

mCarve: Carving attributed dump sets

Sjouke Mauw University of Luxembourg

sjouke.mauw@uni.lu
http://satoss.uni.lu/sjouke/

(joint work with Ton van Deursen, Saša Radomirović)

Public transportation cards easily hacked

Luxembourg: e-go card

All you need is...

...a reader, a laptop, publicly available software, a Ton.

But decrypting the card is just the first step

"What do all these bits and bytes mean?"

Manual analysis needed

"Is the *number-of-rides-left* stored here?"

Manual analysis is labour intensive

"Hmm, not sure about that."

Existing problem from digital forensics

Carving = recover data from a memory dump of a device

Our problem is different

- 1. Not one single dump, but a series of dumps.
- 2. For every dump we know some attributes, e.g.
 - card "identity",
 - date-of-purchase,
 - type-of-card,
 - rides-left,
 - time-of-use.

Standard carving tools don't apply

Research question

Develop a methodology to answer:

- Are these attributes encoded in the dumps?
- Where?
- With which encoding?

Assumptions:

- 1. All dumps of same length.
- 2. Attributes are stored at the same location in every dump. *(can be relaxed)*
- 3. Encoding of attribute is deterministic and injective.

Central notion: attribute mapping

- $a \in \mathbb{A}$ an attribute (e.g. *rides-left*)
- \blacksquare $s \in \mathbb{B}^n$ a dump (i.e. a bit string of length n)
- $S \subseteq \mathbb{B}^n$ a dump set
- $\blacksquare s|_I$ substring of dump s, restricted to $I \subseteq [0,n)$
- $val_a(s)$ the value of attribute a for dump s (e.g. $val_{\textit{rides-left}}(s) = 5$)
- $e(val_a(s))$ an injective encoding of the value of attribute a as a bit string (e.g. 5 is encoded as 0101)

Central notion: attribute mapping

- \blacksquare $a \in \mathbb{A}$ an attribute (e.g. rides-left)
- \blacksquare $s \in \mathbb{B}^n$ a dump (i.e. a bit string of length n)
- $S \subseteq \mathbb{B}^n$ a dump set
- $\blacksquare s|_I$ substring of dump s, restricted to $I \subseteq [0,n)$
- $val_a(s)$ the value of attribute a for dump s (e.g. $val_{\textit{rides-left}}(s) = 5$)
- $e(val_a(s))$ an injective encoding of the value of attribute a as a bit string (e.g. 5 is encoded as 0101)

An attribute mapping determines for every attribute the bit positions where the attribute is stored.

An *attribute mapping* for S is a function $f : \mathbb{A} \to \mathcal{P}([0,n))$, such that for all $a \in \mathbb{A}$ there exists an encoding e with

$$\forall_{s \in S} \ s|_{f(a)} = e(val_a(s)).$$

Research question formalized

Given a set of dumps $s \in S$ and a set of attributes $a \in \mathbb{A}$ and their values $val_a(s)$, find all possible attribute mappings f.

Example

Finding the *rides-left* attribute.

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_2	4	001100100001010010110
s_3	5	101110101011010100011
s_4	6	001010110111011011
s_5	6	111010110011011001100

Example

Finding the *rides-left* attribute.

	rides-left	dump	encoding
$\overline{s_1}$	4	01010 <i>0100</i> 111 <i>0100</i> 00100	0100
s_2	4	00110 <i>0100</i> 001 <i>0100</i> 10110	0100
s_3	5	10111 <i>0101</i> 011 <i>0101</i> 00011	0101
s_4	6	00101 <i>0110</i> 111 <i>0110</i> 11011	0110
s_5	6	11101 <i>0110</i> 011 <i>0110</i> 01100	0110

Two possibilities for this encoding:

- f(rides-left) = [5, 8]
- f(rides-left) = [12, 15]

Example

Finding the *rides-left* attribute.

	rides-left	dump	encoding
$\overline{s_1}$	4	010 <i>1001</i> 00111010000100	1001
s_2	4	001 <u>100</u> 100001010010110	1001
s_3	5	101 <u>110</u> 101011010100011	1101
s_4	6	001 <i>0101</i> 10111011011	0101
s_5	6	111 <i>0101</i> 10011011001100	0101

And for another encoding

 $\blacksquare f(rides-left) = [3, 6]$

Observations

■ Commonalities:

If two dumps have the same attribute value, then the dumps must be identical at the positions of f(a).

■ Dissimilarities:

If two dumps have a different attribute value, then the dumps differ in at least one bit at the positions of f(a).

Idea:

Use this to restrict the search for attribute mappings, independently of the encoding.

1. Commonalities

A **bundle** is a collection of dumps with the same attribute value.

$$bundles(a, S) = \{ \{ s \in S \mid val_a(s) = d \} \mid d \in type(a) \}$$

The *common set* determines which bits in the dumps of a dump set are equal if the attribute values are equal.

$$common(a, S) = \bigcap_{b \in bundles(a, S)} \{i \in [0, n) \mid \forall_{s, s' \in b} \ s_i = s'_i\}.$$

Example: common set

Determine common set (*) per bundle and combine.

	rides-left	dump
s_1	4	010100100111010000100
s_2	4	001100100001010010110
		* * * * * * * * * * . * * . *
s_3	5	101110101011010100011

s_4	6	001010110111011011
s_5	6	111010110011011001100

Example: common set

Determine common set (*) per bundle and combine.

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_2	4	001100100001010010110

$\overline{s_3}$	5	101110101011010100011

S_4	6	001010110111011011
S_5	6	111010110011011001100
		*****.****
common		********

Conclusion: rides-left must be encoded within the *-ed bits.

Example: common set

Determine common set (*) per bundle and combine.

	rides-left	dump
s_1	4	010100100111010000100
s_2	4	001100100001010010110
		* * * * * * * * * . * * . *
s_3	5	101110101011010100011

S_4	6	00101011011011011
s_5	6	111010110011011001100
		*****.****
common		* * * * * * * * * . *

Conclusion: rides-left must be encoded within the *-ed bits.

Complexity: $O(n \cdot |S|)$

2. Dissimilarities

The *dissimilarity set* contains all subsets I of [0, n) such that if the attribute value of any pair of dumps differs, I has a bit that differs.

$$dissim(a, S) = \{ I \subseteq [0, n) \mid \forall_{s, s' \in S} (val_a(s) \neq val_a(s') \implies \exists_{i \in I} s_i \neq s'_i) \}$$

We can optimize this by taking one representative of each bundle.

	rides-left	dump
s_1	4	<i>01</i> 0100100111010000100
s_3	5	<i>10</i> 1110101011010100011
s_4	6	<i>00</i> 101011011011011
		**

	rides-left	dump
$\overline{s_1}$	4	01010010111010000100
s_3	5	1 <i>011</i> 101010110100011
s_4	6	0 <i>010</i> 10110111011011

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_3	5	101110101011010100011
s_4	6	00101011011011011
		**

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_3	5	101110101011010100011
s_4	6	00101011011011011
		**

Conclusion: the encoding of rides-left must include at least one of the starred intervals.

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_3	5	101110101011010100011
s_4	6	00101011011011011
		**

Conclusion: the encoding of rides-left must include at least one of the starred intervals.

Complexity: $O(n^2 |S| + n |S| \log |S|)$

Main theorem

Let \mathbb{A} be an attribute set and let f be an attribute mapping for dump set $S \subseteq \mathbb{B}^n$, then

$$\forall_{a \in \mathbb{A}} \exists_{I \in dissim(a,S)} \ I \subseteq f(a) \subseteq common(a,S).$$

Example: common + dissim

Assuming 4 bits, 4 remaining possibilities.

	rides-left	dump
$\overline{s_1}$	4	010100100111010000100
s_2	4	001100100001010010110
s_3	5	101110101011010100011
s_4	6	001010110111011011
s_5	6	111010110011011001100

Application: e-go card

- Developed prototype tool.
- Collected 68 dumps from 7 cards.
- Wrote down attributes for each dump: rides-left, card-type, license-plate, swipe-time, swipe-date, etc.

Applying "common"

Applying "common"

Shell sector

Product sector

Transaction sector

Conclusion

- We defined the *carving problem* for attributed dump sets.
- Developed algorithms and prototype tool.
- Results for e-go card: can find most attributes we collected.
- Can also find "internal" and "semi-static" attributes.
- Performance: few seconds for e-go dump set.
- Convergence: need approximately 10 bundles to find a regular attribute.
- Future work:
 - automatically recover encoding
 - develop "attribute algebra"
 - algorithms to improve robustness
 - application to security protocol reengineering
 - recode prototype in C

Download prototype tool from:

http://satoss.uni.lu/mcarve/