging task
 - Resource allocation, evaluation of software/hardware upgrades, capacity planning, etc.
 - Decisions affect performance, availability, energy consumption
- State-of-the-art uses modeling for these tasks
 - Models give insight into system behavior
 - Fast exploration of large parameter spaces
- Modeling has some important drawbacks
 - Consumes a very expensive resource: human labor
 - Needs to be re-calibrated and re-validated as the systems evolve

Our Approach

- Idea: experiments are a better approach
 - Consume a cheaper resource: machine time (and energy)
 - High fidelity
- JustRunIt: an infrastructure for experiment-based management of virtualized data centers
- Management system or administrator can use JustRunIt results to perform management tasks
 - Resource management and hardware/software upgrades
 - Select the best value for software tunables
 - Evaluate the correctness of administrator actions

Outline

- Motivation
- JustRunIt design and implementation
- Evaluation
 - Case study 1: resource management
 - Case study 2: hardware upgrades
- Related work
- Conclusion

Target Environment

- Virtualized data centers host multiple independent Internet services
- Each service comprises multiple tiers, e.g. a web tier, an application tier, and a database tier
- Each service has strict negotiated SLAs (Service Level Agreements), e.g. response time
- All services are hosted in VMs for isolation, easy migration, management flexibility

Data Center with JustRunIt

- Creates sandbox
- Clones VMs
- Applies configuration changes
- Duplicates live workload to sandbox

- Properties
 - No effect on on-line services
 - Does not replicate entire service
 - Almost service-independent

Assess performance and energy of different configurations

JustRunIt Architecture

Experimenter

- Step 1: Clone subset of production system to a sandbox
 - VM cloning: Modify Xen live migration to resume original VM instead of destroying it
 - Storage cloning: LVM copy-onwrite snapshot for sandbox VM
 - L2/L3 network address translation: implemented in driver domain netback driver to prevent network address conflict
- Step 2: Apply configuration changes
 - Exs: CPU allocation, frequency

Experimenter

Step 3: Duplicates live workload to sandbox using proxies

- Proxies filter requests/replies from the sandbox VM
- Emulates the timing and functional behavior of preceding and following service tiers
 - Application protocol level requests/replies (e.g. HTTP)

JustRunIt Architecture

Driver

Goal: Fill in results matrix within a time limit

- Corners
- Midpoints (recursive)
- Heuristics
 - Cancel experiments if gain for a resource addition falls below a threshold
 - Cancel experiments for tiers that do not produce the largest gains from a resource addition

JustRunIt Architecture

Interpolator and Checker

For simplicity, we use linear interpolation

 Checker will verify the interpolated result by invoking the experimenter to run corresponding experiments in the background

Cost of JustRunIt

- Building JustRunIt needs human effort also
 - The most time-consuming part is proxies implementation
 - Current proxies understand HTTP, mod_jk, MySQL protocols
 - Developed from an open source proxy daemon, each proxy need 800~1500 new lines of C code
- Cost of VM Cloning: 42 lines of Python code in xend and 244 lines of C in netback driver
- The engineering cost of JustRunIt can be amortized for any service based on the same protocols

Outline

- Motivation
- JustRunIt design and implementation
- Evaluation
 - Case study 1: resource management
 - Case study 2: hardware upgrades
- Related work
- Conclusion

Methodology

- 15 HP Proliant C-class blades (8G, 2 Xeon dual-core) interconnected with Gbit network
- 2 types of 3 tier Internet service
 - RUBiS: online auction service modeled after Ebay.com
 - TPC-W: online book store modeled after Amazon.com
- Xen 3.3 with Linux 2.6.18
- Dom0 pinned to separate core for performance isolation

Overhead on On-line Service?

3-tier service with one node per tier; two nodes for proxies Overhead exposed – slight RT degradation, no effect on TP

Fidelity of The Sandbox Execution?

Application server at 400 requests/second (similar results for higher load)

Automated Management

Case Study 1: Resource Management

- Goal: consolidate the hosted services onto the smallest possible set of nodes, while satisfying all SLAs
- Management entity invokes JustRunIt when response time SLA is violated, or when SLA is met by a large margin
- Management entity uses performance-resource matrix to determine resource needs
- Management entity performs bin packing (via simulated annealing) to minimize number of physical machines and number of VM migrations

Case Study 1: Resource Management

- 9 blades: 2 for first tier; 2 for second tier; 2 for third tier; 3 for load balancing and storage service
- 4 services are populated
- Each VM allocated 50% CPU
- SLA: 50ms
- Service 0 workload is increased to 1500reqs/sec after 2 mins

Resource Management with JustRunIt

Case Study 2: Hardware Upgrades

- Goal: evaluate if hardware upgrade allow further consolidation and lower overall power consumption
- JustRunIt uses one instance of new hardware in sandbox to determine the consolidation savings
- Bin packing determines necessary number of new machines to accommodate production workload

Case Study 2: Hardware Upgrades

 Initial server uses 90% of one CPU core on old hardware (emulate using low frequency mode)

New machine (emulate using high frequency mode) requires 72%

This would allow further consolidation in a large system

Related Work

- Modeling, feedback control, and machine learning for managing data centers [Stewart'05, Stewart'08, Padala'07, Padala'09, Cohen'04]
- Scaling down data centers emulation [Gupta'06, Gupta'08]
- Sandboxing and duplication for managing data centers [Nagaraja'04, Tan'05, Oliveira'06]
- Run experiments quickly [Osogami'06, Osogami'07]
- Selecting experiments to run [Zheng'07, Shivam'08]

Conclusions

- JustRunIt infrastructure combines well with automated management systems
- Answers "what-if" questions realistically and transparently
- Can support a variety of management tasks
- Future investigation
 - Tier interactions
 - Different workload mix
 - Build proxies for a database server

THANK YOU! QUESTIONS?