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Abstract

We present DECODE, a system for recovering information
from phones with unknown storage formats, a critical
problem for forensic triage. Because phones have myr-
iad custom hardware and software, we examine only the
stored data. Via flexible descriptions of typical data struc-
tures, and using a classic dynamic programming algo-
rithm, we are able to identify call logs and address book
entries in phones across varied models and manufactur-
ers. We designed DECODE by examining the formats of
one set of phone models, and we evaluate its performance
on other models. Overall, we are able to obtain high
performance for these unexamined models: an average
recall of 97% and precision of 80% for call logs; and
average recall of 93% and precision of 52% for address
books. Moreover, at the expense of recall dropping to
14%, we can increase precision of address book recovery
to 94% by culling results that don’t match between call
logs and address book entries on the same phone.

1 Introduction

When criminal investigators search a location and seize
computers and other artifacts, a race begins to locate off-
site evidence. Not long after a search warrant is executed,
accomplices will erase evidence; logs at cellular providers,
ISPs, and web servers will be rotated out of existence; and
leads will be lost. Moreover, investigators make the most
progress during on-scene interviews of suspects if they are
able to ask about on-scene evidence. Mobile phones are of
particular interest to investigators. Address book entries
and call logs contain valuable information that can be used
to construct a timeline, compile a list of accomplices, or
demonstrate intent. Further, phone numbers can provide
a link to a geographical location via billing records. For
crimes involving drug trafficking, child exploitation, and
homicide, these leads are critical [17].

The process of quickly acquiring important evidence
on-scene in a limited but accurate fashion is called foren-

sic triage [16]. Unfortunately, digital forensics is a time-
consuming task, and once computers are seized and sent
off site, examination results are returned after a months-
long work queue. Getting partial results on-scene ensures
certain leads and evidence are recovered sooner.

Forensic triage is harder for phones than desktop com-
puters. While the Windows/Intel platform vastly domi-
nates desktops, the mobile phone market is based on more
than ten operating systems and more than ten platform
manufacturers making use of an unending introduction
of custom hardware. In 2010, 1.6 billion new phones
were sold [15], with billions of used phones still in use.
Smart phones, representing only 20% of new phones [15],
store information from thousands of applications each
with potentially custom data formats. The more popu-
lar feature phones, while simpler devices, are quick to
be released and replaced by new models with different
storage formats. Both types of phones are problematic as
phone application, OS, and file system specifications are
closely guarded as commercial secrets. Companies do not
typically release information required for correct parsing.

Assuming the phone is not locked by the user, the
easiest method of phone triage is to simply flip through the
phone’s interface for interesting information. This time-
consuming process can destroy the integrity of evidence,
as there is no guarantee data will not be modified during
the browse. Similarly, backups of the phone may be
examined, but neither backups nor manual browsing will
recover deleted data and data otherwise hidden by the
phone’s interface. Hidden data can include metadata, such
as timestamps and flags, that can demonstrate a timeline
and user intent, both of which can be critical for the legal
process.

Forensic investigation begins with data acquisition and
the parsing of raw data into information. The challenge
of phones and embedded systems is that too often the
exact data format used on the device has never been seen
before. Hence, a manual process of reverse engineering
begins — a dead-end for practitioners. Recent research on



automated reverse engineering is largely focused on the in-
strumentation of the system and executables [1,6]. While
accurate and reasonable for the common Windows/Intel
desktop platform, construction of a new instrumentation
system for every phone architecture-OS combination in
use would require significant time for each and an exper-
tise not present in the practitioner community.

In this paper, we focus on a data-driven approach to
phone triage. We seek to quickly parse data from the
phone without analyzing or instrumenting software. We
aim to obtain high quality results, even for phones that
have not been previously encountered by our system. Our
solution, called DECODE, leverages success from already
examined phones in the form of a flexible library of prob-
abilistic finite state machines. Our main insight is that the
variety of phone models and data formats can be lever-
aged for recovering information from new phones. We
make three primary contributions:

e We propose a method of block hash filtering for re-
vealing the most interesting blocks within a large
store on a phone. We compare small blocks of un-
parsed data from a target phone to a library of known
hashes. Collisions represent blocks that contain con-
tent common to the other phones, and therefore not
artifacts specific to the user, e.g., phone numbers
or call log entries. Our methods work in seconds,
reducing acquired data by 69% on average, without
removing usable information.

e To recover information from the remaining data, we
adapt techniques from natural language processing.
We propose an efficient and flexible use of probabilis-
tic finite state machines (PFSMs) to encode typical
data structures. We use the created PFSMs along
with a classic dynamic programming algorithm to
find the maximum likelihood parse of the phone’s
memory.

e We provide an extensive empirical evaluation of our
system and its ability to perform well on a large
variety of previously unexamined phone models. We
apply our PFSM set — unmodified — to six other
phone models from Nokia, Motorola, and Samsung
and show that our methods are able to recover call
logs with 97% recall and 80% precision and address
books with 93% recall and 52% precision for this set
of unseen models.

There are a series of commercial products that parse
data from phones (e.g., .XRY, cellebrite, and Paraben).
However, these products rely on slow, manual reverse
engineering for each phone model. Moreover, none of
these products will attempt to parse data for previously
unseen phone models. Even the collection of all such
products does not cover all phone models currently on the
market, and certainly not the set of all models still in use.

In contrast, we design and evaluate a general approach
for automatically recovering information on previously
unseen devices, one that leverages information from past
success.

2 Methodology and Assumptions

Our goal is to enable triage-based data recovery for mobile
phones during criminal investigations. Below, we provide
a definition of triage, our problem, and our assumptions.
Unlike much related work, our focus is not on incident
response, malware analysis, privilege escalation, protocol
analysis, or other topics related to security primitives. We
aim to have an impact on any crime where a phone may
be carried by the perpetrator before the crime, held during
the crime, used as part of the crime or to record the crime
(e.g., a trophy photo), or used after the crime.

The triage process. The process of quickly acquiring im-
portant evidence on-scene in a limited but accurate fash-
ion is called forensic triage [16]. Our goals are focused
on the law enforcement triage process, which begins with
a search warrant issued upon probable cause, or one of the
many lawful exceptions [12] to the Fourth Amendment
(e.g., incidence to arrest). Law enforcement has several
objectives when executing a search and performing triage.
The first is locating all devices related to the crime so that
no evidence is missed. The second is identifying devices
that are not relevant to the crime so that they can be ig-
nored, as every crime lab has a months-long backlog for
completing forensic analysis. That delay is only exacer-
bated by adding unneeded work. The third is interviewing
suspects at the crime scene. These interviews are most
effective when evidence found on-scene is presented to
the interviewed person. Similarly, quickly determining
leads for further investigation is critical so that evidence
or persons do not disappear. Central to all of these ob-
jectives is the ability to rapidly examine and extract vital
information from a variety of devices, including mobile
phones.

Phone triage is not a replacement for gathering infor-
mation directly from carriers; however, it can take several
weeks to obtain information from a carrier. Moreover,
carriers store only limited information about each phone.
While most keep call logs for a year, other information is
ephemeral. Text message content is kept for only about
a week by Verizon and Sprint, and the IP address of a
phone is kept for just a few days by AT&T [3]. In contrast,
the same information is often kept by the phone indefi-
nitely and, if deleted, it is still possibly recoverable using
a forensic examination.

The less time it takes to complete a triage of each de-
vice, the more impact our techniques will have. While
some crime scenes involve only a few devices, increas-



ingly crime scenes involve tens and potentially hundreds
of devices. For example, an office can be the center of op-
erations for a gang, organized crime unit, or para-military
cell. Typically little time is available and, in the case
of search warrants, restrictions are often in place on the
duration of time that a location can be occupied by law en-
forcement. In military scenarios, operations may involve
deciding which, if any, of several persons and devices
in a location should be brought back using the limited
space in a vehicle; forensic triage is a common method of
deciding.

Problem definition. Our goal is to enable investigators
to extract information quickly (e.g., in 20 minutes or less)
from a phone, regardless of whether that exact phone
model has been encountered before. We limit our results
to information that is common to phones — address books
and call logs — but is stored differently by each phone.
Triage is not a replacement for a secondary, in-depth
examination; but it does achieve shortened delay with a
minimal reduction in recall and precision. Recall is the
fraction of all records of interest that are recovered from a
device; precision is the fraction of recovered records that
are correctly parsed.

Data acquisition. We make the following assumptions
in the context of on-site extraction of information from
embedded devices. The technical process of extracting
a memory dump from a phone starts off very differently
compared to laptops and desktops. Data on a phone is
typically stored in custom solid state memory. These
chips are typically soldered onto a custom motherboard,
and data extraction without burning out the chip requires
knowledge of pinouts. For that reason, several other meth-
ods are in common use for extracting data. Broadly, data
can be extracted representing either the logical or phys-
ical layout of memory. Often these representations are
referred to as the logical or physical image of a device,
respectively.

A logical image is typically easier to obtain and parse;
however, it suffers from some serious limitations. First, it
only contains information that is presented by the file sys-
tem or other application interfaces. It omits deleted data,
metadata about content, and the physical layout of data in
memory (which we use in our parsing). Second, logical-
extraction interfaces typically enforce access rules (e.g.,
preventing access to a locked phone) and may modify data
or metadata upon access. Examples of logical extraction
include using phone backup software or directly browsing
through a phone using its graphical user interface. Due to
the above deficiencies, our techniques operate directly on
the physical image.

A physical image contains the full layout of data stored
in a phone’s memory, including deleted data that has not
yet been overwritten; however, parsing raw data presents

a significant challenge to investigators — one our tech-
niques attempt to address. We discuss the parsing chal-
lenges further in Section 3.2.

Physical extraction requires an interface that is below
the phone’s OS or applications. There are a few different
ways of acquiring a physical image. For example, some
phones are compatible with flasher boxes [11], while oth-
ers allow for extraction via a JTAG interface, or physical
removal of the chip. Physical extraction typically takes
between a few minutes and an hour depending on the
extraction method, size of storage, and bus bandwidth.
When we evaluate our techniques, we assume the prior
ability to acquire the physical image of the phone.

Numerous companies sell commercial products that
acquire data from phones, both logically and physically.
This acquisition process is easier than the recovery of
information from raw data, though still a challenge and
not one we address. Of course, we do not expect our
methods to be used on phones for which the format of data
is already known. But no company offers a product that
addresses even a large portion of the phone market and
no combination of products covers all possible phones,
even among the market of phones still being sold. Used
phones in place in the US and around the world number at
least an order of magnitude larger than phones still being
manufactured.

Limitations of our threat model. We assume the owner
of the phone has left data in a plaintext, custom format
that is typical of how computers store information. We
allow for encryption and even simple obfuscation, but we
do not propose techniques that would defeat either. While
this threat model is weak, it is representative of phone
users involved in traditional crimes. Some smart-phones
encrypt data, most do not; and almost all feature phones
do not, and they represent 80% of the market [15]. Further,
it is not possible for one attacker to encrypt the data of
every other phone in existence, and our techniques work
on all phones for which plaintext can be recovered. In
other words, while we allow for any one person to encrypt
their data, it does not significantly limit the impact of our
results.

3 Design of DECODE

In this section, we provide a high-level overview of
DECODE including its input, primary components, and
output.

DECODE takes the physical image of a mobile phone
as input. We can think of the physical image as a stream
of bytes with an unknown structure and no explicit de-
limiters. DECODE filters and analyzes this byte stream
to extract important information, presenting the output to
the investigator. The internal process it uses is composed



all data

==
r Data
' ‘

DECODE

Block Hash
Fl\(erlng

f//rered byte
s[ream

Vlterbl &
Prob. Finite State
Decision Tree
( Inference Machlne Sets

high conlldence
information

]
v -
- - "
Records [~ adjustment
output to

to rule set
investigator

Block Hash Sets
from other phones

/

Figure 1: An illustration of the DECODE’s process. Data ac-
quired from a phone is passed first through a filtering mechanism
based on hash sets of other phones. The remaining data is input
to a multistep inference component, largely based on a set of
PFSMs. The output is a set of records representing information
found on the phone. The PFSMs can optionally be updated to
improve the process.

of two components, illustrated in Fig. 1: (i) block hash
filtering and (ii) inference.

DECODE uses the block hash filter to exclude sub-
sequences of bytes that do not contain information of
interest to investigators. The primary purpose of this fil-
tering is to reduce the amount of data that needs to be
examined and therefore increase the speed of the system.

DECODE parses the filtered byte stream to extract in-
formation first in the form of fields and then as records.
Fields are the basic unit of information and they in-
clude data types such as phone numbers and timestamps.
Records are groups of semantically related fields that con-
tain evidence of interest to investigators, e.g., address
book entries. The inference component is designed to
be both extensible and flexible, allowing an investigator
to iteratively refine rules and improve results when time
allows.

3.1 Block Hash Filtering

DECODE’s block hash filtering component (BHF) is
based on the notion that long identical byte sequences
found on different phones are unnecessary for triage. That
is, such sequences are unlikely to contain useful informa-
tion for investigators. Mobile phones use a portion of
their physical memory to store operating system software
and other data that have limited utility for triage. BHF
is designed to remove this cruft and reduce the number
of bytes that needs to be analyzed, thereby increasing the
speed of the system.

Description. DECODE’s block hash filter logically di-
vides the input byte stream into small subsequences of
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Step 1: Stream Split Into Overlapping Blocks
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———Block 1——
d ———-Block 2——

Step 2: Block 1 Collision

collision|

Step 3: After Filtering

Figure 2: Block hash filtering takes a stream of n bytes and
creates a series of overlapping blocks of length b. The start of
each block ditfers by d < b bytes. Any collision of the hash of
a block with a block on another phone (or the same phone) is
filtered out.

bytes. We refer to each of these subsequences as a block.
DECODE filters out a block if its hash value matches a
value in a library of hashes computed from other phones.
Blocks may repeat within the same phone, but only the
first occurrence of each block remains after filtering.
DECODE uses block hashes, rather than a direct byte com-
parison, to improve system performance; However, BHF
may lead to erroneous filtering due to block collisions.
One type of collision arises when blocks with different
byte sequences share the same hash value. Another type
of collision occurs when blocks share the same subse-
quence even though they actually contain user informa-
tion. Currently, DECODE mitigates the risk of collisions
by using a cryptographic hash function and a sufficiently
large block size.

To make the filter more resilient to small perturbations
in byte/block alignment, DECODE uses a sliding window
technique with overlap between the bytes of consecutive
blocks [22]. In other words, the last bytes of a block are
the same as the first bytes of the next block.

More formally, DECODE logically divides an input
stream of n bytes, into blocks of b bytes with a shift
of d < b bytes between the start of successive blocks.
The SHA-1 hash value for each block is computed and
compared to the hash library. DECODE filters out all
matched blocks. Fig 2 illustrates a simple example.

As we show empirically in Section 5, nearly all of the
benefit of block hash filtering can be realized by just using
another phone of the same make and model. This result
ensures BHF is scalable as the test phone need not be
compared to all phones in an investigator’s library.

The general idea of our block hash filter is similar
to work by a variety of researchers in a number of do-
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Figure 3: A simplified example of raw data as stored by a Nokia
model phone, labeled with the correct interpretation. DECODE
outputs a call log: the Unicode string “Bob”’; the phone number
(OxB digits long and null terminated) 1-972-642-8666; and the
timestamp 3/7/2006 3:26:23 PM.

mains [9,13,22]. Our primary contribution is the empiri-
cal analysis of the technique in the phone domain. Further
discussion of related work is given in Section 6.

3.2 Inference

After block hash filtering has been performed, what re-
mains is a reduced ad hoc data source about which we
have only minimal information. Our goal is to identify cer-
tain types of structured information, such as phone num-
bers, names, and other data types embedded in streams of
this data.

Parsing phones is particularly challenging due to the
inherent ambiguity of the input byte stream. Along with
the lack of explicit delimiters, there is significant overlap
between the encodings for different data structures. For
example, certain sequences of bytes could be interpreted
as both a valid phone number and a valid timestamp. For
these reasons, simple techniques like the unix command
strings and regular expressions will be mostly ineffec-
tive.

DECODE solves this ambiguity by using standard prob-
abilistic parsing tools and a probabilistic model of encod-
ings that might be seen in the data. DECODE obtains the
maximum likelihood parse of the input stream creating
a hierarchical description of information on the phone
in the form of fields and records. More concretely, the
output of DECODE is a set of call log and address book
records. Each record is comprised of fields representing
phone numbers, timestamps, strings, and other structures
extracted from the raw stream.

3.2.1 Fields and Records

Within the block filtered data source, we have no infor-
mation about where records or fields begin or end, and
we have no explicit delimiters. Fig 3 shows simplified
example data that could encode an address book entry
in a Nokia phone; DECODE would receive this snippet
embedded and undelineated in megabytes of other data.
Unlike large objects, such as jpegs or Word docs, such
small artifacts are difficult to isolate and can easily appear
randomly.

To infer information found on phones, DECODE uses
standard methods for probabilistic finite state machines
(PFSMs), which we describe here. As implied above,

we have a lower level of field state machines that encode
raw bytes as phone numbers, timestamps, and other types.
We also have a higher level of record state machines that
encode fields as call log entries and address book entries.
For example, a call log record can be flexibly encoded
as a phone number field and timestamp field very near to
one another; the encoding might also include an optional
text field.

Each field’s PFSM consists of one or more states, in-
cluding a set of start states and a set of end states. Each
state has a given probability of transitioning to another
state in the machine. Each state emits a single byte dur-
ing each state transition of the PFSM. The emitted byte
is governed by a probability distribution over the bytes
from 0x00 to OxFF. Restricting the set of bytes that can
be output by a state is achieved by setting the probability
of those outputs to zero. For example, an ASCII alpha-
betic state would only assign non-zero probabilities to
the ASCII codes for “a” through “z” and “A” through
“Z”. Every PFSM in DECODE’s set is targeted towards
a specific data type. If correctly defined, a field’s PFSM
will only accept a sequence of bytes if that sequence is a
valid encoding of the field type. We constructed the field
PFSMs based on past observations (see Section 4.1).

Examples of DECODE’s specific field types include
10-digit phone numbers, 7-digit phone numbers, Unicode
strings, and ASCII strings. Each specific field is associ-
ated with a generic field type such as text or phone number.
Some fields have fixed lengths and others have arbitrary
lengths.

We define records in a similar manner. Records are
represented as PFSMs, except that each state emits a
generic field rather than a raw byte.

Given the set of PFSMs representing each field type
that we have encoded, we then aggregate them all into a
single Field PFSM. We separately aggregate all record PF-
SMs into a single Record PFSM. The aggregation naively
creates transitions from every field’s end state to every
other field’s start states with some probability, and we do
the same for compiling records. (We discuss setting these
probabilities below.) In the end, we have two distinct
PFSMs that are used as input to our system, along with
data from a phone.

3.2.2 Finding the maximum likelihood sequence of
states

Our basic challenge is that, for a given phone byte stream
that is passed to the inference component of DECODE,
there will be many possible way to parse the data. That is,
there are many ways the PSFMs could have created the ob-
served data, but some of these are more likely than others
given the state transitions and the output probabilities. To
formalize the problem, let B = by, b1, ..., b, be the stream



of n bytes from the data source. Let S = sg, 51, ..., Sp,
be a sequence of states which could have generated the
output bytes. Our goal then, is to find

arg max P(sg, s1, ..., Sn|bo, b1, .
805515-+,8n

- bn), ey

i.e., the maximum probability sequence of states given
the observed bytes. These states are chosen from the set
encoded in the PFSM given to DECODE. The probabilities
assigned to PFSM’s states, transitions, and emissions
affect the specific value that satisfies the above equation.

In a typical hidden Markov model, one assumes that
an output byte is a function only of the current unknown
state, and that given this state, the current output is inde-
pendent of all other states and outputs. Using this assump-
tion, and noting that multiplying the above expression by

P(bg, ..., b,) does not change the state sequence which
maximizes the expression, we can write
argmax P(sg, ..., Sn|bo, ..., bp)
S05:++3Sn
= argmax P(sg, ..., $n|bo, ---; bn) P(bo, -, by)
8054380
= argmax P(sg, ..., Sn, bo, .-, bp)

505050

= argmax P(sg,...,$n)P(bo, -, bn|S0, ---

50,150

75n)

n

= argmax P(so,...,sn)HP(bi|si). 2)

805150 i—0

Naively enumerating all possible state sequences and se-
lecting the best parse is at best inefficient and at worst
intractable. One way around this is to assume that the
current state depends only on the state that came immedi-
ately before it, and is independent of other states further
in the past. This is known as a first order Markov model,
and allows us to write

n

argmax P(sg, ..., $,) H P(b;|s;)

$05-++35n i=0

= argmax P(so)P(s1]s0)P(s2]80,51)

805-:438n

...1D(Sn|807 S1yeeny Sn—l) HP(bASl)
=0

n n

= argmaxP(so)HP(si|si,1)HP(bi|si). 3)

80,--,8 : :
0yesn =1 =0

The Viterbi algorithm is an efficient algorithm for finding
the state sequence that maximizes the above expression.
The complexity of the Viterbi algorithm is O(nk?) where
n and k are the number of bytes and states. For a full
explanation of the algorithm, see for example the texts by
Viterbi [24] or Russell and Norvig [21].

3.2.3 Fixed length fields and records

Markov models are well-suited to data streams with arbi-
trary length fields. For example, an arbitrary length text
string can be modeled well by a single state that might
transition to itself with probability «, or with probabil-
ity 1 — o to some other state, and hence terminating the
string. Unfortunately, first order Markov models are not
well-suited to modeling fields with fixed lengths (like 7-
digit phone numbers), since it is impossible to enforce the
transition to a new state after 7 bytes when one is only con-
ditioning state transition on a single past state. In other
words, a first order Markov model cannot “remember”
how long it has been in a particular state.
Since it is critical for us to model certain fixed length
fields like dates and phone numbers, we had two options:
o Add a separate new state for every position in a fixed
length field. For example, a 7-digit phone number
would have seven different separate states, rather
than a single state.

e Implement an mth order Markov model, where m is
equal to the length of the longest fixed length field
we wish to model.

The first option, under a naive implementation, leads to a
very large number of states, and since Viterbi is O(nk?),
it leads to impractical run times.

The second option, using an mth order Markov model,
keeps the number of states low, but can also lead to very
large run times of O(nk™*1). However, by taking advan-
tage of the fact that most state transitions in our model
only depend upon a single previous state, and other struc-
ture in our problem, we are able to implement Viterbi,
even for our fixed length fields, in time that is close to
the implementation for a first order Markov model with a
small number of states. Similar techniques have been used
in the language modeling literature to develop efficient
higher-order Markov models [14].

3.2.4 Hierarchical Viterbi

DECODE uses Viterbi twice. First, it passes the filtered
byte stream to Viterbi with the Field PFSM as input. The
output of the first pass is the most likely sequence of
generic fields associated with the byte stream. That field
sequence is then input to Viterbi along with the Record
PFSM for a second pass. We refer to these two phases as
field-level and record-level inference, respectively.

The hierarchical composition of records from fields
(which are in turn composed of bytes) can be captured
by a variety of statistical models, including context free
grammars. The main reason we chose to run Viterbi in
this hierarchical fashion, rather than integrating the infor-
mation about a phone type in something like a context free
grammar, was to limit the explosion of states. In particu-



lar, because we have a variety of fixed-length field types,
such as phone numbers, the number of states required
to implement a seamless hierarchical model would grow
impractically large. Our resulting inference algorithms
would not have practical run times.

The decomposition of our inference into a field-level
stage and a record-level stage makes the computations
practical at a minimal loss in modeling power. The reason
that DECODE can operate on phones that are unseen is
that record state machines are very general. For example,
we don’t require timestamps to phone numbers to appear
in any specific order for a call log entry. We require only
that they are both present.

3.2.5 Post-processing

The last stage of our inference process takes the set of
records recovered by Viterbi and passes them through a
decision tree classifier to remove potential false positives.
We refer to this step as post-processing. We use a decision
tree classifier because it able to take into account features
that can be inefficient to encode in Viterbi. For example,
our classifier considers whether a record was found in
isolation in the byte stream, or in close proximity to other
records. In the former case, the record is more likely to be
a false positive. Our evaluation results (Section 5) show
that this process results in significant improvements to
precision with a negligible effect on recall.

We use the Weka J48 Decision Tree, an open source im-

plementation of a well-known classifier (http://www.

cs.waikato.ac.nz/ml/weka). In general, a deci-
sion tree can be used to decide whether or not an input
is an example of the target class for which it is trained.
The classifier is trained using a set of feature tuples rep-
resenting both positive and negative examples. In our
case, the decision tree decides whether a given record,
output from our Viterbi stage, is valid or not. We selected
a set of features common to both call log and address
book records: number of days from the average date; fre-
quency of phone numbers with same area code; number
of different forms seen for the same number (e.g., 7-digit
and 10-digit); number of characters in string; number of
times the record appears in memory; distance to closest
neighbor record. We do not claim that our choice of fea-
tures and classifier is optimal; it merely represents a lower
bound for what is possible.

Post-processing does not inhibit the investigator, it is
a filter intended to make the investigator’s work easier.
To this end, DECODE can make both the pre- and post-
processing results available ensuring that the investigator
has as much useful information as possible.

For our evaluation, the positive training examples con-
sisted of true records from a small set of phones called
our development set (described in detail in Section 5).

Generic type | Specific type Num.
States
Records

Nokia call log [ 8

composed of text, phone num., timestamps
Call logs General call log . [9

composed of text, phone num., timestamps

General address book ['5
Address books | composed of phone numbers, text

Fields

ASCII 11
Phone number | Unicode 22

Nokia 10 digit 6

UNIX 4
Timestamp Samsung 4

Nokia 7

ASCII bigram 6
Text Unicode 7
Number index | Nokia number index 1
unstructured unstructured 1

Table 1: Examples of types that we have defined in DECODE.

To create the negative training examples, we used a 10
megabyte stream of random data with byte values selected
uniformly at random from 0x00 to OxFF. We input the ran-
dom data to DECODE’s Viterbi implementation and used
the resulting output records as negative examples. We
found that this provided better results than using negative
examples found on real phones.

4 Implementation of State Machines

In the previous section, we presented DECODE’s design
broadly; in this section, we focus on the core of the in-
ference process: the probabilistic finite state machines
(PFSM).

DECODE’s PFSMs support a number of generic field
types such as phone number, call log type, timestamp,
and text as well as the target record types: address book
and call log. Table 1 shows some example field types that
we have defined and the number of states for each. In
all, DECODE uses approximately 40 field-level and 10
record-level PFSMs.

Most fields emit fixed-length byte sequences. For ex-
ample, the 10-digit phone number field is defined as
10 states in which state & (for £k # 1) can only be
reached by state k — 1. The state machine for a 10-
digit phone number as found on many Nokia phones is:

As mentioned in the previous section, each state emits
a single byte; since Nokia often stores digits as nibbles,
each state in the machine encodes two digits. The emis-
sion probability is governed by both the semantics of the
Nokia encoding and real-world constraints. For example



a 10-digit phone number (in the USA) cannot start with a
0 or a 1 and therefore the first state in the machine cannot
emit bytes 0x00-0x1F, i.e., the emission probability for
each of these bytes is zero.

Some fields, such as an unstructured byte stream
have arbitrary length. Such a field is simply de-
fined by a single state with probability o of transi-
tioning to itself, and probability 1 — « of terminat-
ing. In fact, this specific field is special: DECODE
uses the unstructured field as a “catch-all” for unknown
or unstructured portions of the byte stream. Byte se-
quences that do not match a more meaningful field
type will always match the unstructured field, which is:

We emphasize that our goal is not to produce a full spec-
ification of the format of a device. While we would cer-
tainly be delighted if this were an easy problem to solve,
we note that we can extract significant amounts of useful
information from a data source even when large parts of
the format specification are not understood. Hence, rather
than solving the problem of complete format specification,
we seek to extract as many records as possible according
to our specification of records. It is also important to
note that our field and record definitions may ignore large
amounts of structure in a phone format. Only a minimal
amount of information about a phone’s data organization
is needed to define useful fields and records. We return
this point in Section 5.3.

4.1 Coding State Machines

We created most of the PESMs used in DECODE using
a hex editor and manual reverse engineering on a small
subset of phones that we denote as our development set.
We limited the development set to one phone model each
from four manufacturers with multiple instances of each
model: the Nokia 3200B, Motorola v551, LG G4015
and Samsung SGH-T309. We intentionally did not ex-
amine any other phone models from these manufacturers
prior to the evaluation of DECODE (Section 5) so that we
could evaluate the effectiveness of our state machines on
previously unobserved phone models.

We also used DECODE itself to help refine and create
new state machines, both field and record level, for the de-
velopment phones. This process was very similar to how
we imagine an investigator would use DECODE during
the post-triage examination.

Once we reached high recall for the development
set, we fixed the PFSMs and other components using

DECODE without modification for the extent of our eval-
uation regardless of what model was parsed.

Selecting Transition Probabilities. A sequence of bytes
may match multiple different field types. Similarly, a se-
quence of fields may match multiple record types. Viterbi
accounts for this by choosing the most likely type. It may
appear that a large disadvantage of this approach is that
we must manually set the type probabilities for both fields
and records. However, Viterbi is robust to the choice of
probabilities: the numerical values of the field probabil-
ities are not as important as the probability of one field
relative to another.

5 [Evaluation

We evaluated DECODE by focusing on several key ques-
tions.

1. How much data does the block hash filtering tech-
nique remove from processing?

2. How effectively does our Viterbi-based inference
process extract fields and records from the filtered
data?

3. How much does our post-processing stage improve
the Viterbi-based results?

4. How well does the inference process work on phones
that were unobserved when the state machines were
developed?

Experimental Setup. We made use of a number of
phones from a variety of manufacturers. The phones
contained some GUI-accessible address book and call
log entries, and we entered additional entries using each
phone’s UI. A combination of deleted and GUI-accessible
data was used in our tests; however, most phones con-
tained only data that was deleted and therefore unavail-
able from the phone’s interface but recoverable using
DECODE. The phones we obtained were limited to those
that we could acquire the physical image from memory
(i.e., all data stored on the phone in its native form). The
list of phones is given in Table 2. Our evaluation focuses
on feature phones, i.e., phones with less capability than
smart phones.

As stated in Section 4.1, we performed all development
of DECODE and its PFSMs using only the Nokia 3200B,
Motorola v551, LG G4015, and Samsung SGH-T309
phones. We kept the evaluation set of phones separate
until ready to evaluate performance. We acquired the
physical image for all phones using Micro Systemation’s
commercial tool, .XRY.

We focus on two types of records: address book en-
tries and call log entries. We chose these record types



[ Make [ Model [ Count [ MB ]

PFSM Development Set

Nokia 3200b 4 14
Motorola | V551 2 | 320
Samsung | SGH-T309 2 | 320
LG G4015 2 | 48.0
Evaluation Set

Motorola | V400 2 | 320
Motorola | V300 2 | 320
Motorola | V600 2 | 320
Motorola | V555 2 | 320
Nokia 6170 2 49
Samsung | SGH-X427M 2 | 16.0

Table 2: The phone models used in this study. The table shows
the number we had of each and the size of local storage.

because of their ubiquity across different phone models
and their relative importance to investigators during triage.
We evaluate the performance of DECODE's inference en-
gine based on two metrics, recall and precision. Recall is
the fraction of all phone records that DECODE correctly
identified: the number of true positives over the sum of
false negatives and true positives. If recall is high, then
all useful information on a phone has been found. Preci-
sion is the fraction of extracted records that are correctly
parsed: the number of true positives over the sum of false
positives and true positives. If precision is high then the
information output by DECODE is generally correct.

Often these two metrics represent a trade-off, but our
goal is to keep both high. In law enforcement, the relative
importance of the two metrics depends on the context. For
generating leads, recall is more important. For satisfying
the probable cause standard required by a search warrant
application, moderate precision is needed. Probable cause
has been defined as “fair probability”! that the search
warrant is justified, and courts do not use a set quantitative
value. For evidence meeting the beyond a reasonable
doubt standard needed for a criminal conviction, very
high precision is required, though again no quantitative
value can be cited.

For each of our tested phones, we used .XRY not only
to acquire the physical image, but also to obtain ground
truth results that we used to compare against DECODE’s
results. It was often the case that DECODE obtained re-
sults that .XRY did not. And in those cases, we manually
inspected the result and decided whether they were true
or false positives (painstakingly using a hex editor). We
made conservative decisions in this regard, but were able
to employ a wealth of common sense rules. For exam-
ple, if a call entry seemed to be valid and recent, but was
several years from all other entries, we labeled it as a
false positive. Similarly, an address book entry for “A.M.”

United States v. Sokolow, 490 U.S. 1 (1989)

is most reasonably assumed to be a true positive while
“,IMb” is most reasonably a false positive; even though
both have two letters and two symbols, the latter does not
follow English conventions for punctuation. It would be
impractical to program all such common sense rules and
our manual checking is stronger in that regard. Occasion-
ally, DECODE extracts partially correct or noisy records.
We mark each of these records as wrong, unless the only
error is a missing area code on the phone number.

5.1 Block Hash Filtering Performance

The goal of BHF is to reduce the amount of data that
DECODE must parse, reducing run time, without sacri-
ficing recall. On average, we find that BHF is able to
filter out about 69% of the phone’s stored data without
any measurable effect on inference recall. The BHF al-
gorithm has only two parameters: the shift size d and the
block size b. Our results show that the shift size does not
greatly affect the algorithm’s performance, but it has a
profound effect on storage requirements. Also, we found
that performance varies with block size, but not as widely
as expected.

For each value of b and d that we tested, we kept the
corresponding BHF sets in an SQL table. The database
was able to match sets in tens of seconds, so we do not
report run time performance results here. As an example,
on a moderately resourceful desktop, DECODE is able to
filter a 64 megabyte phone, with b = 1024 and d = 128,
in under a minute.

Ideally, we (and investigators) would want our hash
library to be comprised entirely of new phones. If our
library contains used phones, there is a negligible chance
that the same common user data (e.g., an address book
entry with the same name and number) will appear on
different phones, align perfectly on block boundaries, and
be erroneously filtered out. Regardless, it was impractical
for us to find an untouched, new phone model for every
phone we tested. If data was filtered out in this fashion
because of our use of pre-owned phones, it would likely
have shown up in the recall values in the next section;
since the recall values are near perfect, we can infer this
problem did not occur.

Filtering Performance. First, we examined the effect of
the block size b on filtering. Fig. 4 shows the overall filter
percentage of our approach for varying block sizes. In
these experiments, we set d = b so that there was never
overlap. The line plots the average for all phones. As ex-
pected, the smaller block sizes make more effective filters.
However, a small block size results in more blocks and
consequently, greater storage requirements. On average in
our tests, 73% of data is filtered out when b = 256, while
only slightly less, 69%, is filtered out when b = 1024.
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Figure 4: The average performance of BHF as block size varies
for all phones listed in Table 2 (logarithmic x-axis). Error bars
represent one standard deviation. In all cases we setd = b (i.e.,
shift size is equal to block size), but performance does not vary
with d in general.

Second, we examined the affect of the shift amount d
on filtering. In our tests, we fixed b = 1024 and varied
d={32, 64, 128, 256, 512, 1024}. However, there is less
than a 1% difference in filtering between d = 32 and
d = 1024 for all phones. (No plot is shown.) Again, the
affect of d is on storage requirements, which we discuss
below.

Third, we isolated what type of data is filtered out
for each phone using fixed block and shift sizes of b =
1024 and d = 128; we use these values for all other
experiments in this paper. Fig. 5 shows the results as
stacked bars; the top graph shows filtering as a percentage
of the data acquired from the phone, and the bottom graph
shows the same results in megabytes. For each of the
25 phones, the bottom (blue) bar shows the percentage
of data filtered out because the block was a repeated,
constant value (such as a run of zeros). The middle (black)
bar shows the percentage of data that was in common with
a different instance of the same make and model phone.
The top red bar shows the percentage of data that can be
filtered out because it is only found on some phone in the
library that is a different make or model. The data that
remains after filtering is shown in the top, white box.

On average, 69% of data is removed by block hash
filtering. Generally, the technique works well. On aver-
age, half of the filtered out data was found on another
phone of the same model. These percentage values are in
terms of the complete memory, including blocks that were
filled with constants (effectively empty). Therefore, as a
percentage of non-empty data, the percentage of filtered
out data is higher. These results suggest that it is often
sufficient to only compare BHF sets of the same model
phone. However, in some models less than 3% of data
was found on another instance of the same model. This
poor result was the case for the Samsung SGH-X427M
and Motorola V300. Finally, the results shown in the
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Figure 5: The amount of data remaining after filtering is shown
as solid white bars, as a percentage (top) and in MB (bottom).
On average, 69% of data is successfully filtered out. Black
bars show data filtered out because they match data on another
instance of the same model. Blue bars show data filtered out
because it is a single value repeated (e.g., all zeros). Red bars
show data filtered out because it appears on a different model.
(b = 1024 bytes, d = 128 bytes)

Fig. 5 (bottom), suggest that the performance of BHF was
not correlated with the total storage space of the phone.
Our results in the next section on inference, in which
DECODE examines only data remaining after filtering,
demonstrate that filtering does not significantly remove
important information: recall is 93% or higher in all cases.

Storage. An important advantage of our approach is that
investigators can share the hash sets of phones, without
sharing the data found within each phone. This sharing is
very efficient as the hash sets are small compared to the
phones. The number of blocks from each phone that must
be hashed and stored in a library is O((n — b)/d), though
only unique copies of each block need be stored. Given
that n >> b, the number of blocks is dependent on n and
d and the affect of b on storage is insignificant. However,
since it is required that d < b, the algorithm’s storage
requirements does depend on b’s value in that sense. As
an example, for a 64 megabyte phone, when b = 1024
bytes and d = 128 bytes, the resulting BHF set is 524,281
hash values. At 20-bytes each, the set is 10 megabytes
(15% of the phone’s storage). Since we need perhaps only
one or two examples of any phone model, the cumulative
space needed to store BHF sets for an enormous number
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Figure 6: Precision and recall for call logs. (Top) Results after
only Viterbi parsing. (Bottom) Results after post-processing.
Left bars are development set; right bars are evaluation set. In
all graphs, black is recall and gray is precision. On average,
development phones have recall of 98%, and precision of 69%
that increases to 77% after post processing. On average, eval-
uation phones have recall of 97%, and precision of 72% that
increases to 80% after post processing. The T309 had no call
log entries, which explains in part DECODE’s poor performance
for the X427M.

of phone models is practical. Since BHF gains nearly
all benefit from comparing phones of the same model,
comparison will always be fast.

In order to be effective, the library needs to be con-
structed using the same hash function and block size for
all phones; however, the shift amount need not be the
same. This is important because the storage requirement
of the library is inversely proportional to the shift size and
thus is minimized when d = b. Conversely, BHF removes
the most data when d = 1. We can effectively achieve
maximal filtering with minimal storage using d = b for
the library and d = 1 for the test phone. The cost of this
approach is more computation and consequently higher
run times. A full analysis is beyond the scope of this

paper.

5.2 Inference Performance

To evaluate our inference process, we used DECODE to
recover call log and address book entries from a variety
of phones. In our results, we distinguish between the
performance of the Viterbi and decision tree portions of
inference. Additionally, we make clear the performance
of DECODE on phones in our development set versus
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phones in our evaluation set. All results in this section
assume that input is first processed using BHF.

Fig. 6 shows the performance of our inference process
for call logs; the top results are before the post-processing
step and the bottom after post-processing. The white-
space break in the chart separates the development set
of phones (on the left), and the evaluation set (on the
right). We put the most effort toward encoding high qual-
ity PFSMs for the Nokia and Motorola phones. Not sur-
prisingly, the results are best in general for these makes,
indicating that the performance of DECODE is dependent
on the quality of the PFSMs. However, the results also
show that DECODE can perform well even for the previ-
ously unseen phones in the evaluation set. Overall, recall
of DECODE is near complete at 98% for development
phones and 99% for evaluation phones. Precision is more
challenging, and after Viterbi is at 69% for development
phones and 72% for evaluation phones. It is important
to note that no extra work on DECODE was performed
to obtain results from the phones in the evaluation set,
which is significant compared to methods that instrument
executables or perform other machine and platform de-
pendent analysis. After post-processing, the precision for
the development and evaluation phones increased to 77%
and 80% respectively.

Fig. 7 shows the performance of our inference process
for address book records. As before, the top results are
after filtering but not post-processed while the bottom
are post-processed. Overall, recall of the DECODE is
again high at 99% for development phones and 93% for
evaluation phones. Precision after Viterbi is 56% for de-
velopment phones and 36% for evaluation phones. After
post processing by the decision tree, the precision for all
phones increased, by an average of 61% over the Viterbi-
only results, a significant improvement. For development
phones, precision increases to 65% on average. (Note that
the development phones are used to train the classifier.)
For evaluation phones, precision increases significantly
to 52%.

While performance is not perfect, we could likely im-
prove performance by using a different set of PFSMs
for each different phone manufacturer. In our evaluation,
all PFSMs for all manufactures are evaluated at once.
Because our goal is to allow for phone triage, we don’t
reduce the set of state machines for each manufacturer;
however, a set of manufacturer-specific state machines
could improve performance at the expense of being a less
general solution.

We also note that when recall is high, it is easier to
discover the intersection of information found on two
independent phones from the same criminal context; that
intersection is likely to be a better lead than most.

When necessary, we can prioritize precision over recall.
Fig. 8 shows the results of culling records for where the
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Figure 7: Precision and recall for Address Book entries. (Top)
Results after only Viterbi parsing. (Bottom) Results after post-
processing. On average, development phones have recall of
99%, and precision of 56% that increases to 65% after post
processing. On average, evaluation phones have recall of 93%,
and precision of 36% that increases to 52% after post processing.
N.b, The first Nokia has no address book entries at all.
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Figure 8: Precision and recall for Address Book entries after
results are culled that do not match phone numbers in DECODE’s
call logs for the same phone. For some phones, all results are
culled. On average, development phones have recall of 16%,
and precision of 92% (when results are present). On average,
evaluation phones have recall of 14%, and precision of 94%
(when results are present).

phone number in the address book does not also appear
in the call log: precision is increased to 92%, although
recall drops to 14%. (We don’t show the same process for
call logs.) This simple step shows how easy it is to isolate
results for investigators that deem precision of results
more important than recall. Moreover, the results that are
culled are still available for inspection.

Execution time. Inference is the slowest component of
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DECODE. The post processing step takes a few seconds,
but the Viterbi component takes significantly longer. On
average, DECODE’s Viterbi processes 12,781 bytes/sec.
The smaller phones in our set (Nokias) finish in a few min-
utes, while the larger Motorola can completed in about 15
minutes. Since the Viterbi processing already works with
distinct blocks of input produced by the BHF component,
it would be straightforward to produce a parallel version
of Viterbi for our scenario, thereby greatly increasing
speed.

5.3 Limitations

Our evaluation is limited in a number of ways in addition
to what was previously discussed. First, as with any
empirical study, our results are dependent on our test
cases. While our set of phones is limited, it contains
phones from a variety of makes and models. In future
work, we aim to test against additional phones. Second,
our tests are performed only on call logs and address
book entries. Presently, we are extending DECODE to
examine other artifacts, including stored text messages.
Since many phone artifacts are similar in nature — text
messages are stored as strings, phone numbers, and dates
— extending DECODE to parse additional types is easier
than creating the initial PFSMs.

Our approach also has a number of limitations. First,
we don’t address the challenge of acquiring the physical
memory image from phones, which is an input needed for
DECODE. Here, we have leveraged existing tools to do
so. However, acquisition is an independent endeavor and
varies considerably with the platform of the phone. Part
of our goal is to show that despite hardware (and software)
differences, one approach is feasible across a spectrum of
devices. Second, DECODE’s performance is tied strongly
to the quality of the PFSMs. Poorly designed state ma-
chines, especially those with few states, can match any
input. We do not offer an evaluation of whether it is hard
or time consuming to design high quality PFSMs or other
software engineering aspects of our problem; we report
only our success. Third, a single PFSM has an inherent
endianness embedded in it. DECODE does not automati-
cally reorganize state machines to account for data that is
the opposite endianness. Fourth, we have not explicitly
demonstrated that phones do indeed change significantly
from model to model or among manufactures. This as-
sertion is suggested by DECODE’s varied performance
across models but we offer no overall statistics.

It is also important to note that DECODE is an inves-
tigative tool and not necessarily an evidence-gathering
tool. Tools for gathering evidence must follow a specific
set of legal guidelines to ensure the admissibility of the
collected evidence in court. For example, the tool or tech-
nique must have a known error rate (for example, see



Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579
(1993)).

Finally, our approach is to gather artifacts that match a
description that may be too vague in some contexts. For
example, DECODE ignores important metadata that is
encoded in bit flags that may indicate if a entry is deleted.
Such metadata can be critical in investigations. It is our
aim to have DECODE parse more metadata in the future.

6 Related Work

Our work is related to a number of works in both reverse
engineering and forensics. We did not compare DECODE
against these works as each has a significant limitation
or assumption that does not apply well to the criminal
investigation of phones.

Polyglot [2], Tupni [6], and Dispatcher [1] are
instrumentation-based approaches to reverse engineer-
ing. Since binary instrumentation is a complex, time-
consuming process, it is poorly suited to mobile phone
triage. Moreover, our goal is different from that of Poly-
glot, Tupni, and Dispatcher. We seek to extract informa-
tion from the data rather than reverse engineer the full
specification of the device’s format.

Other previous works have attempted to parse machine
data without examining executables. Discoverer [5] at-
tempts to derive the format of network messages given
samples of data. However, Discoverer is limited to identi-
fying exactly two types of data — “text” and “binary” —
and extending it to additional types is a challenge. Overall,
it does not capture the rich variety of types that DECODE
can distinguish.

LearnPADS [7,8,25] is another sample-based system.
It is designed to automatically infer the format of ad hoc
data, creating a specification of that format in a custom
data description language (called PADS). Since Learn-
PADS relies on explicit delimiters, it is not applicable to
mobile phones.

Cozzie et al. [4] use Bayesian unsupervised learning to
locate data structures in memory, forming the basis of a
virus checker and botnet detector. Unlike DECODE, their
approach is not designed to parse the data but rather to
determine if there is a match between two instances of a
complex data structure in memory.

In our preliminary work [23], we used the Cocke-
Younger-Kasami (CYK) algorithm [10] to parse the
records of Nokia phones. While this effort influenced
the development of DECODE, it was much more limited
in scope and function.

The idea of extracting records from a physical memory
image is similar to file carving. File carving is focused
on identifying large chunks of data that follow a known
format, e.g., jpegs or mp3s. Some file carving techniques
match known file headers to file footers [18,20] when they
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appear contiguously in the file system. More advanced
techniques can match pieces of images fragmented in the
file system relying on domain specific knowledge about
the file format [19]. In contrast, our goal is to identify and
parse small sequences of bytes into records — all without
any knowledge of the file system. Moreover, we seek to
identify information within unknown formats that only
loosely resemble the formats we’ve previously seen.

DECODE’s filtering component is similar to number
of previous works. Block hashes have been used by
Garfinkel [9] to find content that is of interest on a large
drive by statistically sampling the drive and comparing
it to a bloom filter of known documents. This recent
work has much in common with both the rsync algo-
rithm [22], which detects differences between two data
stores using block signatures, as well as the Karp-Rabin
signature-based string search algorithm [13], among oth-
ers.

7 Conclusions

We have addressed the problem of recovering informa-
tion from phones with unknown storage formats using
a combination of techniques. At the core of our system
DECODE, we leverage a set of probabilistic finite state
machines that encode a flexible description of typical data
structures. Using a classic dynamic programming algo-
rithm, we are able to infer call logs and address book
entries. We make use of a number of techniques to make
this approach efficient, processing data in about 15 min-
utes for a 64-megabyte image that has been acquired from
a phone. First, we filter data that is unlikely to contain
useful information by comparing block hash sets among
phones of the same model. Second, our implementation
of Viterbi and the state machines we encoded are effi-
ciently sparse, collapsing a great deal of information in a
few states and transitions. Third, we are able to improve
upon Viterbi’s result with a simple decision tree.

Our evaluation was performed across a variety of phone
models from a variety of manufactures. Overall, we are
able to obtain high performance for previously unseen
phones: an average recall of 97% and precision of 80%
for call logs; and average recall of 93% and precision
of 52% for address books. Moreover, at the expense of
recall dropping to 14%, we can increase precision to 94%
by culling results that don’t match between call logs and
address book entries on the same phone.
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