
Xenprobes, A Lightweight User-space Probing Framework
for Xen Virtual Machine

Nguyen Anh Quynh, Kuniyasu Suzaki
National Institute of Advanced Industrial Science and Technology, Japan.

{nguyen.anhquynh,k.suzaki}@aist.go.jp

Abstract

This paper presents Xenprobes, a lightweight framework
to probe the guest kernels of Xen Virtual Machine. Xen-
probes is useful for various purposes such as as moni-
toring real-time status of production systems, analyzing
performance bottlenecks, logging specific events or trac-
ing problems of Xen-based guest kernel. Compared to
other kernel probe solutions, Xenprobes introduces some
unique advantages. To name a few: First, our framework
puts the the breakpoint handlers in user-space, so it is
significantly easier to develop and debug. Second, Xen-
probes allows to probe multiple guests at the same time.
Last but not least, Xenprobes supports all kind of Oper-
ating Systems supported by Xen.

1 Introduction

Testing and debugging Operating System (OS) kernel is a
hard and tired job of kernel developers. An easy and intu-
itive solution like inserting debug code (such as printk()
function in Linux) into the kernel source, then recompile
it and reboot the system is widely used. Nevertheless,
this technique has a major drawbacks: It is very time-
consuming and slow, especially because compiling ker-
nel might take no less than 30 minutes on old machines.
Moreover, in general commercial OS-es do not provide
the source code for us to modify and recompile in the
first place.

One solution to the problem is to use kernel debug-
ger [16] [10]. However, while kernel debuggers allow
developers to inspect kernel at run-time, a debugger is
not always desirable because it requires user interactiv-
ity. In case the testing and debugging must be done auto-
matically, for example to monitor system status in a long
time, this approach is not up to the task.

Hence the advent of dynamical probing technique,
which allows the developers - at run-time - to specify the
actions when corresponding events happen in the kernel.

Basically this technology dynanmically inserts a break-
point into a running kernel, without having to modify
the kernel source. The place of the breakpoint, usually
specified by its address in kernel address space, is called
probe-point. Each probe associates a probe-point with a
probe handler. A probe handler runs as extension to the
system breakpoint interrupt handler and usually has little
or no dependence on system facilities. Probes are able to
be inserted in the almost everywhere in the kernel, like
interrupt-time, task-time, disabled, inter-context switch
and SMP-enabled code paths, etc...

In Linux world, such a probe framework is Kprobes.
Kprobes was merged into Linux kernel from version
2.6.9, and provides a lightweight interface for kernel
modules to inject probes and register corresponding
probe handlers. Kprobes are intended to be used in test
and development environments. During test, faults may
be injected or simulated by the probing module. In de-
velopment, debugging code, like a printk() function, may
be easily inserted without having to recompile the kernel.

However, solutions like Kprobes have some major
shortcomings. Here are the most notable drawbacks:

1. Probe handlers come in the shape of kernel code,
specifically in kernel module. The problem is that
comparing to programming in user-space, program-
ming in kernel context is limited by many restric-
tions, such as allocating and accessing resource,
short on available library, no floating-point math,
etc... Programming for OS kernel is considered very
complicated and tricky, thus usually requires highly
experienced developers, because a broken code can
make the whole system in-stable.

That is a reason why programming in user-space
is always encouraged over kernel-space. In fact,
there is a basic principle within kernel developer
community: Whatever can be done in user-space,
never do it in kernel-space unless absolutely neces-
sarily. Various attempts from different open source

2007 USENIX Annual Technical ConferenceUSENIX Association 15



projects trying to submit their work to Linux kernel
are rejected, and asked to re-architecture their code
to work in user-space instead.

2. Kprobes cannot put the probes in some places in
the kernel, such as in the code that implements
Kprobes and functions like do page fault() and no-
tifier call chain() [8].

3. Kprobes makes no attempt to prevent probe han-
dlers from stepping on each other – for example
it is not a good idea to probe printk() and then
call printk() from inside the probe handler. If a
probe handler hits a probe, then the second probe’s
handlers will not run in that instance, and the
kprobe.nmissed member of the second probe will be
incremented [8].

4. Kprobes is designed and works for Linux only, thus
the probing code made for Kprobes cannot be easily
reused for other OS-es.

Recently virtual machine (VM) technology has
emerged as one of the hottest topics in computer re-
search. The principle of VM technology is to allow the
creation of many virtual hosts running at the same time
on the same physical machine, each running an instance
of an OS. Obviously VM software such as Xen Virtual
Machine [5] [14] can help to reduce both hardware and
maintenance costs for organizations that need to use vari-
ous machines for different services. Especially Xen even
offers a convenient method of debugging OS kernel, so
it is possible to debug an OS like debugging an user-
process [1].

Taking the advantage of Xen technology, this paper
proposes a framework named Xenprobes for probing
Xen-based guest OS kernel. Similar to Kprobes, Xen-
probes allows developers to dynamically inject probes
into guest VMs at run-time. However, Xenprobes is able
to address the above-mentioned problems of Kprobes:

1. Xenprobes’ handlers completely work in user-
space, therefore significantly easier than Kprobes
to develop the handlers, even with less experienced
programmers. This includes the benefit of using any
library available in user-space.

2. Xenprobes can put the probes at any place in probed
VMs without worrying about conflict.

3. Because the Xenprobes handlers run in user-space
instead of in the kernel of the probed VM, we elim-
inate the problem of stepping on other handlers like
in Kprobes’ case.

4. Xenprobes is OS-independent, and can provide ser-
vice for any OS supported by Xen. In addition, Xen-
probes is designed to support probing multiple VMs
at the same time.

The rest of this paper is organized as followings.
Section 2 briefly covers some background of Xen Vir-
tual Machine and Xen debugging technique. Section
3 presents the architecture and implementation of Xen-
probes framework, while section 4 discusses some is-
sues that can be raised when using the framework. Sec-
tion 5 evaluates the performance overhead of our frame-
work in Linux guest kernels. Section 6 summaries the
related works, and compare their advantage as well as
drawbacks with our approach. Finally we conclude the
paper in section 7.

2 Background on Xen Virtual Machine

Our framework Xenprobes is based on Xen, and ex-
ploits the debugging architecture of Xen to inject soft-
ware breakpoints into probed VM. In this part, we will
take a brief look at Xen technology. After that we dis-
cuss the kernel debugging architecture for Xen VM ver-
sion 3.0.3, the latest version as of this writing, which is
used by our Xenprobes.

2.1 Xen Virtual Machine
Xen is an open source virtual machine monitor initially
developed by the University of Cambridge Computer
Laboratory and now promoted by various industrial play-
ers like Intel, AMD, IBM, HP, RedHat, Novel and by the
open source community. Xen can be used to partition
a machine to support the concurrent execution of multi-
ple operating systems (OS). Xen is outstanding because
the performance overhead introduced by virtualization is
negligible: the slowdown is around 3% only ([4]). Var-
ious practices take the advantages offered by Xen, such
as server consolidation, co-located hosting facilities, dis-
tributed services and application mobility, as well as test-
ing and debugging software.

Basically, Xen is a thin layer of software running on
top the bare hardware. This layer is either called hy-
pervisor or virtual machine monitor. Its main job is to
provide a virtual machine abstraction to the above OS-
es. Running on top of Xen, VM is called Xen domain,
or domain in short. A privileged special domain named
Domain0 (or Dom0 in short) always runs. Dom0 controls
other domains (called User Domain, or DomU in short),
including jobs like start, shutdown, reboot, save, restore
and migrate them between physical machines. Espe-
cially, Dom0 is able to map and access to memory of
other DomUs at run-time.

2
2007 USENIX Annual Technical Conference USENIX Association16



Initially, Xen only supports the para-virtualization
technique, in which Xen exposed a hardware architec-
ture called xen to the VMs, and the OS-es running on
Xen must be modified to work with xen.

Recently, realizing the potential of virtualization, Intel
and AMD launch special CPUs that support virtualiza-
tion at lowest level [7] [2]. Xen takes the advantage of
these processors to provide the full-virtualization tech-
nique, in which all OS-es can run on Xen without any
modification.

2.2 Exceptions Handling in Xen
Xen handles exceptions differently with para-
virtualization and full-virtualization.

• Para-virtualization: In Xen, to manage VMs and
the physical hardware, the hypervisor layer runs at
the highest privilege level (ring 0 in the case of x86
architecture). To provide a strong isolation between
VMs as well as between VMs and the hypervisor,
all the VMs are modified run at lower level (ring
1 in the case of x86 architecture). So are the in-
terrupt handlers of VMs: While normally the in-
terrupt handlers are registered in the interrupt de-
scriptor table (IDT), Xen does not allow VMs to in-
stall their handlers themselves because of the secu-
rity reasons: it cannot give VMs the direct access to
the below hardware. Instead, VM kernels are mod-
ified at source code, so the hypervisor captures the
interrupts instead of letting the VMs handle them.

Specifically, in the asynchronous interrupt case,
also called exception and generated when the sys-
tem executes the INTO, INT1, INT3, BOUND in-
structions or caused by page faults: these exceptions
are processed in the hypervisor layer first instead in
the VM’s kernel. To register handlers, a VM’s ker-
nel is modified to call the hypercall named HYPER-
VISOR set trap table to setup the exception han-
dlers. The handlers are functions initialized at ma-
chine boot time, and managed by hypervisor layer.

• Full-virtualization: Virtualization-enable proces-
sors such as Intel-VT and AMD-V support full vir-
tualization by adding new privileged ring, which is
at a higher privilege level than ring 0. Xen runs this
privilege, and lets the OS-es run in ring 0. In ring 0,
the OS-es run as normally without being aware that
it is managed by the hypervisor run below. Xen vir-
tualizes the processor for VMs on it by intercepting
special instructions and exceptions. In case of de-
bugging related instructions INT1 and INT3, these
interrupts are intercepted as privilege ring transi-
tions, then virtualized exceptions are injected into
related VMs.

For more detail, readers are encouraged to read the
paper [1].

2.3 Debugging Support Architecture in
Xen

Similarly to exceptions, there is a little difference in the
way Xen supports debugging in para-virtualization and
full-virtualization.

• Para-virtualization: In x86 architecture, INT3 is a
breakpoint instruction which is used for debugging
purpose 1. Whenever this instruction is hit, the con-
trol is passed to the exception handler of INT3 in
kernel space. In Xen, the sequence of handling the
INT3 exceptions is as in the following steps:

– When the VM hits the breakpoint instruction,
the exception #BP is raised.

– The system makes a hypervisor switch to give
control to the INT3 handler staying in the hy-
pervisor layer.

– The INT3 handler in hypervisor checks if VM
is in kernel mode. If that is not the case, Xen
returns the control to VM.

– If the exception comes from VM’s kernel, Xen
pauses the VM for inspection.

In fact, the Xen debugger works by exploiting the
mentioned feature: When the debugger server run-
ning in Dom0 detects that the concerned domain is
paused, it comes to inspect the VM’s kernel, then
resume it after it finishes the job [1].

Besides INT3, INT1 is another special interrupt
made for debugging. This interrupt sends the pro-
cessor into the single-step mode, in which after each
construction, the handler of INT1 is called. To make
this happen, we only need to enable the trap flag TF
of the FLAGS register. The processor switches to
normal mode if the TF flag is turned off. And sim-
ilarly to the case of INT3, when the system is in
single-step mode, after each instruction the control
is changed to the INT1 handler at hypervisor layer.
The sequence of handling INT1 is same as in INT3’s
case.

• Full-virtualization: The way Xen handles INT1
and INT3 in full-virtualization is quite straightfor-
ward: when the processor hits INT3, a #BP ex-
ception is raised, resulting in a privilege transition
from to the hypervisor. The hypervisor then simply
pauses the VM for inspection.

1Breakpoint instruction is an one-byte opcode with the value of
0xCC on x86 platform.

3
2007 USENIX Annual Technical ConferenceUSENIX Association 17



The processing of INT1 is similar. For more detail,
please see [1].

3 Xenprobes Architecture and Implemen-
tation

Xenprobes works by modifying the kernel code of
probed VMs at run-time, in which it replaces the in-
struction at the probe-point with a breakpoint instruc-
tion. Xenprobes provides a very lightweight and simple
framework, so the developers can easily employ it and
writes his probing code in user-space of Dom0.

In this section, we present the framework, then go into
detail of the implementation of Xenprobes.

3.1 Xenprobes Framework

In the design of Xenprobes, we take advantage of the
Xen debugging infrastructure: We notice that if we put a
breakpoint into a domain memory, whenever the break-
point is hit in execution, the control is given to the hy-
pervisor, and the domain is paused for inspection. So if
we put the breakpoint handlers in user-space of Dom0
and somehow inform Dom0 about the breakpoint event,
Dom0 can run the corresponding handler and let the han-
dler does everything in user-space.

3.1.1 Xenprobes Types

Xenprobes allows the developers to dynamically inject
breakpoints into any place in a Xen VM, and collect de-
bugging and performance information non-disruptively.
We can trap at any kernel code address, specifying han-
dler functions to be invoked when the probe-point is hit.

We define a Xen probe (or probe in short from now
on) as a set of handlers placed on a certain instruction
address of a specific VM. For convenience, the instruc-
tion address is set in virtual address of that VM, so the
developer can take the address from the kernel symbol
file accompanied the VM kernel binary.

Currently, Xenprobes supports two types of probes,
XProbe - or XP in short - and XrProbe - or XrP in short.
An XP can be placed on any instruction in the kernel. An
XrP is put in the entry of a specified function, and fired
when entering and leaving the function. XrP can be used
to collect information such as parameters and returned
value of kernel functions.

Each XP comes with a pair of functions called pre-
handler and post-handler. When a breakpoint of a par-
ticular VM is hit, the corresponding pre-handler is exe-
cuted just before the execution of the probed instruction.
The post-handler is executed right after the execution of
the probed instruction.

An XrP is also accompanied by two handlers: a entry-
handler and a return-handler. The entry-handler is ex-
ecuted when the probe is first hit, usually when the ex-
ecution enters the probed function. This is the approri-
ate time to gather the parameters of function. When the
probed function returns, the return-handler is fired, and
the returned value of the function can be collected.

The handlers can do other things such as check and
modify registers, inspect and change the memory content
of the probed VM. In addition, because Xenprobes han-
dlers operating in user-space context of Dom0, it is possi-
ble to use use any library available in user-space, as with
any other user-space application. In contrary, Kprobes
handlers run in kernel context instead, thus cannot have
such flexibility.

3.1.2 Xenprobes Framework

The Xenprobes framework has been designed in such a
way that tools for debugging, tracing and logging could
be built by extending it. The framework provides an user-
space library, so the developers can use it to write their
probing applications.

In the design, Xenprobes supports multiple hardware
architectures and hides all the internal complexity in or-
der to give developers a very simple interface to work
with. The framework’s interface is described in C pro-
gramming language with some newly-defined data types
and seven functions as in Figure 1. To employ the frame-
work, developers simply include a C prototype header
file named xenprobes.h, and compile their code with xen-
probes library.

Below is a brief summary of Xenprobes interface.

• xenprobes handle t: Xenprobes defines a new data
type to manage probes, named xenprobes handle t.
Both XP and XrP can be referred to using a variable
of this data type.

• xenprobes handler t: The breakpoint handler can
be defined using a new function pointer type
xenprobes handler t. The handler is a function
with two arguments: a probe handle of xen-
probes handle t type and a pointer to the virtual cpu
structure of cpu user regs. 2

• register xenprobe(): An XP must be registered us-
ing this function. register xenprobe() requires four
arguments: The first is a domain id, which indicates
which Xen VM we want to probe. The second ar-
gument is the address where we want to inject the
breakpoint. For convenience, this is the virtual ad-
dress in the VM. The third and fourth argument are

2cpu user regs is a data type defined by Xen and can be referred to
by including a C header file xenctrl.h from Xen’s libxc library.

4
2007 USENIX Annual Technical Conference USENIX Association18



pre-handler and post-handler, which are called be-
fore and after the original instruction at the probe-
point is executed. One and only one of these last
two arguments can be NULL, and can be used if we
want to ignore the pre- or post- event.

This function returns a handle which will be used as
the first argument of the probe handlers when they
are called. XENPROBES HANDLE ERROR 3 value
is returned in case there is a problem when register-
ing the breakpoint.

• unregister xenprobe(): An XP can be unregistered
using this function. unregister xenprobe() takes
only one parameter, which is a handle returned
when that XP was registered.

• register xenretprobe(): An XrP must be registered
using this function. register xenretprobe() is quite
similar to the register xenprobe(), but the address
argument specifies the entry address of the func-
tion we want to probe. The entry handler argu-
ment specifies the entry-handler function executed
right before the breakpoint instruction is hit, and the
return entry argument specifies the return-handler
function executed right before the probed function
returns. The last argument maxactive indicates how
many instances of the specified function can be
probed simultaneously.

Without the XrP, if we need to inspect the return
point of a function, we may have to put multiple
XPs to cover multiple code paths. But with we use
XrP, we only need to put a single probe at the entry
of the function, and it automatically fires whenever
that function returns, regardless of how it exits.

• unregister xenretprobe(): Similar to XP’s case, an
XrP must be unregistered using this function, which
takes an XrP handle as the only argument.

• xenprobes loop(): When all the probes are success-
fully registered, we can start probing the VMs with
this function. xenprobes loop() sends us into an in-
finite loop, in which Xenprobes waits for the de-
bugging events, that indicates that a particular VM
is waiting for probing, and executes the correspond-
ing handlers. This infinite loop only quits if the xen-
probes stop() function below is called.

• xenprobes enable(): The probe handlers can call
xenprobes enable() function to turn on or turn off
another probe. This function takes two no argu-
ments: the first is corresponding handle, and the

3XENPROBES HANDLE ERROR is a constant value defined in
xenprobes.h

second argument indicates if we want to enable (if
active is 1) or disable (if active is 0) the probe.

• xenprobes stop(): The probe handlers can call
this function to stop probing. xenprobes stop()
takes no argument, and will immediately get xen-
probes loop() out of its loop.

typedef unsigned long xenprobes_handle_t;

typedef int (*xenprobe_handler_t)(
xenprobes_handle_t,
struct cpu_user_regs *);

xenprobes_handle_t register_xenprobe(
domid_t domid,
unsigned long address,
xenprobe_handler_t pre_handler,
xenprobe_handler_t post_handler);

int unregister_xenprobe(
xenprobes_handle_t handle);

xenprobes_handle_t register_xenretprobe(
domid_t domid,
unsigned long address,
xenprobe_handler_t entry_handler,
xenprobe_handler_t returned_handler,
int maxactive);

int unregister_xenretprobe(
xenprobes_handle_t handle);

int xenprobes_loop(void);

int xenprobes_enable(
xenprobes_handle_t handle,
int active);

void xenprobes_stop(void);

Figure 1: Xenprobes framework.

We demonstrate the usage of our framework in two
simple examples in the Figure 2 and Figure 3. Figure 2
gives some hints on how to use an XP to monitor a Linux
VM running on Xen. The XP is registered to watch the
sys open() function, so it can notify us each time the open
system-call is executed. For brevity, the sample assumes
that the probed VM has domain id of 1. We get the vir-
tual addresses of the sys open() function, which is avail-
able with the sys open symbol at the address 0xc01511d0
from the symbol file System.map accompanying the bi-
nary kernel of the Linux VM. The pre-handler of the XP,

5
2007 USENIX Annual Technical ConferenceUSENIX Association 19



function xp open(), prints out each time the open system-
call is executed, for example when we read a file, and
quits the loop after 10 times by calling xenprobes stop()
function. Finally, it removes the XP after the loop with
unregister xenprobe().

Sample in figure 2 hints us how to probe with an XrP.
The XrP is registered to watch the sys unlink() func-
tion (at the address 0xc0161780, corresponding to sym-
bol sys unlink in System.map file.) of domain 1, so it
can notify us the function parameters and returned value
each time the unlink system-call is executed. The entry-
handler xrp entry unlink() prints out the address of the
path-name parameter of the system-call, which is re-
trieved from the second integer above the stack pointer
ESP. The return-handler xrp return unlink prints out the
returned value of the system-call, retrieved from the EAX
register. This returned value indicates the result when
when a file is removed. We want to probe the unlink
system-call at most 8 times at a time. The probe also
quits the loop after 5 times by calling xenprobes stop()
function. Finally, it unregisters the XrP after the loop.

These samples must be compiled with the Xenprobes
library and run in Dom0.

...
static int xp_open(

xenprobes_handle_t handle,
struct cpu_user_regs *regs)

{
static int count=0;
count++;
printf("sys_open: %d\n", count);
if (count == 10)

/*quit probe looping*/
xenprobes_stop();

return 0;
}
...
xenprobes_handle_t h;

h = register_xenprobe(
1, /*domain id*/
0xc01511d0,/*sys_open address*/
xp_open, /*XP handler*/
NULL); /*No post-handler*/

xenprobes_loop(); /*Enter the loop*/
unregister_xenprobe(h);
...

Figure 2: A simple example on how to use XP.

...
static int xrp_entry_unlink(

xenprobes_handle_t handle,
struct cpu_user_regs *regs)

{
unsigned long *stack;
static int count=0;
count++;
stack = &regs->esp;
/*stack[0] = returned address*/
printf("sys_unlink: path-name @%x\n",

(unsigned int)stack[1]);
if (count == 5)

/*quit probe looping*/
xenprobes_stop();

return 0;
}

static int xrp_return_unlink(
xenprobes_handle_t handle,
struct cpu_user_regs *regs)

{
static int count=0;
count++;
/*get the returned value in EAX*/
printf("sys_unlink returned: %d\n",

regs->eax);
if (count == 5)

/*quit probe looping*/
xenprobes_stop();

return 0;
}
...
xenprobes_handle_t h;

h = register_xenretprobe(
1, /*domain id*/
0xc0161780, /*sys_unlink addr*/
xrp_entry_unlink, /*entry-handler*/
xrp_return_unlink,/*return-handler*/
8); /*At most 8 probes handled*/

xenprobes_loop(); /* Enter the loop */
unregister_xenretprobe(h);
...

Figure 3: A simple example on how to use XrP to retrieve
function parameters and returned value.

6
2007 USENIX Annual Technical Conference USENIX Association20



3.2 Xenprobes Implementation

Xenprobes heavily depends on specific features of pro-
cessor architecture and uses different mechanisms de-
pending on the architecture on which it is being exe-
cuted. At the moment, Xenprobes is available on i386
and x86 64 architectures.

Xenprobes is provided in a shaped of an user-space
library named xenprobes in Dom0. Totally the code is
around less than 4000 lines of C source code, in which
the architecture-dependent code is around 1000 lines.

3.2.1 Performance Challenges

One of the first challenges when we implemented Xen-
probes is the performance penalty problem: every time
a breakpoint is hit leads to several hyper-switches: first
is a switch from the probed VM kernel to the hypervi-
sor; second is a switch from hypervisor to Dom0 to have
Xenprobes handled the breakpoint event; and finally the
control is given back to the probed VM. These switch-
ings can cause a lot of negative impact to to the overall
performance of the probed VM.

When we first investigated the problem, we thought it
was a good idea to employ the same tactic of the cur-
rent Xen kernel debugger to monitor VM, because the
Xen debugger also exploits breakpoint mechanism to in-
spect VM’s kernel at run-time ([1]). However, this ap-
proach has a disadvantage that can badly affect the sys-
tem performance: the debugger in Dom0 detects the de-
bugging event by periodically polling VM’s status to see
if it is paused 4, which is the evidence that the breakpoint
was hit. By default the checking interval is 10 million
nanoseconds, which means breakpoints cannot be pro-
cessed immediately if they come between the checking
time. For debugging purpose, that is not a major concern
because performance is not a priority. But for our tar-
get, that is unfortunately unacceptable because the whole
process slows down significantly.

To address the problem, we decide not to adopt the
mentioned polling tactic of the Xen kernel debugger. In-
stead we exploit a special feature of the debugging ar-
chitecture in Xen: no matter whether the VM is para-
virtualization or full-virtualization, whenever the hyper-
visor gets debugging control given to it from its VMs
5, the hypervisor sends an event to Dom0 to notify any
potential debugger running there. While the standard de-
bugger does not use this feature, we do employ it, and
have Xenprobes handled the debugging event. To do
that, Xenprobes only needs to put the protected VM into

4This can be done thanks to the Xen’s libxc function
xc waitdomain().

5This means either the processor hits the breakpoint, or it is put into
the single-step mode

the debugging mode 6, and binds to the virtual interrupt
VIRQ DEBUGGER, which is dedicated for debugging
event, to get notified by the hypervisor. Thanks to this
strategy, Xenprobes is instantly aware when probed VMs
hits the breakpoints, therefore does not need to poll VMs
for the paused status. Some experiements demonstrate
that our approach significantly improves the overall per-
formance.

3.2.2 Access VM’s Kernel Memory

In Xenprobes architecture, we need to read and write to
VM’s kernel memory, for example to read the original in-
struction at probe-point and overwrite it with the break-
point. In order to access to a specific virtual address of
VM, we must first translate it into physical address. Cur-
rently Xen support several kinds of architecture: x86 32,
x86 32p and x86 64, and each of these platforms has dif-
ferent schemes of paging memory. Hence Xenprobes
must detect the underlying hardware, and then translates
the virtual memory accordingly by traversing the page
table tree.

To traverse the page table tree, it is imperative to know
the physical address of the page directory. In Xen, we
can have the virtual control register cr3 of each vir-
tual CPU of VM by getting corresponding CPU context
via Xen function xc vcpu getcontext() [17]. Besides, as
Xen supports several architectures such as x86, PAE and
x86 64 (thus different page-table formats), Xenprobes
must handle the page-table accordingly to convert the
virtual address to physical address.

After that, Xenprobes accesses memory of VM by
mapping the physical address with the function named
xc map foreign range() [17]. Then it goes on reading or
writing to the mapped memory 7.

To ensure integrity, each read or write access to the
VM requires pausing it, and we need to resume it back
after finishing.

3.2.3 Out-of-line Execution Area

Regarding the technique of handling the breakpoints,
Xenprobes adopts the same solution proposed by
Kprobes [8] [11], with some modifications. Basically
Xenprobes replaces the instruction at the probe-point
with a breakpoint. The original instruction at that point is
copied to a separate area, which is executed when Xen-
probes handles the breakpoint event. We call this area
“Out-of-line Execution Area” or OEA in short.

Regarding the size of each OEA: besides storing the
original instruction, each OEA must also have enough

6This can be done with a domain control hypercall, with the special
command XEN DOMCTL setdebugging.

7This depends on the mapped access is PROT READ (read) or
PROT WRITE (write).

7
2007 USENIX Annual Technical ConferenceUSENIX Association 21



space for one relative jump instruction, which is used
to jump back to the instruction next to the original in-
struction. Because the instruction size varies on different
architectures, we move the code handling OEA into the
architecture layer of Xenprobes.

This approach raises a question: how to have the OEA
for each probe? Kprobes solves this issue simply by al-
locating an area of memory as OEA for each registered
probe, and frees the OEA when unregistering the probe.
In principle, a new OEA is assigned on demand when-
ever there is a need for a new probe.

However, this technique cannot be employed in our
case: the probes are registered from user-space of Dom0
instead of from inside the corresponding kernel as with
Kprobes. If we need to allocate an OEA for a new probe,
there is no clean way to ask the probed VM to allocate
the new chunk of memory inside its kernel for us.

We solve the problem by a simple method: We pre-
allocate a fixed area of memory from inside the probed
VM to store the OEAs for upcoming probes. We split
the area into contiguous, non-overlap chunks of mem-
ory, and each chunk can be used as one OEA. When a
new probe is registered, a free chunk will be given to
that probe and the probe will use it as OEA. Xenprobes
manages all the chunks from Dom0 with a bitmap struc-
ture, which indicates which chunk is in-use, which chunk
is still free, thus can be allocated. Whenever a probe is
unregistered, its associated OEA chunk is recovered for
other demands.

To allocate the area of memory for OEAs, each VM
that wants to support Xenprobes must be loaded with a
kernel module. We provides such a module for Linux
VM, named xenprobesU. This module is very simple: the
only job of it is to allocate a configurable size of memory.
The virtual address of this area and its size are then sent
to Dom0 using the XenBus [17] interface . These val-
ues will be picked up from the Xenstore [17] in Dom0,
and Xenprobes can then determine how many OEAs are
available for each probed VM. More discussions on this
issue are delayed to section 4.

3.2.4 Probes Registration

There are some differences on the way Xenprobes pro-
cesses registration for XP and XrP.

• XP Registration: Registering an XP probe leads to
allocate a dynamic memory in user-space of Dom0
for a new probe. All the probes are managed in
a hash list, and the new probe is added to the list.
Similarly to Kprobes, Xenprobes supports multiple
probes, called aggregate probes by Kprobes, at the
same probe-point. That allows the developers to
register more than one probe at the same instruc-
tion address. All the probes have a list of aggregate

probes named aggregate list, which is NULL nor-
mally. When a new probe needs to register at the
same address, Xenprobes puts it in the aggregate
list of the first probe, and execute the handlers of all
the probes in the list, one by one and in the order,
when the breakpoint at that address is hit at execu-
tion.

After allocating memory for the new probe, the con-
trol is given to the architecture dependent code, in
which the probe is prepared according to specific
characteristics of the architecture. Xenprobes gets
one free OEA for the probe. Then the instruction
at the probe-point is copied to the OEA. Note that
OEA stays inside the probed VM, so this steps re-
quires one read and one write access to the VM’s
memory: the instruction is firstly read from the
probe-point, then it is immediately written to the
OEA.

To speed up the procedure of breakpoint han-
dling, we employ the booster technique proposed
by Kprobes started from Linux kernel 2.6.17 [1].
The instruction at the probe-point is first checked to
see if it is boostable 8. The boostable instruction
makes the probe boostable, and allow us to execute
the instruction as if in inline case. The trick is to
use a relative jump instruction to come back to the
instruction next to the probe-point. This technique
allows us to skip the single-step mode, thus signifi-
cantly improve the performance.

Any failure in allocating memory or
preparing the probe return the error XEN-
PROBES HANDLE ERROR. The system variable
errno will be set to indicate what went wrong.

An XP probe can be unregistered after finish-
ing probing. The framework function unregis-
ter xenprobe() removes the probe from the hash list
of probes, then frees the OEA for later usage, and
recovers the original instruction at the probe-point.
After that, execution hit this point will not raise
Xenprobes handler any more.

• XrP Registration: XrP actually builds on top XP
to avoid duplicating code. When registering an XrP
with the register xenretprobe() function, Xenprobes
puts a entry-XP at the entry of the probed func-
tion, and uses the entry-handler argument as the
pre-handler of the entry-XP. Note that this entry-
XP does not have the post-handler (in fact its post-
handler has the NULL value). When the probed

8Boostable instructions are all instructions not belong to the set of
unboostable instructions like relative jumps, relative calls or instruc-
tions that has hardware side-effect [11].

8

2007 USENIX Annual Technical Conference USENIX Association22



function is executed and this entry-XP is hit, Xen-
probes saves a copy of the function’s return address,
and replaces it with the address of a trampoline-XrP
in the probed VM.

The trampoline-XrP routine is actually a piece of
code provided by the xenprobesU module, in which
its only job is to execute a breakpoint (INT3 instruc-
tion in i386 case). The address of this trampoline-
XrP is also sent to Xenprobes via XenBus/Xenstore
at initialization time together with the information
about OEA memory.

The maxactive parameter specifies how many in-
stances of the function can be probed at the same
time, and register xenretprobe() will preallocate
enough memory to save the return address of the
function. For example, if the function is non-
recursive and is called with a spinlock held in the
kernel, maxactive can get the value of 1. If the func-
tion is non-recursive and can never relinquish the
CPU (like via a semaphore or preemption), we can
set this parameter to the number of virtual cpus that
the probed VM has.

One problem Xenprobes must handle is that when a
VM is shutdown, all the probes as well as OEA memory
is gone. Regarding this issue, Xenprobes watches for
the shutdown VM by registering the built-in Xen watch
@releaseDomain [17]. When this watch is fired, which
indicates that the VM is not existent anymore, Xenprobes
removes all the probes of the related VM.

3.2.5 Handling Probes

After probe registration step, the probing process starts
by executing xenprobes loop(). Firstly, this func-
tion registers to get notified by the hypervisor on
debugging event by binding to the virtual interrupt
VIRQ DEBUGGER. Then it switches all the probed
VMs to debugging mode and enters an infinite loop. In
this loop, we listens for the debugging events sent from
Xen. When a breakpoint is hit inside the kernel of a
probed VM, the hypervisor pauses it, and sends a de-
bugging event to notify Dom0. As the xenprobes loop()
registers to get the event, it comes up to handle the break-
point. The procedure at this step is also different for XP
and XrP, as followings.

• XP Handling: The XP is processed in the following
sequences:

(1) Find the XP probe related to this debugging
event. After that we get the registers of the
probed VM 9, which is later given to the probe

9Registers of a VM can be retrieved with the libxc function
xc vcpu getcontext().

handlers as a function parameter. If the pro-
cessor is handling single-step mode, go to the
step (3). Otherwise, we are handling break-
point, so we execute the pre-handler of the
probe. In case this is an aggregate probe, ex-
ecute all the pre-handlers got from the aggre-
gate list.

(2) Point the instruction register 10 of the probed
VM to the head of the OEA of the probe. As
the OEA saves the original instruction at the
probe-point, this will execute the original in-
struction. Then if the instruction is boostable,
and there is no post-handler, go to the step (4).
Otherwise, put the probed VM into the single-
step mode 11. The modified VM context which
includes the new register value is updated 12.
After that, the probed VM is resumed.

(3) The instruction in the OEA is executed. As
the processor is in single-step mode, it traps
back to the hypervisor, and another debug-
ging event is sent to xenprobes loop(). At
this point, we execute the post-handler of the
probe. After that, we fix the instruction pointer
to point it to the instruction next to the orig-
inal instruction at the probe-point. Then we
resume the probed VM, and let it run nor-
mally, and wait for the the next breakpoint
event (Do not go to the next step, as it handles
the boostable-only instruction).

(4) The instruction is boostable, so we just run the
original instruction by pointing the instruction
pointer to OEA, update the VM’s context and
resume the probed VM. The loop repeats with
the next debugging events.

Actually there is a hidden procedure in the step (3)
above: We must prepare for the boost in the first
ever single-step time in case the instruction is boost-
able. We use information on the first probe hit to de-
termine the location to put the jump instruction after
the instruction at the head of OEA, as presented in
[1]. So even if the instruction is boostable, we will
execute it in single-step once in the first ever time
the breakpoint is hit, but from the second time we
can skip it and just run the OEA directly.

In conclusion, an XP causes at least one hyper-
switch to Dom0. Ideally, probed instruction is
boostable and there is no post-handler, Xenprobes

10On i386, that is the EIP register.
11On i386, this can be done by enabling the trap flag (TF) of the

FLAGS register.
12Xen VM context can be set with the libxc function

xc vcpu setcontext().

2007 USENIX Annual Technical ConferenceUSENIX Association 23



only has to switch out once to execute the pre-
hancler in Dom0. In the worse case, when the above
condition is not satisfied, we have to single-step the
probed instruction in OEA, thus need the second
switch after single-step. Of course in term of per-
formance, that causes negative impact to the VM.

• XrP Handling: Note that because XrP employs XP
in its design, the handling procedure of its XP is
similar to the above descriptions. However, there
are few differences when it comes to execute its
handlers.

– When the probed function is executed, its
entry-XP is hit. We switch out to Dom0
and execute its pre-handler, which is in fact
the entry-handler of the registered XrP. After
that, Xenprobes saves the return address of the
probed function in a structure for the corre-
sponding XrP. Remember that when register-
ing the XrP, we must specify how many in-
stances of the function can be probed simulta-
neously with the argument maxactive. How-
ever, if this limit is reached, Xenprobes does
not save the return address, but simply in-
creases the missed number in the XrP struc-
ture for the developers to investigate.
After the above steps, Xenprobes overwrites
the return address of the probed function with
the address of the trampoline-XrP, and re-
sumes the VM.

– When the probed function returns, the
trampoline-XrP is called. This code executes
a breakpoint instruction as explained above.
This action causes another switch to Dom0,
and lets Xenprobes execute the return-handler
of the XrP. After that, Xenprobes overwrites
the return address of the probed function,
and point the instruction pointer to this ad-
dress. Finally, Xenprobes resumes the VM,
which continues to execute at the return ad-
dress of the probed function. The loop repeats
and Xenprobes continues to wait for the next
probes.

In conclusion, an XrP causes at least two hyper-
switches to Dom0. In case the entry instruction is
boostable (which is mostly the case), we have the
first switch when the probed function is hit at en-
try time. At the end, when the function returns we
have to switch out once more to execute the return-
handler.

In the worse case, when the entry instruction is not
boostable, we have to suffer two more hyperswitch

for single-step: one is for the entry probe, another
is for the return probe. However, as the first few
instructions of the function prologue never have un-
boostable instructions 13, it is very unlikely that we
have such a problem [11].

At any moment, a probe handler can enable or dis-
able another probe with the xenprobes enable() function.
This operation is done by overwriting the probe-point
with the breakpoint instruction (in case we want to ac-
tivate the probe) or the original instruction (in case we
want to deactivate the probe).

For both XP and XrP handlers, it is possible to quit the
probing loop anytime by calling the framework function
xenprobes stop().

4 Discussion

While the Xenprobes framework is very simple and easy
to use, there are some doubts about how much memory is
enough for OEA, which place we should put the break-
points and how to properly access the kernel objects of
the probed VM from our handlers. This section is dedi-
cated to discuss these issues.

4.1 OEA Memory Allocation

In our approach, we preallocate an area of memory in
the probed VM and use it as OEAs for Xprobes. This
can be done thanks to the kernel module xenprobesU
loaded inside the VM. Regarding the size of this con-
figurable area, the developer must anticipate how many
probes he wishes to have at the same time. For exam-
ple, assume that we never use more than 100 probes at
once. Each OEA must be able to store one machine in-
struction and one relative jump instruction, as explained
above. In i386, the maximum size of one instruction is
16 bytes, and a relative jump instruction has the fixed
size of 5 bytes. Therefore one OEA should have the size
of 21 bytes at least. Since we need to have 100 probes,
the total size of memory for all the OEAs is (21 * 100)
= 2100 bytes. So in this case, xenprobesU preallocates
one page of memory, which is 4096 bytes on i386, for
OEA at initializing, and that is more than enough for our
purpose.

An issue might be raised here: this approach does not
allow us extend the memory once we reach the limit of
probes. We solve the problem by let Xenprobes notify
the probed VM once it sees that the memory is going to
run out soon, so xenprobesU can allocate a new area of
memory for it to use. The notifications regarding new

13Instructions such as relative jump, call, software interrupts or that
cause hardware side-effects are all unboostable.

2007 USENIX Annual Technical Conference USENIX Association24



memory area for more OEAs between Xenprobes and
xenprobesU are done via XenBus/Xenstore interface.

4.2 Probe Address
Regarding the breakpoints, one of the major concerns is
that how can we know exactly where we must put the
breakpoints into the probed VM kernel? An intuitive an-
swer for this question is to rely on the kernel source, and
and we can decide to put the breakpoints at the addresses
corresponding to related lines of source code. Clearly
this is a convenient way, because we can inspect the code
and see where is the best place to intercept the system
flow. So if we know the address in the memory of related
lines of code, we can put the breakpoints there. But then,
we have another question: how to determine the address
of related lines of code?

Fortunately, this problem can be solved quite easily
thanks to debugging information coming with kernel bi-
nary. In fact, we can exploit a feature made for kernel de-
bugger: If the kernel is compiled with debug option, the
kernel binary stores detail information in DWARF format
about the kernel-types, kernel variables and, most impor-
tantly to our purpose, the kernel address of every source
code line [6]. As a result, we only need to compile VM’s
kernel with debug option on, and analyze the kernel bi-
nary to get the kernel addresses of the source code lines
we want to insert the breakpoints to. Note that this option
only generates a big debugged kernel binary file besides
the normal kernel binary, and this debugged kernel saves
all the information valuable for debugging process. We
can still use the normal kernel binary, thus the above re-
quirement does not affect our system at all.

Another choice is to reverse the kernel binary with de-
bugging data, using a tool such as objdump (1). Option
-d of objdump disassembles the machine instructions of
the kernel binary, and inform us the virtual address of
each instruction, together with the corresponding line of
kernel source code. We can investigate the output and
easily choose where is the most approriate place to put
the probes.

4.3 Accessing VM’s Objects
Usually when writing the breakpoint handlers, we want
to access to the kernel of the probed VM to inspect its
internal status and collect desired information. Here we
have a key challenge: how to bridge the semantic gap
between the raw memory and kernel objects. To do that,
we must be able to have a good knowledge about the OS
structure of the VM, so we can have the exact addresses
and structures of its kernel objects.

* Object’s address: In the case of Linux, each global
defined object in the kernel is located at a certain

memory address, and kept unchanged during its
life-time 14. We can find the address of Linux ker-
nel objects via the kernel symbol file System.map
coming with the kernel binary.

* Object structure: Knowing only the object address
is far from enough. For example, in Linux if we
want to get the list of kernel modules, first we must
retrieve the address of the first kernel module, the
global variable modules. But then to get the next
kernel module pointed by a field named list.next in
the module structure, we must know the relative ad-
dress of this field in the structure. This job is not
trivial, as the module structure depends on kernel
compiled option, and it might also change between
kernel versions 15.

To extract data about kernel-types, we leverage part
of code of LKCD project [15]. LKCD is an open
source tool to save and analyze the Linux kernel
dump. LKCD can parse the dump thanks to an inter-
nal library libklib, which extract all the information
it needs from the DWARF data in the kernel binary
as well as from the kernel symbol file. This library
parses the kernel symbols and extracts kernel-types
from debugged kernel binary, then caches the data
in the memory for its tool named lcrash to use. Be-
sides, libklib also interprets lcrash command, and
serves as a disassemble engine for various hardware
platforms. Because of these reasons, libklib is a
very big and complicated code, thus cannot be em-
ployed as it is. Another problem is that libklib is
designed to analyze kernel dump, but not to cope
with hostile data. So if somehow the attacker mod-
ifies the kernel structure in malicious way, libklib
might crash.

In our experiment, we only reused part of libklib,
in which we only keeps the code that extracts and
parses kernel-type information from kernel binary.
The library is also hardened to resist potential at-
tacks. Finally, our kernel parse code is around only
14000 lines of C source code, which is about 30%
size of the original libklib. We plan to include this
work into Xenprobes library, so it can be available
for all the programs that use our framework.

5 Evaluation

This section presents the performance evaluation of Xen-
probes framework comparing with the native speed. The

14Note that Linux kernel memory is never swapped out.
15Linux kernel never tries to keep compatible between different ver-

sions. The Linux kernel developers argue that backward compatibility
might block its continuous innovation.

1
2007 USENIX Annual Technical ConferenceUSENIX Association 25



evaluation is done on a para-virtualization Linux VM, the
most stable OS platform supported by Xen we have as of
this writing. Each benchmark is done in 10 times, and
we get the average numbers as the final result.

The configuration of the Xen VMs in the benchmarks
are as below:
Dom0: Memory: 384MB RAM, CPU: AthlonXP 2500,
IDE HDD: 40GB.
DomU: Memory: 128MB RAM, file-backed swap parti-
tion: 512MB, file-backed root partition: 2GB

All the VMs in the tests run Linux Ubuntu distribution
(version Breezy Badger).

5.1 Microbenchmark
In the first benchmark, we want to measure how much
overhead an XP and XrP can cause to a probed VM. To
do that we employ the popular microbenchmark lmbench
[12]. We inject four probes of XP and XrP into the VM,
one at a time, and in the following system-calls: getppid,
read, write and open. Specifically, we put the handlers
at the entry of the sys getppid(), sys read(), sys write(),
sys open() functions, respectively. In order to measure
the overhead exactly, we use null handlers, which are
functions doing nothing in the body. We carry out three
evaluations: The first, named Native, runs the benchmark
on the native VM without any probe. The second, named
XP, registeres the XP with only a null pre-handler. The
third evaluation, named XrP, registers null entry-handler
and return-handler.

Note that since we place the handlers at the entry of
these functions, they are always put at boostable instruc-
tion, so the handling process never suffer a sing-step
mode.

The benchmark is done with the commands
“lat syscall null”, “lat syscall read”, “lat syscall
write” and “lat syscall open” to measure the overhead
on the system-calls getppid, read, write and open,
respectively. These commands will tell us the latency
of these system-calls. Table 1 shows the result of the
benchmarks - all the numbers are in microseconds. Next
to each number is the overhead compared to the native
test, in number of times.

Native XrP XP
null 0.2664 107.6731 ( 404.17) 48.1009 ( 180.55)
read 0.4732 129.1951 ( 273.02) 49.6081 ( 104.83)
write 0.4162 108.8627 ( 261.56) 49.6027 ( 119.19)
open 4.0706 117.8936 ( 28.96) 59.7527 ( 14.67)

Table 1: Microbenchmark Xenprobes with null handler
for XP and XrP.

The benchmarks show us that injecting probes into
VM causes quite a big overhead. The null benchmark

causes the highest penalty for both XrP and XP (404.17
and 180.55 times, respectively) because getppid is a
rather simple system-call, thus the main overhead gen-
erated is from the switches between the VM, hypervisor
and Dom0 when the breakpoint is hit. Meanwhile, the
open system-call is the most complicated function of all,
so the contribute of the penalty by our probes to the over-
all latency is much more decreased: it is only 28.96 and
14.67 times slower, respectively for XrP and XP.

The notable observation is that in all benchmark, the
XrP causes around more than twice overhead compared
to the XP. The reason is pretty clear: XrP with two han-
dlers always switches out from its VM twice more than
XP with only a pre-handler. In addition, XrP must take
time to read and write to the return address of the probed
function when the entry function is executed, and when
the function returns. These job also causes significant
time, as accessing the VM’s memory is quite an expen-
sive operation.

5.2 Macrobenchmark

Besides the microbenchmark, we also evaluate Xen-
probes in a more reality case with a classical bench-
mark: decompressing the Linux kernel source. The rea-
son we take this benchmark because Linux kernel con-
tains a lot of data, and the decompress process creates
a great number of files and directories. For example
unzipping the kernel 2.6.17 generates more than 27000
files and directories, including temporary data. This time
we install probes into three system-calls: mkdir, chmod,
open. These sytem-calls are triggered when making di-
rectory, chmod-ing directories and files, and opening
files. These exercises are done quite a lot during un-
ziping kernel: 1201, 1201 and 19584 times respectively
for mkdir, chmod and open 16. Similarly to the micro
benchmark above, this time we also put three XPs (with
only null pre-handlers) and three XrPs (with null entry-
handlers and return-handlers) , respectively, into the en-
tries of these system-calls.

The benchmark decompresses the Linux kernel 2.6.17
with the command “time tar xjvf linux-2.6.17.tar.bz2”.
Table 2 shows the time to complete the benchmark - all
the numbers are in seconds:

Native XrP XP
real 76.781 106.743 81.631
user 44.870 47.360 45.750
sys 5.260 18.380 8.400

Table 2: Macrobenchmark XP and XrP with mkdir-
chmod-open system-calls and null handlers.

16From these numbers, we can safely say that if a new directory is
created, it is then immediately chmod.

2007 USENIX Annual Technical Conference USENIX Association26



We can see that while the microbenchmark suggests
that the probed VM causes very high overhead, in real-
ity the impact is not that much: XP evaluation causes
only around 6.31% penalty, and XrP evaluation causes
around 39.02% overhead. Again, this benchmark shows
that probing with XP is significantly faster than XrP. An-
other observation is that the system mainly suffers in ker-
nel execution, but not in user-space.

In another attempt to measure the impact when more
probes are used and put at more performance critical
places, we run another test. This time, along with three
probes in the above benchmark, we put two more probes
(XPs and XrPs, respectively) into the read and write
system-calls. These system-calls are executed in a great
number of times when the kernel is unzipped: 78011
times and 139981 times for read and write, respectively.

The kernel unzip benchmark gives us the result below,
in Table 3. All the numbers are in seconds.

Native XrP XP
real 76.781 165.187 94.572
user 44.870 45.050 44.930
sys 5.260 28.800 16.000

Table 3: Macrobenchmark XP and XrP with read-write-
mkdir-chmod-open system-calls and null handlers.

Again, we can confirm that even with probes placed at
critical execution path in kernel, the performance penalty
is not too high. Especially, this benchmark shows the ma-
jor improvements of XP against XrP: 23.17% overhead
compares with 115.14% overhead.

Our conclusion is that Xenprobes can be employed
to inspect VM’s status at run-time without causing too
much overhead.

6 Related Works

Our work is strongly inspired by Kprobes, a probing
framework available in Linux kernel. Kprobes is widely
used for kernel tracing [13] and performance evaluation.

When using Xenprobes for the same job on Xen VMs,
our framework has some advantages over Kprobes as
mentioned in section 1. Besides, Xenprobes brings sev-
eral benefits as followings.

• When programming Xenprobes handler, we do not
need to worry about page-fault problem, as we work
in user-space of Dom0. Kprobes handlers must not
cause other exceptions such as page-fault. Though
Kprobes allows to specify an user-define page-fault
handler to handle the issue, the specified page-
fault handler cannot always solve the problem. The
Kprobes developers are still working to make the
Kprobes fault handling more robust.

• Xenprobes has no problem of reentry as with
Kprobes [8].

However, Xenprobes suffers a drawback comparing
with Kprobes: Kprobes works in Linux and can inter-
act with the real hardware, thus can be used to monitor
and debug all kind of hardware devices. Because Xen
VMs cannot work with real hardware, but use the virtual
hardware provided by hypervisor, Xenprobes cannot be
used to debug arbitrary device drivers. Actually this is a
fundamental issue of Xen, rather than Xenprobes.

Another notable difference with Kprobes is that be-
sides “normal” probe, Kprobes supports two other types:
Jprobes and Function-return probes [11]. Jprobes is
mainly used to gather the probed function parameters,
and Function-return probes is used to get the returned
value of probed function. Actually from our observa-
tion, it is quite common for developers to employ both
of these two type of probes at the same time. Therefore,
we strongly believe that it is better to combine them, and
Xenprobes framework realizes our idea: it is possible to
collect both function parameters and returned value with
only one XrP probe.

Technically, XrP is inspired by an old version of
function-return probes of Kprobes: Until Linux kernel
version 2.6.16, Kprobes also employs the “trampoline”
technique with two Kprobes to handle the function at re-
turn time. But from version 2.6.17, Kprobes uses a new
technique, in which the probe for the trampoline is elimi-
nated by some assembly code that saves and recovers the
return address. The reason we adopt the old technique of
Kprobes for XrP is that because we need two switches to
Dom0: first is to execute the entry-handler, and second is
to execute the return-handler.

Xenprobes exploits the debugging architecture intro-
duced by Xen. Xen also has built-in support for debug-
ging VM kernel at run-time with gdb [1]. However, as
we discussed in the first section, debugging tool does not
allow automatic monitoring and probing VM. That is the
gap our framework tries to fill in.

Our work shares some ideas with the work of K.Arigos
et.al in [3]: their paper also proposes to put breakpoints
into Xen VMs to get notified when interested events oc-
cur. However, the way we handle debugging events is
quite different from [3]: their proposal pushes the break-
point handlers into the hypervisor layer, and loads the
handling policy from Dom0 to hypervisor via an add-in
hypercall. Their idea is to let the hypervisor capture the
breakpoint events and analyze them there. In order to do
that, the authors made quite a big modification to the hy-
pervisor layer (around 2700 lines of code), which they
also mentioned as belong to the Trusted Computing Base
(TCB), the critical and core component required to en-
force the system security. We would argue that it is not

1
2007 USENIX Annual Technical ConferenceUSENIX Association 27



desired to make such a major change to such an impor-
tant component, because it makes the whole system less
stable, less secure as well as increase the maintenance
cost 17. In our solution, Xenprobes takes the advantage
of the Xen debugging technique, thus makes absolutely
no modification to the hypervisor.

Another disadvantage of putting all breakpoint han-
dlers inside the hypervisor is that every time we wish to
modify the probe handlers, we have to to alter then re-
compile the hypervisor, and the system must be rebooted
for the change to take effect. Meanwhile, Xenprobes puts
all the handlers in user-space, which makes them very
easy and convenient to work with. All the development
are done in Dom0, and requires no recompilation or re-
boot whatsoever to the hypervisor.

Last but not least, we go further in providing a frame-
work for injecting breakpoints into the VM, so it can be
employed by other projects, not only for security pur-
pose. We are going to publish the code of Xenprobes
under open source license (GPL) for everybody to use.

7 Conclusions

This paper describes Xenprobes, a novel framework that
allows developers to probe Xen VM’s kernel in a more
convenient way. In designing Xenprobes, we exploit
the infrastructure available for Xen debugging architec-
ture, so the framework offers several interesting bene-
fits in a very simple and easy-to-use interface. Most im-
portantly, Xenprobes allows developers to program their
probe handlers in user-space, and it is possible to probe
multiple VM at the same time. Because our approach
is independent of OS, all the OS-es are supported, even
closed source ones such as Microsoft Windows.

Regarding the performance penalty caused by Xen-
probes, we believe that the impact is acceptable and can
be used in production systems.

Xenprobes internal has quite many things in com-
mon with Kprobes, so we believe that it can be eas-
ily adopted by the developers who are currently familiar
with Kprobes.

We are going to release Xenprobes under the open
source GPL license, with the hope that it can attract more
interests and become useful for many people.

While the technique to probe guest machine in this pa-
per is specifically described on Xen environment, there
is no reason why it does not work on other kind of vir-
tual machine. We are working to have a similar frame-
work on KVM [9], a virtual machine technology based
on virtualization-enable processor 18.

17Xen layer can change anytime, and actually always under active
development as of this writing.

18KVM has been merged into Linux kernel since version 2.6.20.

References
[1] A.KAMBLE, N., NAKAJIMA, J., AND K.MALLICK, A. Evolu-

tion in kernel debugging using hardware virtualization with Xen.
In Proceedings of the 2006 Ottawa Linux Symposium (Ottawa,
Canada, July 2006).

[2] AMD CORP. AMD64 Architecture Programmer’s
Manual Volume 2: System Programming. http:
//www.amd.com/us-en/assets/content type/
white papers and tech docs/24593.pdf, 2005.

[3] ASRIGO, K., LITTY, L., , AND LIE, D. Virtual machine-based
honeypot monitoring. In Proceedings of the 2nd international
conference on Virtual Execution Environments (New York, NY,
USA, June 2006), ACM Press.

[4] CLARK, B., DESHANE, T., DOW, E., EVANCHIK, S., FIN-
LAYSON, M., HERNE, J., AND MATTHEWS, J. N. Xen and
the art of repeated research. In Proceedings of the Usenix annual
technical conference, Freenix track. (July 2004), pp. 135–144.

[5] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
PRATT, I., WARFIELD, A., BARHAM, P., AND NEUGEBAUER,
R. Xen and the art of virtualization. In Proceedings of the ACM
Symposium on Operating Systems Principles (October 2003).

[6] DWARF WORKGROUP. DWARF Debugging Format Stan-
dard. http://dwarf.freestandards.org/Home.php,
January 2006.

[7] INTEL CORP. Intel Virtualization Technology. http:
//www.intel.com/technology/virtualization/
index.htm, 2006.

[8] JIM KENISTON AND PRASANNA PANCHAMUKHI. Kprobes
Documentation. linux-kernel/Documentation/
kprobes.txt, October 2006.

[9] KVM PROJECT. KVM: Kernel based Virtual Machine. http:
//kvm.qumranet.com, 2006.

[10] LINSYSSOFT TECHNOLOGIES LTD. KGDB: Linux kernel
source level debugger. http://kgdb.linsyssoft.com/,
2006.

[11] MAVINAKAYANAHALLI, A., PANCHAMUKHI, P., AND KENIS-
TON, J. Probing the Guts of Kprobes. In Proceedings of The
Linux Symposium 2006 (July 2006).

[12] MCVOY, L., AND STAELIN, C. LMbench - Tools for Perfor-
mance Analysis. http://lmbench.sf.net, August 2004.

[13] PANCHAMUKHI, P. Kernel debugging with Kprobes.
http://www-128.ibm.com/developerworks/
library/l-kprobes.html, 2004.

[14] PRATT, I., FRASER, K., HAND, S., LIMPACH, C., WARFIELD,
A., MAGENHEIMER, D., NAKAJIMA, J., AND MALLICK, A.
Xen 3.0 and the art of virtualization. In Proceedings of the 2005
Ottawa Linux Symposium (Ottawa, Canada, July 2005).

[15] SGI INC. LKCD - Linux Kernel Crash Dump. http://lkcd.
sf.net, April 2006.

[16] SILICON GRAPHIC INC. KDB: Built-in kernel debugger. http:
//oss.sgi.com/projects/kdb/, 2006.

[17] XEN PROJECT. Xen interface manual. http:
//www.cl.cam.ac.uk/Research/SRG/netos/xen/
readmes/interface/interface.html, August 2006.

1
2007 USENIX Annual Technical Conference USENIX Association28




