Cloaking Malware with the Trusted Platform Module

Alan M. Dunn Owen S. Hofmann Brent Waters Emmett Witchel
The University of Texas at Austin
{adunn,osh,bwaters,witcHe® cs.utexas.edu

Abstract in Microsoft's popular BitLocker drive encryption soft-

The Trusted Platform Module (TPM) is commonly ware [7]and the United States Department of Defense has
thought of as hardware that can increase platform secuequired the TPM as a solution for securing data on lap-
rity. However, it can also be used for malicious pur- tops [4]. TPMs are regularly included on desktop, laptop,
poses. The TPM, along with other hardware, can imple-and server-class computers from a number of manufac-
ment acloaked computatigrwhose memory state cannot turers. The wide dissemination of TPM functionality is
be observed by any other software, including the operatpotentially a boon for computer security, but this paper
ing system and hypervisor. We show that malware carexamines the potential of the TPM for malware authors (a
use cloaked computations to hide essential secrets (likérst to our knowledge).

the target of an attack) from a malware analyst. A malware writer can use the TPM for implementing
We describe and implement a protocol that establisheg|gaked computationswhich, combined with a protocol

an encryption key under control of the TPM that can onlydescribed in this paper, impede malware analysis. The
be used by a specifi_c_infection program. An infected hostrppy is used with “late launch” processor mechanisms
then proves the legitimacy of this key to a remote mal-(jnte's Trusted Execution Technology [12, 8], abbrevi-
ware distribution platform, and receives and executes aRieq TXT, and AMD’s Secure Startup mechanism [10])
encrypted payload in a way that prevents software visibilyhat ensure uninterrupted execution of secure binaries.
ity of the decrypted payload. We detail how malware can| ate |aunch is a hardware-enforced secure environment
benefit from cloaked computations and discuss defenseghere code runs without any other concurrently executing
against our protocol. Hardening legitimate uses of thespftware, including the operating system. We demonstrate
TPM against attack improves the resilience of our mal-5 protocol where a malware author uses cloaked com-
ware, creating a Catch-22 for secure computing technolpytations to completely prevent certain malware func-
0gy. tions from being analyzed and understood by any cur-
1 Introduction rently available methods. TPM functionality ensures that
a cloaked program will remain encrypted until it is run-
The Trusted Platform Module (TPM) has become a com,;p, g girectly on hardware. Assuming certificates for hard-

mon hardware feature, with 350 million deployed COM-\vare TPMs identify these TPMs as hardware and cannot
puters that have TPM hardware [14]. The p_urpose_ofTPI\/be forged, our malware will refuse to execute in a virtual-
hardware, and the software that supports it, is to increasg . 4 environment

the security of computer systems. However, this paperex- o - -
amines the question of how a malware author can use the 11Mely and accurate analysis is critical to the ability
TPM to build better malware, specifically malware that ©© Stop widespread effects of malware. Honeypots are
cannot be analyzed by white hat researchers. cqnstantly _collgctmg malyvare anq research_ers use cre-
Trusted computing technology [42] adds computerat'Ve gomb_lnatllons of static anal){5|s, dynamic emulathn
hardware to provide security primitives independent from@nd Virtualization to reverse engineer malware behavior
other system functionality. The hardware provides cer{47: 30, 19, 24, 35, 36]. This reverse engineering is often
tain low-level security guarantees directly. For example crucial to defeating the malware. For example, once the
it guarantees that only it can read and write certain datad®Main name generation algorithm used for propagating
Trusted software uses these low-level, hardware-enforcedd® Conficker worm was determined, the Conficker ca-
properties to build powerful guarantees for programmersb@l blocked the registration of those DNS names [45, 43,
The TPM, as developed by the Trusted Computingtnereby defeating the worm.
Group (TCG), is one of the more popularimplementations While the idea of using the TPM to cloak malware com-
of trusted computing technology. The TPM has seen sigputation is conceptually straightforward, existing TPM
nificant use in industry and government; the TPM is usedorotocols do not suffice and must be adapted to the task

of malware distribution. We clarify the capabilities of
and countermeasures for this threat. Cloaking does not
make malware all-powerful, and engineering malware to
take advantage of a cloaked environment is a design chal-
lenge. A cloaked computation runs without OS support,
so it cannot make a system call or easily use devices like
a NIC for network communication. This paper also dis-
cusses best practices for TPM-enabled systems that can
prevent the class of attacks we present. many examples of malware using kernel vulnerabil-

This paper makes the following contributions. ities [34, 3].

e |t specifies a protocol that runs on current TPM im- e Authorization for TPM capabilities. We further as-

OSes are common enough to be a significant con-
cern. For example, in September and October 2010,
there were 13 remote code execution vulnerabilities
and 2 privilege escalation vulnerabilities that could
provide a kernel-level exploit for Microsoft's Win-
dows 7 [13]. Kernel-level exploits for Linux are re-
ported more rarely, but do exist, e.g., the recent Xorg
memory management vulnerability [54]. There are

plementations that allows a malware developer to ex-
ecute code in an environment that is guaranteed to be
not externally observable, e.g., by a malware analyst.
Our protocol adapts TPM-based remote attestation
for use by the malware distribution platform.

It presents the model of cloaked execution and mea-
sures the implementation of a malware distribution
protocol that uses the TPM to cloak its computation.
It provides several real-world use cases for TPM-
based malware cloaking, and describes how to adapt
malware to use TPM cloaking for those cases. These

sume our attack can authorize the TPM commands
in our protocol. TPM commands are authorized us-
ing AuthData, which are 160-bit secrets that will
be described further in Section 3. The difficulty
of obtaining AuthData depends on how TPMs are
used in practice. To our knowledge, the TCG does
not provide concrete practices for protecting Auth-
Data. Most TPM commands do not require Auth-
Data to be sent on wire, even in encrypted form.
However, knowing AuthData is necessary for certain
common TPM operations like using TPM-controlled

include: worm command and control, selective data encryption keys. We discuss acquiring the AuthData
exfiltration, and a DDoS timebomb. needed by the attack in Sections 3.6 and 4.
e Itdiscusses various defenses against our attacks and An analyst will see all non-blackbox behavior of the

their tradeoffs with TPM security and usability. attacker’s cloaked computation. In our model, the analyst

Organization In Section 2 we describe our threat model is allowed full access to systems that run our malware.
and different attack scenarios for TPM cloaked malware We assume that all network traffic is visible, and that the
Then in Section 3 we give TPM background information. analyst will attempt to exploit any attack protocol weak-
We then describe and analyze a general TPM cloaked mahesses. In particular, an analyst might run a honeypot that
ware attack in Section 4 and follow with a description of is intended to be infected so that he can observe and ana-
a prototype implementation in Section 5. lyze the malware. A honeypot may use a virtual machine
We then turn to discussing future defenses against sucfincluding those that use hardware support for virtualiza-
attacks in Section 6; describe related work in Section 7tion like VMWare Workstation and KVM [33]), and may
and finally conclude in Section 8. include any combination of emulated and real hardware,

. including software-based TPM emulators [50] and VM
2 Threat Model and Attack Scenarios interfaces to hardware TPMs like that of vTPMs [17].

We begin by describing our threat model for an attacker \we gssume the analyst is neither able to mount phys-

that wishes to use the TPM for cloaked computationsjca| attacks on the TPM nor is able to compromise the
Then we describe multiple attack scenarios that can levefrpyy public key infrastructure. (We revisit these as-

age TPM cloaked computations. sumptions when discussing possible defenses in Sec-

tion 6.) While there are known attacks against Intel's
late launch environment [55] and physical attacks against
the TPM [51, 32], manufacturers are working to eliminate
such attacks. Manufacturers have significant incentive to
defeat these attacks because they compromise the TPM’s
guarantee that is currently its most commercially impor-

We assume an attacker will have the following capabil-tant preventing data leakage from Iaptop_tr_left.
ities on the compromised machine. Our attack may be detectable because it increases TPM

e Kernel-level compromise. We assume our attack USe- Nonetheless, frequent TPM use might be the norm
has full access to the OS address space. Late laundfr Some systems, or users and monitoring tools may sim-
computation is privileged and can only be started byply be unaware that increased TPM use is a concern.
code that runs at the OS privilege level. Exploits A cloaked computation is limited to a computational
that result in kernel-level privileges for commodity kernel. It cannot access OS services or make a system

2.1 Threat model and goals

We consider arattacker who wishes to infect machines
with malware. His goal is to make a portion of this mal-
ware unobservable to amyalyst(e.g., white-hat security
researcher, or IT professional) except for its input and out
put behavior.

call. Any functional malware must have extensive sup- Using cloaked computations for malware command
port code beyond the cloaked computation. The supporand control does napso factomake malware more dan-
code performs tasks like communication over the networlgerous. Cloaked computations must be used as part of a
or access to files. The attacker must design malware toareful protocol in order to be effective.

split functionality into cloaked and observaple pieces. Ar 222 Selective data exfiltration

guments can be passed to the computational kernel via

memory, and may be encrypted or signed off-platform forAn infection program can exfiltrate private financial data
privacy or integrity. or corporate secrets. To minimize the probability of detec-

tion, the program rate limits its exfiltrated data. The pro-
gram searches and prioritizes data inside a cloaked com-
We now describe various attack scenarios that leveragputation, perhaps using a set of regular expressions.
TPM cloaking. Cloaked computation can obscure valuable clues about
the origin and motivation of the infection authors. The
regular expressions might target information about a par-
We consider a modification of the Conficker B worm. The ticular competitor or project. If white hats can sample the
worm has an infection stage, where a host is exploited angdyfiltrated data, this would also provide clues; however, it
downloads command and control code. Then the infectioRyould give less direct evidence than a set of search terms,
code runs a rendezvous protocol to download and executgng output could be encrypted.
signed binary updates. Engineers halted the propagation styxnet and Aurora are recent high profile attacks that
of Conficker B by reverse engineering the rendezvous progxfiltrate data [38]. Stuxnet seeks out specific industrial
tocol and preventing the registration of domain names thagystems and sends information about the infected OS and
Conficker was going to generate. domain information to one of two command servers [26].
Defeating Conficker requires learning in advance thep program without cloaked computation could use cryp-
rendezvous domain names it will generate. The sequengggraphic techniques [59, 18, 28] to keep search criteria
of domain names can be determined in two ways; firsksecret while being observed in memory, but their perfor-
by directly analyzing the domain name generation imple-mance currently makes them impractical.
mentation or second by running the algorithm with inputs o) o
that will generate future domain names. Cloaked compu#-2-3 Distributed denial-of-service timebomb
tation prevents the static analysis and dynamic emulatiom common malware objective is to attack a target at a cer-
required to reverse engineer binary code, eliminating theain point in time. Keeping the time and target secret until
first option of analyzing the implementation. the attack prevents countermeasures to reduce the attack’s
Conficker uses as input to its domain name generatioimpact. A cloaked computation can securely check the
algorithm the current day (in UTC). It establishes the cur-day (as above), and only make the target known on the
rent day by fetching data from a variety of web sites.launch day.
White hat researchers ran Conficker with fake replies to Malware analysis has often been important for stop-
these http requests, tricking the virus into believing iswa ping distributed denial-of-service (DDoS) attacks. One
executing in the future. prominent example is MyDoom A. MyDoom A was first
However, malware can obtain timestamps securely aidentified on January 26, 2004 [2]. The worm caused in-
day-level granularity. Package repositories for commorfected computers to perform a DDoS www. SCo. com
Linux distributions provide descriptions of repository on February 1, 2004, less than a week after the virus was
contents that are signed, include the date, and are updatéigst classified. However, the worm was an easy target for
daily. (Seehttp://us. archive. ubuntu. conf analysts because its target was in the binary obscured only
ubunt u/ di sts/luci d-updates/ Rel ease for by ROT-13 [1]. Since the target was identified prior to
Ubuntu Linux, which has an accompanying “.gpg” when the attack was scheduled, SCO was able to remove
signature file.) This data is mirrored at many locationsits domain name from DNS before a DDoS occurred [57].
worldwide and is critical for the integrity of package The Storm worm’s targeting of www.
distributiorf, so taking it offline or forging timestamps ni crosoft.com [46], Blaster's targeting of
would be both difficult and a security risk. wi ndowsupdat e. com [34], and Code Red’s tar-
Conficker is not alone in its use of domain name genergeting of www. whi t ehouse. gov [22] are other
ation for rendezvous points. The Mebroot rootkit [31] and prominent examples of DDoS timebombs whose effects
Kraken botnet [5] both use similar techniques to contacivere lessened by learning the target in advance of the
their command and control servers. attack. If timebomb logic is contained in cloaked code,
LAlthough individual packages are signed, without signddae then it increases the difficulty of detecting the time and

metadata a user may not know whether there is a pending ufmfate targe_t of an upcoming attack. Si_nce the target_ is stored
a package. only in encrypted form locally on infected machines, the

2.2 Attack Scenarios

2.2.1 Worm command and control

infected machines do not have to communicate over thge Concatenation ofi and B A|lB

network to receive the target at the time of the attack. Public/private keypair for (PKname, SKname)
Not every machine participating in a DDoS coordinated asymmetric encryption = (PK, SK)name
namedname

by cloaked computation must have a TPM. A one-million

machine botnet could be coordinated by one-thousangdEncryption of data with a public | Enc(PK, data)
machines with TPMs (to pick arbitrary numbers). The kgy : : — :
TPM-containing machines would repeatedly execute & >91nd ofdata withasigningkey | Sign(SK, data)
cloaked computation, as above, to determine when to be-SYmmetrickey K (no P or § at front)
gin an attack. These machines would send the target o SYMMetric encryption ddata EncSym(K, data)
One-way hash (SHA-1) afata H(data)

the rest when they detect it is time to begin the DDoS. |
the example, all million machines must receive the DDoS Table 1:Notation for TPM data and computations.
target, but the topology of communication is specialized

to the DDoS task and therefore is more difficult to filter 1 ogg bytes of non-volatile RAM (NVRAM), so most data
and less amenable to traffic analysis than a generic peefat the TPM uses must be stored elsewhere, like in main
to-peer system. memory or on disk. When we refer to an objecttsred
3 TPM background in the TPM, we mean an object stored externally to the
.)) TPM that is encrypted with a key managed by the TPM.
This section describes the TPM hardware and supporgy contrast, data stored in locations physically internal t
software in sufficient detail to understand how it can beine TPM isstored internal to the TPM.
used to make malware more difficult to analyze. AuthData controls TPM capabilities, which are the
3.1 TPM hardware ability to read, write, and use objects stored in the TPM
_ _ and execute TPM commands. AuthData is a 160-bit se-
T,PM_S are usualrl]y ft())unotljm);86 PCs as smaIrI] In’iegr"j‘t,edcret, and knowledge of the AuthData for a particular capa-
circuits on motherboards that connect to the low plnbiIity is demonstrated by using it as a key for calculating a

count (LPC) bus and ultimately the southbridge of the Pchash—based message authentication code (HMAC) of the
chipset. Each TPM contains an RSA (public-key) cryp—input arguments to the TPM commarid.

tography unit and platform configuration registers (PCRSs) Public signature and encryption key pairs created by a

that maintain cryptographic hashes (called measurementlsPM are stored alsey blobsonly usable with a particular
by the TCG) of code and d_ata that ha_s runon the pIgt_formTPM. The contents of a key blob are shown in Figure 2. A

Thg goa}I of the TPM is to provide se_curlty-cr|t|cal hash of the public portion of a key blob is stored in the pri-
functions like secure storage and attestation of platform,,; portion, along witlipm Proof (mentioned above);
state.and identi_ty. Each TPM is shipped with a public €Ny mProof is an AuthData value randomly generated by
_cryptlon key paur, called th(_a _Endorsement K&K(), that the TPM and stored internally to the TPM when someone
is gccom_pamed by a_c_:ertlflcate from the manufactu_rer,[(,j“<es ownership. It protects the key blob from forgery by
This key is used for critical TPM management tasks, like, 4 arsaries and even the TPM manufactrer.

“.talll<ing. oer)erghip’_’ (.)f. tlhe TPthq_iglz/lis a form of ini- In addition, a TPM user can use the PCRs to restrict use
tialization. During initialization the creates a sdgre of TPM-generated keypairs to particular pieces of soft-

tpmProof, thatis “Se_‘?' to protect lfeypairs itcreates. o that are identified via a hash of their code and initial
The TPM 1.2 specification requires PC TPMs to havey,ta For example, the TPM can configure a key blob so

at least 24 PCRs. PCRs 0-7 measure core system COffli4; it can only be used when the PCRs have certain values

ponents like BIOS code, PCRs 8-15are OS defined, angl 4 therefore only when certain software is runnihg).
PCRs 16-23 are used by the TPM's late launch mecha-
nism, where sensitive software runs in complete hardware 2Since AuthData is used as an HMAC key, it does not need to be
isolation (no other program including the OS may run present on the same machine as the TPM for it to be used. For-exa
concurrently unless s ecificélll allowed by the ’software) ple, a remote administrator might hold certain AuthData asd this
y p_ y y ‘to HMAC input arguments and then send these across a netaahle t

PCRs cannot be set directly, they can onlyebéended machine containing the TPM. However, AuthData does neecktinb
with new values, which sets a PCR so that it depends omemory (and encrypted) when the secret is first establistied TPM
its previous value and the extending valuein a way that i$apability as part of a TPM initialization protocol. We istigate fur-

. . . ther the implications of this nuance in our discussions démtges in
not easily reversible. PCR state can establish what softs_ i, 6.

ware has been run on the machine since boot, including 3migratable keys are handled somewhat differently, but teybe-

the BIOS, hypervisor and operating system. yond the scope of this paper.
)) 4Restricting a TPM-generated key to use with certain PCRegalsi
3.2 Managing and protecting TPM storage not the same as tiEPM Seal command found in related literature. The

. . . . two are similar, but the former places restrictions on akege, while
The TPM was designed with very |_|t_t|e per5|stent Storag@e Jater places restrictions on the decryption of a pieceiatd (which
to reduce cost. The PC TPM specification only mandatesould be a key blob).

1

Infected .
- TPM Certificate of hardware
Platform Infection 2 TPM legitimacy
Program e >
TPM-generated | «¢ ntermediate Malware Distribution
binding key .
credentials Platform

Late launch 3
environment]

TPM 4 / II

run
/ IPL Encrypted

Payload

7)) _| oy
Infection
decrypt Payload
Loader

Figure 1:The overall flow of the attack is 1) Infecting a system withdbmalware capable of kernel-level exploitation to cooatin
the attack 2) Establishing a legitimate TPM-generated leaple only by the Infection Payload Loader in late launchaviaultistep
protocol with a Malware Distribution Platform 3) Delivegra payload that can be decrypted using the TPM-generated)kdging
a late launch environment to decrypt the payload with the Td@&Merated key, and running it with inputs passed into mgrhgr
local malware 5) Retrieving output from payload, potetfiabpeating step 4 with new inputs. Boxes with “TPM” indiegtarts of
the protocol that use the TPM.

Blob((PK, SK)ey) = PubBlob((PK, SK)ey) || Enc(PK yarent, PrivBlob((PK, SK).y))
PubBlob((PK,SK)..) = PK.. || PCR values
PrivBlob((PK, SK)ez) = SKey || H(PubBlob((PK, SK)ez) || tpmProof

Figure 2: Contents of TPM key blob for an example public/private kely pamedez that is stored in the key hierarchy under a key
namedparent. For our purposes the parent key of most key blobs is the SRéte(that the PCR values themselves are not really
stored in the key blob. Rather the blob contains a bitmaske@PICRs whose values must be verified and a digest of the PG&sval

TPM key storage is a key hierarchy: a single-rootedAuthData value, which is needed to set TPM policy, the
tree whose root is the Storage Root KSRK), and is SRK AuthData value, which is needed to use the SRK,
created upon the take ownership operation described bendtpmProof. tpmProof is generated internal to the
low. The private part of the SRK is stored internal to TPM and stored in NVRAM. It is never present in unen-
the TPM and never present in main memory, even in enerypted form outside the TPM.
crypted form. Since the public part of the SRK encrypts While it is easy for a professional administrator to
the private part of descendant keys (and so on), all keys itake ownership of a TPM securely, taking ownership of
the hierarchy are described as “stored in the TPM,” evera TPM is a security critical operation that is exposed in
though all of them, except the SRK, are stored in maina very unfriendly way to average users. For example,
memory. Using the private part of any key in the hierar-Microsoft's BitLocker full-disk encryption software uses
chy requires using the TPM to access the private SRK tahe TPM. When a user initializes BitLocker, it reboots the
decrypt private keys while descending the hierarchy. machine into a BIOS-level prompt where the user is pre-

It is impossible to use private keys for any of the key- sented cryptic messages about TPM initialization. Bit-
pairs stored in the TPM apart from using TPM capabil- Locker performs the initial ownership of the TPM, and it
ities: obtaining the private key for one key would entail acquires privilege to do so with TPM mechanisms for as-
decrypting the private portion of a key blob, which in turn serting physical presence at the platform via the BIOS. An
requires the private key of the parent, and so on, up to thnexperienced user could probably be convinced to agree
SRK, which is special in that its private key is never storedto allow assertion of physical presence by malware similar
externally to the TPM (even in encrypted form). A TPM to how rogue programs convince users to install malicious
key hierarchy is illustrated in Figure 3. software and input their credit card numbers [44]. The

e function of the TPM is complicated and flexible, making
33 Initializing the TPM a simple explanation of it for an average user a real chal-
To begin using a TPM, the user (or administrator) mustenge.
first take ownership of it. Taking ownership of the TPM Furthermore, malware could also gain use of phys-
establishes three important AuthData values: the owneical presence controls in BIOS by attacks that modify

a SRK authenticity of TPM data, and to modify PCRs to describe

\ platform state as it changes. Keys are created in the key
(PK, SK) TPM . p P ;

EK AlK Bind hierarchy by “loading” a parent key and commanding the

(PKSK) sri TPM to generate a key below that parent, resulting in a

new key blob. Loading a key entails passing a key blob to

b) PK . the TPM to obtain a key handle, which is an integer index
into the currently loaded keys. Only loaded keys can be
used for further TPM commands. Loading a key requires

PK [lEnc(PK_ SK_) PK || Enc(PK__ SK_ loading all keys above it in the hierarchy, so loading any
AIK SRK » AIK bind SRK 1 bind

key in the key hierarchy requires loading the SRK.

Figure 3: The partof the TP key hierarchy refevant o our . 1° TPA an produce signed cericates of ey authen:
attack. The TPM box illustrates keying material storedrinte ’ ’ i ’
nal to the TPM, which is only the endorsement key (EK) and TPI\./I.produces a.hash of the p”‘?“c key for the.key to be
storage root key (SRK). Part (a) shows the conceptual key hicertified, along with a hash of a bitmask describing the se-
erarchy, while part (b) shows how the secret keys of childrenlected PCRs and those PCR values, and signs both hashes
are encrypted by the public keys of their parents so keys ean bwith the selected key.
safely stored in memory. More detail on key formats isfoundi PCRs can be modified by the TPM as platform state
Figure 2. changes. They cannot be set directly, and are instead mod-
ified by extension. A PCR with valuBC R extended by
the BIOS itself [48]. Recent work has even demon-a 160-bit valueval is set to valudixtend(PC R, val) =
strated attacks against BIOS update mechanisms that réZ (PCR || val). Late launch extends the PCRs with the
quire signed updates [56]. hash of the state of the program run in the late launch en-
vironment. Thus the TPM can restrict access to keys to a
particular program. Our malware protocol uses this abil-
TPMs provide software attestation, a proof of what soft-ity to prevent analyst use of a payload decryption key.
ware is running on a platform when the TPM is invoked.
The proof is given by a certificate for the current PCR
values, which contain hashes of the initial state of all-soft
ware run on the machine. This certificate proves to anDespite the widespread availability of trusted computing
other party that a TPM-including platform is running par- technology as embodied by the TPM, its implications are
ticular software. The receiver must be able to verify thatnot well understood. The specification for the TPM and
the certificate comes from a legitimate TPM, or the quotedsupporting software is complicated; version 1.2 of the
measurements or other attestations are meaningless. TPM specification for the PC/BIOS platform with accom-

A user desiring privacy cannot directly use her plat-panying TCG Software Stack is over 1,500 pages [52].
form’s EK for attestation. (EKs are linked to specific plat- Additionally, there are few guidelines for proper use of
forms, and additionally multiple EK uses can be corre-its extensive feature set. It is quite believable that such
lated.) Instead, she can generate attestation identity keya complicated mechanism has unintended consequences
(AIK s) that serve as proxies for the EK. An AIK can sign that undermine its security goals. In this paper, we pro-
PCR contents to attest to platform state. However, somegose such a mechanism: that the TPM can be used as a
thing must associate the AIK with the EK. means to thwart analysis of malware.

A _trusted F’T“’acy certif_icate agthority (Privacy CA) Key hierarchy The lack of guidance on the usage of
provides certificates to th!r.d parties that an AlK corre-p) capabilities makes it difficult to determine what in-
sppnds to an EK of.a Ieg|t|mat§ TPM. While prototype formation an attacker might reasonably acquire. For ex-
Privacy CA code exists [27], Privacy CAs appear to beample, the key hierarchy has a single root. Therefore, dif-

unused in p_ractice. In our attack, the malware_distri_b_utorferent users must share at least one key, and every use of
actsas a Prlvgcy CA and only trusts AlKs that it certlfles..a TPM key requires loading the SRK. Loading the SRK

We emphasize that our proposed attack does notrequing jires SRK AuthData, and thus the SRK AuthData is
or benefit from the anonymity guarantees provided by ge\y well-known, making it possible for users to imper-

P_rivacy C?A' Howev_er, the TPM does not permit a user ©gonate the TPM, as others have previously indicated [21].
directly sign an arbitrary TPM-generated public key with

the EK, so our attack must use an intermediate AIK. EK certificates As another example of capabilities in

. flux, EK certificates critical to identifying TPMs as legiti-
3.5 Using the TPM mate are not always present, and it is not always clear how
Typical uses of the TPM are to manipulate the key hier-to verify those that are. TPM manufacturers are moving
archy, to obtain signed certificates of PCR contents or ofoward certifying TPMs as legitimate by including certifi-

3.4 Platform identity

3.6 TPM functionality evolving and best practices
unknown

cates for EKs in TPM NVRAM. Infineon gives the most Pack(data, extra, PK):

detail on their EK certification policy, in which the cer- 1. Generate symmetric key

tificate chain extends back to a new VeriSign TPM root 2. Asymmetric encrypf to formEnc(PK, K || extra)
Certificate Authority [11]. ST Microelectronics supplies 3. Symmetric encrypfata to form EncSym (K, data)
TPMs used in many workstations from Dell. They state 4= OutputEncSym(K, data) || Enc(PK, K || extra)

that their TPMs from 2010 onward contain certificates [9]. Unpack(EncSym(K, data) || Enc(PK, K || extra), SK):
While no certificates were present on our older machines, 3. asymmetric decrypnc(PK, K || extra) with SK to
we did find certificates for our newer Dell machines and obtain K andeztra

manually verified the legitimacy of the EK certificate for 2. Symmetric decrypEncSym (K, data) with K to obtain
one of our TPMs (which we describe further in Section 5). data

Protecting AuthData Many uses of the TPM allow Au- > OutPutdata, extra

thData to be snooped if not used carefully. For exampleFigure 4: Subroutines used in main protocek:tra is needed
standard use of TPM tools with TrouSerS prompts thefor TPMAct i vat el denti ty, and can be emptyp. Run-
user to enter passwords at the keyboard to use TPM caing Unpack on the TPM use§PM.Unbi nd.
pabilities. These passwords can be captured by a keylog-
ger if the system is compromised. Thus, despite that TPMensuring correctness of MLE parameters. The exact func-
commands may not require AuthData to appear, entry ofionality of SI NI T is not known, as its source code is not
this data into the system for usage can be insecure. public. SI NI T then passes control to the MLE. When the

; ; MLE runs, no software may run on any other processor
4 Malware using cloaked computations and hardware interrupts and DMA transfers are disabled.

We now describe an architecture and protocol for launchTg exit, the MLE uses th6ETSEC] SEXI T] instruction.
ing a TPM-cloaked attack.

Our protocol runs between aimfection Program,
which is malware on the attacked host, antMalware The Infection Program first establishes a proof that it is
Distribution Platform , which is software executed on using a legitimate TPM. It uses the TPM to generate two
hardware that is remote to the attacked host. The goddeys. One is a “binding key” that the Malware Distribu-
of the protocol is for the Infection Program to generate ation Platform will use to encrypt the malicious payload.
key. The Infection Program attests to the Malware Distri-The other is an AIK that the TPM will use in the Privacy
bution Platform that TPM-based protection ensures only itCA protocol, where the Malware Distribution Platform
can access data encrypted with the key. The Malware Displays the role of the Privacy CA. The Malware Distribu-
tribution Platform verifies the attestation, and then sendgion Platform will accept its own certification that the AIK
an encrypted program to the Infection Program. The Inds legitimate in a later phase. As stated before, the Privacy
fection Program decrypts and executes this payload. Thi€A protocol enables indirect use of the private EK only
protocol enables long-lived and pernicious malware, forkept by the TPM. A valid private EK cannot be produced
example, turning a computer into a botnet member. Théy an analyst; it is generated by a TPM manufacturer and
Infection Program can suspend the OS (and all other softenly accessible to the TPM hardware. This part of the
ware) through use of processor late launch capabilities ténfection Program is named “Infection Keygen”.
ensure unobservability when necessary, like when the ma- Our description of the protocol steps will elide lower-
licious payload is decrypted and executing. level TPM authorization commands likePM.O AP and
TPM.OSAP that are used to demonstrate knowledge of au-
thorization data and prevent replay attacks on TPM com-
The protocol uses late launch to suspend the OS to allowhgn(s.
decryption and execution of the malicious payload with- we use subroutinesPack(data, extra, PK) and
out observation by an analyst. Late launch creates an ex@pack(data, PK), which use asymmetric keys with in-
cution environment where it is possible to keep code andermediate symmetric keys. Symmetric keys increase the
data secret from the OS. efficiency of encryption, are required for certain TPM

Late launch transfers control to a designated block okbommands, and circumvent the limits (due to packing
user-supplied code in memory and leaves a hash of thghechanisms) on the length of asymmetrically encrypted

code in TPM PCRs. Specifically, with Intel's Trusted Ex- messages. These subroutines are shown in Figure 4 and
ecution Technology, a user configures data structures the main protocol is in Figure 5.

describe the Measured Launch EnvironméniLE), the
program to be run (which resides completely in mem-
ory). She then uses tHeETSEC] SENTER] instruction A malware analyst can attempt to subvert the protocol by
to transfer control to chipset-specific code, signed by Intampering with data or introducing keys under her control.
tel, calledSI NI T that performs pre-MLE setup such as We now analyze the possibilities for subversion.

4.2 Malware distribution protocol

4.1 Late launch for secure execution

4.3 Analyzing the resilience of the protocol

Infection Keygen: Generate binding key that Malware Distribution Platforill eventually use to encrypt malicious payload, AIK
that certifies it, and request for Malware Distribution Riai to test AIK legitimacy

1. Create binding keypaitP K, SK)pina Under the SRK with
TPMCr eat eW apKey (SRK, PCR18 = Extend (0160, H (Infection Payload Loader))) (requires SRK AuthData), store in
memory

2. Create identity keyPK, SK)arx under SRK in memory aBlob((PK, SK) arx) with TPMMakel dent i ty (requires
owner AuthData)

3. Retrieve EK certificat€' e x = PKexk || Sign(SKmanufacturer, H(PKEK)), which certifies that the TPM with that EK is
legitimate (requires owner AuthData to obtain from NVRAMWIPMNV_ReadVal ue from EK index or needs to be on
disk already)

4. SendM,., = PubBlob((PK, SK)ark) || Cex to Malware Distribution Platform as a request to link AIK aBK

Malware Distribution Platform Certificate Handler : Give Infected Platform credential only decryptable byitiegate TPM

1. ReceivelM, ¢,

2. Verify Sign (S Kmanufacturer, H(PKEx)) with manufacturer CA public key

3. Generate hasHix_cert = H(PubBlob((PK,SK)arrk))

4. SigNHaik_cert With SKonaiware, @ private key known only to the Malware Distribution Platfowhose corresponding public
key is known to all, to fornBign (S K maiware, Haikcert) SIgN(S Kmaiware, Haik_cert) iS @ credential of AIK legitimacy.

5. RunPack(Sign(SKmatware, Haik.cert), Haikcert, PKEx) to form
Myeqresp = Enc(PKek, K2 || Haikcert) || EncSym(K2, Sign (S Kmatware, Haikcert)). Mreqresp CONtains the credential
in a way such that it can only be extracted by a TPM with prieS K r x when the credential was created for an AIK
stored in that TPM.

6. SendM, 4 resp t0 Infected Platform

Infection Proof: Decrypt credential, assemble certificate chain from mectufer certified EK to binding key (including credential)

1. ReceiveM eq_resp

2. Load AIK(PK, SK)ark and binding key(PK, SK)pina With TPM.LoadKey 2

3. UseTPMAct i vat el denti ty, which decrypt€Enc(PKrxk, K2 || Haik.cert) @and retrieveds, after comparingd aix_cert

to that calculated from loaded AIK located in internal TPM RAIf comparison fails, abort. (requires owner AuthData)

. Symmetric decrypkEncSym (K2, Sign(SKmatware, Haik.cert)) t0 retrieveSign (S Konatware, Haik_cert)

5. Certify (PK, SK)ping With TPMCer t i f yKey to produce
Sign(SKAIK, H(PCRS(PubBIOb((PK, SK)bmd))) || H(PKbind)) = Sign(SKAIK, Hbind_ce'rt)

6. Sendemof = Sign(SKmalware, Haik_ce'rt) || PubBlob((PK7 SK)A[K) || Sign(Sl{A]K7 Hbind_ce'rt) ||
PubBlob((PK, SK)uina), all the evidence needed to verify TPM legitimacy, to Malev@istribution Platform

Malware Distribution Platform Payload Delivery : Verify certificate chain, respond with encrypted malicgqayload if successful

N

1. ReceiveMyro0f

2. Verify signatures 0H ,ix_cert BY S Kmaiware USINGP Konatware, Of Hpind.cert USINGP K a1rc. Check thatHpind_cert
corresponds to the binding key by comparing hash of publc RERs toPubBlob((PK, SK)pina). Use
PubBlob((PK, SK)ina) to determine if binding key has a proper constraint/fgr R18. Abort if verification fails or
binding key improperly locked.

3. Hash and sign the payload Wi, 41.are t0 form Sign(S K matware, H (payload)) (only needs to be done once per
payload)

4. RunPack(payload || Sign(SKmaiware, H(payload)), ¢, PKping) to form
Mpayioad = EncSym(K3s, payload|| Sign(SKmaiware, H(payload))) || Enc(P Kying, K3)

5. SendMpayi0qq t0 INfected Platform

Infection Payload Execute Use late launch to set PCRs to allow use of binding key foryggion and to prevent OS from
accessing this key during use

1. ReceiveMyayioad
2. Late launch with MLE= Infection Payload Loader

Infection Hidden Execute Infection Payload Loader decrypts and executes the pdytothe late launch environment.

1. Load(PK, SK)pina With TPM.LoadKey 2

2. RunUnpack(Mpayioad, SKpina). This operation can succeed (and only in this program) tsecainfection Hidden
Execute PC'R18 = Extend(0160, H (Infection Payload Loader)). Obtainpayload || Sign(S K matware, H (payload)).

3. Verify signatureSign (S K matware, H (payload)) with P K, q1ware. Abort if verification fails.

Executepayload

5. If return to OS execution is desired, scrub payload frormiory and extend random value into PCR18, then exit late launc

Ea

Figure 5: The cloaked malware protocol.

key blob =TPM.Cr eat eW apKey (parent key, PCR constraints) Generate new key with PCR constraints under the par-
ent key in hierarchy. The resultant key may be used|for
encryption and decryption, but not signing.

key handle =TPMLoadKey2(key blob) Load a key for further use.

key blob =TPMMakel denti ty() Generate an identity key under SRK that may be used
for signing, but not encryption and decryption.

symkey = Verify that asymmetric CA response part corresponds

TPMAct i vat el denti t y(identity key handle, CA response)| to identity key. If agreement, decrypt response and|re-
trieve enclosed symmetric key.

(certificate, signature) = Produce certificate of key contents. Sign certificate with
TPMCer ti f yKey (certifying key handle, key handle) certifying key.
value =TPMNV_ReadVal ue(index) Retrieve data from TPM NVRAM.

Table 2: Additional functions in the main protocol. Keywords thag am fixed-width font that begin witiPM. are TPM commands
defined in the TPM 1.2 specification.

The analyst’s goal is to cause the malicious payload taredential that is a signed hash of the AIK it is sentipy
be encrypted with a key under her control, or to observe dection Keygenrunning on an infected platform. The EK
decrypted payload. She could try to create a binding keys proven legitimate by a certificate of authenticity signed
blob duringlnfection Proof, and certify it with a legiti- by the TPM manufacturer’s private key and verified by the
mate TPM. However, the analyst does not know the valuéMalware Distribution Platform. The private EK is only
of tpmProof for any TPM because it is randomly gen- stored internal to the TPM, and only usable under con-
erated within the TPM and is never present (even in entrolled circumstances likfPMAct i vat el dentity;
crypted form) outside the TPM. Withowipm Proof, the to our knowledge, there is no way to compel the
analyst cannot generate a key blob that the TPM will cer-TPM to decrypt arbitrary data with the private EK.
tify, even under a legitimate AIK. This argument relies on TPMAct i vat el dent i ty will only decrypt a public
the fact that the encryption system is non-malleable [25EK-encrypted blob of the forr{ K || Huik_cert) Where
and chosen ciphertext secure. Otherwise, an attackdd ;. ... iS the hash of the public portion of an AIK key
might be able to take a legitimately created ciphertext withblob where the AIK has been loaded into the TPM (and
tpmProof in it and modify it to an illegitimate ciphertext thus has not been tampered with). Therefdfecannot
with tpm Proof in it, without knowingtpm Proof. be recovered for an illegitimate AIK, and the credential

The analyst could attempt to modify PCR constraints>120(S Kmatware, Haik_cert) CANNOL be recovered. With-
on the binding key by tampering with the the public partOl.,It th|s .credentlal, the protocol Wlll abort iMalware
of the key. However, the TPM will not load the key in the Distribution Platform Payload Delivery (step 2). The
modified blob because a digest of the public portion of thec"®dential cannot be forged as it contains a signature with
blob will not match the hash stored in the private portion.2 Private key known only by the Malware Distribution
Thus, storing the binding key in the public part of the blob Platform.
where it is accessible to the analyst does not compromise The analyst could try to execute forged payloads with
the security of the protocol. If the binding key is a legiti- Infection Hidden Execute because the public binding
mate TPM key with PCR constraints that do not lock it to key is visible. However, becausafection Hidden Exe-
being observed only duringpfection Hidden Execute cutewill only execute payloads signed by a key unknown
the Malware Distribution Platform will detect it during to the analyst, this will not work. No program other than
Malware Distribution Platform Payload Delivery, and Infection Hidden Execute and the programs it executes
the platform will not encrypt the payload with that key. can access the binding key.

The analyst could attempt to forge keys at other points The analyst could try to set the PCR values to those
in the hierarchy: she could attempt to certify a bindingspecified in(PK, SK)ina, but run a program other
key she creates with an AIK that she creates. The Malthan Infection Payload Loader. This would allow her
ware Distribution Platform only obtains the public por- to decrypt the payload (step 2 in Infection Hidden Ex-
tions of these key blobs, and so cannot check directly irecute). The values of PCRs are affected by processor
Malware Distribution Certificate Handler thatthe AIK events and th&8l NI T code module. The CPU instruction
is legitimate. The Malware Distribution Platform could GETSEC] SENTER] sends an LPC bus signal to initial-
not verify the legitimacy of key blobs even with their pri- ize the dynamically resettable TPM PCRs (PCRs 16-23)
vate portions as the Platform can neither decrypt the prito 160 bits of 0s. No other TPM capability can reset these
vate portions, nor know the value ¢fm Proof for the = PCRs to all 0s; a hardware reset sets them to all 1s. So an
Infected Platform. However, it encrypts with the EK a analyst can only set PCR 18 to all Os with a late launch

executable.SI NI T extends PCR 18 with a hash of the software-based TPMs might not correspond to platform
MLE. Therefore, to set PCR 18, the analyst must run arstate in any way, as they can be modified by sufficiently
MLE with the correct hash. Assuming the hash function isprivileged software. A software TPM cannot attest to a
collision resistant, only the Infection Payload Loadedwil particular software environment, because it does not know
hash to the correct value, so the analyst cannot run an athe true software environment—it could be executing in a
ternate program that passes the PCR check. The payloadttual environment. Any certificate for a software-based
loader terminates at payload end by extending a randofmiPM must identify the TPM as software otherwise the
value into PCR 18, so the analyst cannot use the key aftarhain of trust is broken, defeating remote attestation (a
the late launch returns. major purpose of TPMs). No TPM manufacturer cur-
rently signs software TPM EKSs, nor (to our knowledge)
do any plan to do so. Prior work on virtualizing TPMs
Having described our protocol for cloaked malware ex-emphasizes that virtual TPMs and their certificates must
ecution, we review how it defeats conventional malwarepe distinguishable from hardware TPMs, as the two do
analysis. While our list of malware analysis techniquesnot provide the same security guarantees [17]. A malware
may not be exhaustive, to our knowledge, TPM cloakingdistribution platform can avoid software and virtual TPM
can be defeated only by TPM manufacturer interventioncertificates by using a whitelist of known-secure hardware
or by physical attacks, like direct monitoring of hardware TPM certificate distributors compiled into the malware.
events or tampering with the TPM or system buses. Both Software, such as a virtual machine monitor, cannot
of these are discussed in more detail in Section 6. communicate with a legitimate hardware TPM to obtain
Static analysis. Cloaked computations are encrypted and decrypt the malicious payload without running the
and are only decrypted once the TPM has verified that th@ayload in late launch. The only way that the mali-
PCRs match those in the key blob. The malware authogious payload can be decrypted is through use of a private
specifies PCR values that match only the Infection Paykey stored in the TPM that can only be used when the
load Loader, so no analyst program can decrypt the codgpM PCRs are in a certain state. This state can only be
for a cloaked computation. achieved through late launch, which isen-virtualizable
Honeypots. Honeypots are open systems that collectfunction, and it prevents software monitoring of the unen-
and observe malware, possibly using some combinatiogrypted payload. TPM late-launch is designed to be non-
of emulation, virtualization and instrumented software.virtualizable, so that TPM hardware can provide a com-
Purely software-based honeypots can try to follow ourplete and reliable description of platform state.
protocol without using a legitimate hardware TPM, but
will fail to convince a malware distributing machine of
their authenticity. This failure is due to their inability t Like any attack, ours has particular assumptions. As dis-
decrypttnc(PK gk, Ko || Haikcert), Which is encrypted cussed in Section 2.1, our protocol requires late launch
with the public EK that is certified by a TPM manufac- instructions, which are privileged, dofection Hidden
turer inCgg, and the private part of which is not present Executemust run at kernel privilege levels.
outside of a TPM. Thus these honeypots will never re- More importantly, our attack requires knowledge of
ceive the malicious payload. If a honeypot uses a legitSRK and owner AuthData values. There are two main
imate hardware TPM, it will obtain a malicious payload. possibilities for acquiring this AuthData previously men-
However, it can only execute the payload with late launchtioned in Section 3: snooping and overriding with physi-
which prevents software monitoring of the unencryptedcal presence.
payload. AuthData can be snooped from kernel or application
Virtualization. Software-based TPMs, virtualized (e.g. TrouSerS) memory or from logged keystrokes,
TPMs, and virtual machine monitors communicating with which are converted into AuthData by a hash. The like-
hardware TPMs cannot defeat cloaking. Hardware TPMdihood of successful AuthData snooping depends on the
have certificates of authenticity that are verified in ourparticular AuthData being gathered. The SRK must be
malware distribution protocol. A software-based TPM ei- loaded to load any other key stored in the TPM, so there
ther will not have a certificate, or will have a certificate will be regularly occurring chances to snoop the SRK Au-
that is distinguishable from a hardware TPM. Either way,thData. Owner AuthData, on the other hand, is required
it will fail to convince a malware distribution platform of for fewer, and generally more powerful, operations. It is
its authenticity. An analyst cannot use a virtual machinethen liable to be more difficult to acquire.
to defeat cloaking. One could enter all AuthData remotely to a platform
Hardware TPM manufacturers should not certify that contains a TPM, but we consider it unlikely that this
software-based TPMs as authentic hardware TPMss done in practice. TPM arguments could be HMACed
Software-based TPMs cannot provide the same secuby a trusted server, but such a server can become a perfor-
rity guarantees as hardware-based TPMs. The PCRs afiance or availability bottleneck. Use of a trusted server

4.4 Prevention of malware analysis

4.5 Attack assumptions

10

is also problematic for use of laptops that may not alwaysment programs are about 3,600 lines of C, the Infection
have network connectivity. For these cases, it may be posPayload Loader is another 400 lines of C, with another
sible to enter AuthData into a separate trusted device th&at50 lines of C added to provide TPM commands through
then can assist in authorizing TPM commands. Howeverselections of TrouSerS TPM code which themselves re-
such devices are currently not deployed. It is currentlyquired minor modifications. The payloads were about 50
more likely that AuthData would be presented through alines apiece with an extra 75 line supporting DSA rou-
USB key or entered at the keyboard, and in both cases tine, which was necessary for verifying Ubuntu’s reposi-
can be snooped. In addition, applications and OS service®ry manifests. All code size measurements are as mea-
used to provide AuthData to the TPM may not sufficiently sured by SLOCCount [53].

scrub sensitive data from memory.

To demonstrate the possibility of acquiring AuthData
from the OS, we virtualized a Windows 7 instance, andWe implemented a prototype of the protocol described in
used OS-provided control panels to interact with theFigure 5 using the TrouSerS [6] (v0.3.6) implementation
TPM. When AuthData was read from a removable drive of the TCG software stack (TSS) to ease development.
it remained in memory for long periods of time on anidle Our implementation follows the protocol, except
system, even after the relevant control panels were closedieps 2 to 3 ininfection Keygen which use TSS
The entire contents of the file containing the AuthDataAPI call Tspi _Col | at el denti t yRequest. This
were present in memory for up to 4 hours after the Auth-call does not produceM,., (step 4), but instead
Data was read, and the removable drive ejected from thproduces EncSym (K, PubBlob((PK, SK)rx)) and
system. The AuthData itself remained in memory for sev-Enc(P K ,qiware, 1) that must be decrypted in the Mal-
eral days, before the system was eventually shut down. ware Distribution Platform Certificate Handler. While the

If malware can use mechanisms for asserting physicaprotocol specifies network communication, the prototype
presence at the platform, it can clear the current TPMcommunicates via files on one machine. TrouSerS is not
owner and install a new owner, preventing the need toecessary for malware cloaking; TPM commands made
snoop any AuthData. While physical presence mechaby TrouSerS could be made directly by malware.
nisms should be tightly controlled, their implementation
is left up to TPM and BIOS manufacturers. Our experi-
ence setting up BitLocker (see Section 3.3) indicates thayVe verified the authenticity of our ST Microelectronics
the process can be confusing, and that it may be possiblePM endorsement key (EK). However, we had to over-

to convince a user to enable malware to obtain the necegome obstacles along the way, and there may be obstacles
sary authorization to use TPM commands. with other TPM manufacturers as well. For example, we

needed to work around unexpected errors in reading the
EK certificate from TPM NVRAM. Reads greater than or
As written, the malware distribution platform consists of a equal to 863 bytes in length return errors, even though the
host (or small number of hosts) controlled by the attackereads seem compatible with the TPM specification, and
and trusted with the attacker’s secret K& (naiware). the EK certificate is 1129 bytes long. We read the certifi-
This design creates a single point of failure. cate with multiple reads, each smaller than 863 bytes.

The Malware Distribution Platform computation con- The intermediate certificates in the chain linking the
sists of arithmetic and cryptographic work (with no OS TPM to a trusted certificate authority were not available
involvement) with an embedded secret. It is a perfect canenline, and we obtained them from ST Microelectronics
didate to run as a cloaked computation. An attacker camlirectly. However, some manufacturers (e.g. Infineon)
distribute work done on the Malware Distribution Plat- make the certificates in their chains available online [11].
form to compromised hosts using cloaked computations.To deploy TPM-based cloaking on a large scale, the veri-
- - fication process for a variety of TPMs should be tested.
5 Implementation and Evaluation For the TPM we tested, the certificate chain was of
We implemented a prototype of our attack, which con-length four including the TPM EK certificate and rooted
tains implementations of the establishment of a TPM-at the GlobalSign Trusted Computing Certificate Author-
controlled binding key, the decryption and execution ofity. There were two levels of certificates within ST Mi-
payloads in late launch, and sample attack payloads. laroelectronics: Intermediate EK CA 01 (indicating there
this section, we describe each of these pieces inturn. are likely more intermediate CAs) and a Root EK CA.

The prototype implementation consists of five pro- . .
grams for the key establishment protocol (described in5'2 Late launch environment establishment
Table 3), the Infection Payload Loader PAL and portedWe modified code from the Flicker [40] (v0.2) distribution
TrouSerS TPM utility code, payload programs, and supto implement our late launch capabilities. Flicker pro-
porting code to connect the pieces. The key establishvides a kernel module that allows a small self-contained

5.1 Binding key establishment

5.1.1 EK certificate verification

4.6 Distributing the malware distribution platform

11

program, known as a Piece of Application LogicRAL, target and time secret until the attack begins. Like the do-
to be started in late launch with a desired set of parametermmain generation payload, it uses signed package release
as inputs in physical memory. The kernel module acceptsnanifests to establish an authenticated current timestamp
a PAL and parameters throughsgsf s filesystem in- Once the payload has verified the signature on the mani-
terface in Linux, then saves processor context before peffest, it extracts the date. If the resultant date is laten tha
forming a late launch, running the PAL in late launch, anda value encoded in the encrypted payload, it releases the
then restoring the processor context after the PAL comtime-sensitive information as output. This payload out-
pletes. Output from PALs is available through the filesys-puts a secret AES key contained in the encrypted payload.
tem interface when processor context is restored. The key can be used to decode a file providing further in-
We implemented the Infection Payload Loader as astructions, such as the DDoS target, or a list of commands.
PAL, whl_ch takes the encrypted and signed payload, t_h%_4 Evaluation
symmetric key used to encrypt the payload encrypted with
the binding key, and the binding key blob as parametersWe tested our implementation on a Dell Optiplex 780 with
We used the PolarSSL [15] embedded cryptographic li-2 quad-core 2.66 Ghz Intel Core 2 CPU with 4 GB of
brary for all our cryptographic primitives (AES encryp- RAM running Linux 2.6.30.5. We used a ST Microelec-

tion, RSA encryption and signing, SHA-1 hashing andtronics ST19NP18 TPM, which is TCG v1.2 compliant.
SHA-1 HMACS). Elapsed wallclock times for protocol phases are indicated

We ported code from TrouSerS to handle use ofin Table 4. We used 2048-bit RSA encryption and 128-bit
TPM capabilities that were not implemented by theAES encryption. The malicious payloads varied in size
Flicker TPM library (TPMO AP, TPMLoadKey2, from 2.5 KB for the command and control to 0.5 KB for
TPM.Unbi nd). We replaced the TrouSerS code depen-the text search.
dence on OpenSSL with PolarSSL. We fixed two smal

bugs in Flicker's TPM driver that seem to be absent fron_COSts for infecting a machine _
the recent 0.5 release due to use of an alternate driver. [Action Time (s)
Infected Platform generates binding key 19.4 +11.2

5.3 Payloads Infected Platform generates AlK and credentjaB1.6 + 17.9

We implemented payloads for the three examples from request

Section 2.2. Here we describe the payloads in detail. Malware Distribution Platform processes rg- 0.07 +£0

uest

Dom_ain generatiqn T_he domain generation payload ?nfected Platform certifies key 5.9 +0.012

provides key functionality for a secure command and cong Infected Platform decrypts credential 6.0 L0010

trollscheme, n Whlch malware generates tlme-pased dg “Malware Distribution Platform verifies proof 0.04£0

main names unpredictable to an analyst. As input, t.h e Total 311222

payload takes the contents of a package release manifest

for the Ubuntu distribution, and its associated signature; Per-payload execution Stalistics Time ()

The payload verifies the signature against a public key VILE Sotl 105 L0.01

within itself. If the signature verifies correctly, the pay- e dgcr T vioad 3'07 < 0'01

load extracts the date contained in the manifest. The pay Command azz goztrol (‘) 008 i-o

load outputs an HMAC of the date with a secret key con- _ -

tained in the encrypted payload. DDosS Timebomb 0-008 £ 0
Assuming an analyst is unable to provide correctly T?Xt Search 0.004 +0

signed package manifests for future dates, this payloa Time system app?ars,frozen 3.22

provides a secure random value unpredictable to an ana- 2t MLE execution time 4.27

lyst, but generatable in advance by the payload’s authofable 4: Performance of different phases. Error bars are stan-
(because the author knows the secret HMAC key). Sucldard deviations of sample sets. A standard deviation ofti@f-i
arandom value can be used as a seed in a domain generates less than 1 ms. Statistics for the protocol up to laiecka
tion scheme similar to that of the Conficker worm. were calculated from 10 protocol cycles run one immediaély

Data exfiltration The data exfiltration payload searches ter the other, while late launch payload statistics wereiwtated

for sensitive data (we looked for credit card numbers), androm 10 other runs per payload, one immediately after theroth
returns results in encrypted form. To avoid analysis by

cr:JrreIatllngdlnput with the presence or absglnce 0; Ol::pl:]t’ The main performance bottleneck is TPM operations,
the pay 03 ge_nerates S(.)m?] O]ljltpm regardiess of whet gépecially key generation. We verified that the significant
sensitive data Is present in the ile. and variable duration of key generation was directly due
Timebomb This payload implements key cloaked func- to underlying TPM operations. The current performance,
tionality necessary for a timed DDoS attack that keeps th@ne minute per machine infection, allows rapid propaga-

12

Program Purpose Correspondence to Protocol

t pmgenkey Generates the binding key and output key blob to a filénfection Keygen step 1
ai k_gen Generates an AIK and accompanying certification [rdnfection Keygen steps 2— 4
quest. Outputs key blob and request to files.
tpmcertify Certifies the binding key under the AIK. Infection Proof step 5
i nfected Two modes:pr oof which generates a proof of authen-pr oof : Infection Proof steps 1-4 and

ticity to convince the Malware Distribution Platform to 6, payl oad: Infection Hidden Exe-
distribute an encrypted payload apdyl oad which | cutesteps 1-3

loads the binding key and decrypts the payload.
pl atform Two modes:r eq which handles a request from the In-r eq: Malware Distribution Platform
fected Platform and returns an encrypted credential pi@ertificate Handler, proof: Mal-
pr oof which validates a proof of authenticity from theware Distribution Platform Payload
Infected Platform Delivery

Table 3: Programs that comprise the key establishment part of thieimantation and their functions.

tion of malware (hosts can be compromised concurrently)than our largest payload), took only 650 microseconds.

Performance is most important for operations on the
Malware Distribution Platform, which may have to ser- 6 Defenses
vice many clients in rapid succession, and in the finalwe now examine defenses against the threat of using
payload decryption, as it occurs in late launch with the op-TPMs to cloak malware. We present multiple potential
erating system suspended. The payload decryption muslirections for combating this threat. In general, we find
occur per payload execution, which in our motivating sce-that there is no clear “silver bullet” and many of the pro-
narios will be at least daily. The slowest operation on theposed solutions require tradeoffs in terms of the security
Malware Distribution Platform can handle tens of clients or usability of the TPM system.
per second with no optimization whatsoever.

We provide several numbers that characterize lat
launch payload performance. The MLE setup phase oDne possibility would be to restrict the code that can be
the Flicker kernel module involves allocation of memory used in late launch. For example, a system could im-
to hold an MLE and configures MLE-related structuresplement a security layer to trap @GENTER instructions.
like page tables used I8t NI T to measure the MLE. The With recent Intel hardware, a hypervisor could provide
Flicker module then launches the MLE, which in our caseadmission control, gaining control whene\®ENTER is
contains the Infection Payload Loader PAL. This PAL firstissued and protecting its memory via Extended Page Ta-
decrypts the payload, which occupies most MLE execuble protections. The hypervisor could enforce a range of
tion time for our experiments. The payload runs, the MLE policies with its access to OS and user state. For example,
exits, and the kernel module restores prior system state. the TrustVisor [39] hypervisor likely enforces a policy to

The late launch environment execution can be as longleny all MLEs since its goal is to implement an indepen-
as 3.2 s, which is long enough that an alert user might nodent software-based trusted computing mechanism.
tice the system freeze (since the late launch environment Restricting access to the hardware TPM is one of the
suspends the OS) and become suspicious. Then agaimest approaches to defending against our attack, but such
performance variability is a hallmark of best-effort ogera a defense is not trivial. Setup and maintenance of this
ing systems like Linux and Windows. The rootkit control approach may be difficult for a home or small business
program can use heuristics to launch the payload whenser. Use of a security layer is more plausible in an enter-
the platform is idle or the user is not physically present. prise or cloud computing environment. In that setting, the

Payload decryption performance is largely based on theomplexity centers on policy to check whether an MLE is
speed of asymmetric decryption operations performed bypermitted to execute in late launch. The most straightfor-
the TPM. The use of TPM key blobs here involves twoward methods are whitelisting or signing MLEs. These
asymmetric decryption operations, one to allow use ofraise additional policy issues about what software state to
the private portion of the key blob (which is stored in hash or sign, how to revoke hashes or keys, and how to
encrypted form), and one to use this private key for de-handle software updates. Any such system must also log
crypting an encrypted symmetric key. Symmetric AESfailed attempts and delay or ban abusive users.
decryption took less than 1% of total payload decryption Itis possible to use other system software to control ad-
time in all cases, and is unlikely to become more costlymission to MLEs.SI NI T, which itself is signed by Intel,
even with significant increases in payload size: We foundcould restrict admission to MLEs since all late launches
that a 90 KB AES decryption with OpenSSL (86arger first transfer control t&l NI T. However, this would re-

és.l Restricting late launch code

13

quireSI NI T, which is low-level system software, to en- mechanism (and enables this exclusive access) could al-
force access control policy. It would most likely do this by low an analyst to read a decrypted payload [55].

only allowing signed MLEs to run. There are thentwo op- Physical access to a TPM permits other attacks. Some
tions: either MLEs must be signed by a key that is knownTPM uses are vulnerable to a reset of the TPM without re-
to be trusted, oSl NI T must also contain code for key setting the entire system, by grounding a pin on the LPC
management operations like retrieving, parsing, and valibus [32]. Late launch, as used by our malware, is not vul-
dating certificates. In the former case, the signing key imerable to this attack. LPC bus messages can be eaves-
most likely to be from Intel; Intel chipsets can already ver-dropped or modified [37], revealing sensitive TPM infor-
ify Intel-signed data [12]. However, this makes third party mation. In addition, sophisticated physical deconstruc-
development more difficult; code signing is most effectivetion of a TPM can expose protected secrets [51]. While
when updates are infrequent and the signing party is th&#PMs are not specified to be resistant to physical attack,
code developer. For late launch MLEs, it is quite possi-the tamper-resistant nature of TPM chips indicates that
ble that neither will be the case. The latter case, havinghysical attacks are taken seriously. It is likely that phys
SI NI T manage keys, is likely to be difficult to imple- ical attacks will be mitigated in future TPM revisions.
ment, especially sinc8l NI T cannot use OS services. One potential analysis tool is a cold boot attack [29]
in which memory is extracted from the machine during
operation and read on a different machine. In practice
A malware analyst could defeat our attack with the co-the effectiveness of cold boot attacks will be tempered by
operation of TPM manufacturers. Our attack uses keykeeping malicious computations short in duration, as it
certified to be TPM-controlled to distinguish communi- s only necessary to have malicious payloads decrypted
cation with a legitimate TPM from an analyst forging re- while they are executing. Additionally, it may be possible
sponses from a TPM. A TPM manufacturer cooperatingo decrypt payloads in multiple stages , so only part of the
with analysts and certifying illegitimate EKs would defeat payload is decrypted in memory at any one time. Mem-
our attack, by allowing the analyst to create a softwareory capture is a serious concern for data privacy in legit-
controlled late-launch environment. However, any leak ofimate TPM-based secure computations as well. It is im-
a certificate for a non-hardware EK would undermine theportant for future trusted computing solutions to address
security of all TPMs (or at least all TPMs of a given man- this issue, and the addition of mechanisms that defend
ufacturer). Malware analysis often occurs with the coop-against cold boot attacks would increase the difficulty of
eration of government, academic, and commercial instituavoiding our attack.

tions, which raises the probability of a leak.

Alternately, a manufacturer might selectively decrypt
data encrypted with a TPM’s public EK on-line upon re- Our attack requires that the malware platform knows SRK
quest. Such a service would compromise the Privacy CAnd owner AuthData values for the TPM. The danger of
protocol at the point where the Privacy CA encrypts amalware using TPM functionality could be mitigated by
credential with the EK for a target TPM-containing plat- careful control of AuthData. Existing software that uses
form. The EK decryption service would allow an analystthe TPM takes some care to manage these values. For
to obtain a credential for a forged (non-TPM-generated)nstance, management software used in Microsoft Win-
AIK. This is less dangerous than the previous situationdows prevents the user from storing owner AuthData on
as now only parties that trust the Privacy CA (in our casethe same machine as the TPM. Instead, it can be saved to
the Malware Distribution Platform) could be mislead by a USB key or printed in hard copy. Administrators who
the forged AIK. However, this approach also places ad-heed TPM functionality would ideally understand these
ditional requirements on the manufacturer, in that it mustestrictions and manage these values appropriately. Aver-
respond to requests for decryption once per Malware Disage users will be more difficult to educate.
tribution Platform, rather than once per analyst. Addition The malware platform could initialize a previously
ally, the EK decryption service has potential for abuse byuninitialized TPM, thereby generating the initial Auth-
an analyst if legitimate Privacy CAs are deployed. Data. For our test machines, TPM initialization is pro-
tected by a single BIOS prompt that can be presented on
reboot at the request of system software. To preventan in-
Cloaking malware with the TPM relies on the security of experienced user from initializing a TPM at the behest of
TPM primitives. A compromise of one or more of these malicious software, manufacturers could require a more
primitives could lead to the ability to decrypt or read an involved initialization process. The BIOS could require
encrypted payload. For instance, the exclusive access dfie user to manually enter settings to enable system soft-
late launch code to system DRAM is what prevents aciware to assert physical presence, rather than presenting a
cess to decrypted malicious payloads. A vulnerability insingle prompt. More drastically, a user could be required
the signed code module that implements the late launcto perform some out-of-band authentication (such as call-

6.2 TPM Manufacturer Cooperation

6.4 Restricting deployment and use of TPMs

6.3 Attacks on TPM security

14

ing a computer manufacturer) to initialize the TPM. How- the code payload.

ever, all of these security features inhibit TPM usability. Cryptography. Using cryptography for data exfiltration
was suggested by Young and Yung [59]. Bethencourt,
Song, and Waters [18] showed how using singly homo-
Traffic analysis is a common malware detection teCh'morphic encryption one could do cryptographic exfiltra-
nique. Malware that uses the TPM will cause usage pattion, However, the techniques were limited to a single
terns that might be anomalous and therefore could COMReyword search from a list &dhownkeywords and the use
to the attention of alert administrators. Of course detectyy cryptography significantly slowed down the exfiltration
ing anomalous usage patterns is a generally difficult prObprocess. Using fully homomorphic encryption [28] we
lem, especially if TPM use becomes more common. could achieve expressive exfiltration, however, the pro-
7 Related Work cess would be too slow to be viable in practice.

6.5 Detection of malware that uses TPMs

Malware Analysis. TPM cloaking is a new method for 8 Conclusions

frustrating static and dynamic analysis that is more POW\1alware can use the Trusted Platform Module to make its

erful than previous methods because it Uses hardware t(?omputation significantly more difficult to analyze. Even
prevent monitoring software from observing unencryptedthough the TPM was intended to increase the security of

coo!e. The most effective analysis technique WO.UId be %omputer systems, it can undermine computer security
variant on the cold boot attack [29], where the mfectedWhen used by malware

machine’s DRAM chips were removed during the late We explain several ways that TPM-enabled malware

launch session. Note that a late launch session general!}/an be defeated usina aood endineering practice. TPMs
only lasts seconds. If the DRAM chips are pulled out too 99 9 gp '

early, the payload will still be encrypted: too late and theW|II continue to be widely distributed only if they demon-

. dstrate value and do not bring harm. Establishing and dis-
payload is scrubbed out of memory. The analyst coul eminating 0ood endineering oractice for TPM manage-
also snoop the memory bus or the LPC bus. Note tha? 99 9 9p 9

both of these are hardware techniques, and they are bo{ﬂent to both IT professmnals and home users is an essen-
X . . 1al part of the TPM’s future.
effective attacks against legitimate TPM use.
Our protocol does run substantial malware outside theAcknowledgments
cloaked computation. All such malware is susceptible to . _
static analysis [30, 47, 23], dynamic analysis [19, 58, 36],We tha_nkthe anonymous reviewers for their comments on
hybrids [24, 35] , network filtering [16, 49], and network &N earlier version of this paper, and Jonathan McCune for

traffic analysis [20]. To effectively use the TPM the mal- 2CCESS to the Flicker source code. This research is sup-
ware must only decrypt its important secrets within thePorted by NSF CNS-0905602, a Google fe_seafCh award,
cloaked computation. and the NSF Graduate Research Fellowship Program.

Polymorphic malware changes details of its encryption Waters is supported by NSF_ CNS-0915361 and
for each payload instance to avoid network filtering. OurENS-0952692, AFOSR Grant No: FA9550-08-1-0352,

system falls partially into the polymorphic group as we PARPA PROCEED, DARPA N11AP20006, Google Fac-
encrypt our payload. However dynamic analysis tech-‘“?y Research award, the Alfred P. Sloan Fellowship, and
niques [36] are effective against polymorphic encryptionMicrosoft Faculty Fellowship.
becaus_e such s_chemes must decrypt their payload dunrlgeferences
execution. Conficker as well as other modern malware use
public key cryptography to validate or encrypt a malicious [1] Myr?ioom-c A”ﬁ'/yts'ﬁ’ 20t04} ht gpi I W‘;WV secur eworks.

H com researc reat s/ nyaoom c/ .
payload [43], as our cloaking protocol does. [2] W32/MyDoom@MM, 2005. htt p: //vil . nai . con vil/
Trusted Computing. The TPM can be used in a vari- content/v_100983. ht m
ety of contexts to provide security guarantees beyond thafl3] W32/AutoRun.GM. F-Secure, 2006. http://http:
of most general-purpose processors. For instance, it can gﬁmha- Srenczrr]ﬁﬁcom v- descs/wor mwi2_
be used FO pr_OteCt encry_pt|on keys from unauthorized ac- 4 EncryptiorT of Sensitive Unclassified Data at Rest on Mo-
cess, as in Microsoft’s BitLocker software [7], or to attest bile Computing Devices and Removable Storage Media,
that the computer platform was initialized in some known §0g7-d http: /d/ iase.disa. ml/ potl)fl i cy- gui dance/

; ; od- dar-t pm decree07- 03- 07. pdf .

state, as in the OSLO.bOOt. loader [32] Flicker [40] u_ses [5] Owning Kraken Zombies, a Detailed Discussion, 2008.
TPM late launch functionality to provide code attestation =~ ¢/ gvi abs. t i ppi ngpoi nt . cont bl og/ 2008/
for pieces of code that are instantiated by, and returnto, @ 04/ 28/ owni ng- kr aken- zonbi es.
potentially untrusted operating system. Bumpy [41] uses [6] /T;OuSerS - The Open-s?urce TCG Software Stack, 2008.p:

T+ H H _ trousers. sour cef orge. net.
late launch to protect sensitive input from potentially un 7] BitLocker Drive Encryption Step-by-Step Guide for Winds
trusted system software. Our prototype malware platform” " 75009, http://technet. ni crosoft. con en- us/

uses the same functionality, adding encryption to conceal 1i brary/ dd835565(W8. 10) . aspx.

15

(8]

El
[20]

[11]
[12]
[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

(31]

[32]
(33]

[34]

[35]

[36]

Intel Trusted Execution Technology (Intel TXT) MLE Ddueeer’s
Guide, 2009.

ST Microelectronics, 2010. Private communication.

AMDG64 Architecture Programmer’s Manual, Volume 2: &ya
Programming, 2010.

Embedded security. Infineon Technologies, 2016t t p: //
www. i nfi neon. conitpm

Intel 64 and 1A-32 Architectures Software Developegnual,
Volume 2B, 2010.

Microsoft Security Bulletin Search, 2010. htt p:// ww.

m crosoft.conltechnet/security/current. aspx.
Trusted Computing Whitepaper. Wave Systems Corporati
2010. http://ww. wave. com col | ateral / Trusted_
Conput i ng_Whi t e_Paper . pdf.

PolarSSL Open Source embedded SSL/TLS cryptograjtinary,
2011.http://pol arssl . org.

AH KIM, H.,AND KARP, B. Autograph: Toward Automated, Dis-
tributed Worm Signature Detection. WISENIX Securitf2004).
BERGER S., CACERES R., GoLDMAN, K. A., PEREZ, R.,
SAILER, R., AND VAN DOORN, L. VTPM: Virtualizing the
Trusted Platform Module. IWSENIX Securityf2006).
BETHENCOURT, J., ONG, D., AND WATERS, B. Analysis-
Resistant Malware. INDSS(2008).

BRUMLEY, D., HARTWIG, C., LIANG, Z., NEWSOME, J.,
SONG, D.,AND YIN, H. Automatically Identifying Trigger-based
Behavior in Malware. IrBotnet DetectionSpringer, 2008.
CABALLERO, J., ROOSANKAM, P., KREIBICH, C., AND SONG,
D. Dispatcher: Enabling Active Botnet Infiltration Using
matic Protocol Reverse-engineering. G2 S(2009).

CHEN, L., AND RYAN, M. Attack, Solution, and Verification for
Shared Authorisation Data in TCG TPM. vol. 5983 legcture
Notes in Computer Scienc8pringer, 2010.

CHIEN, E. CodeRed Worm, 200ht t p: / / www. symant ec.
com security_response/witeup.jsp?docid=

2001- 071911- 5755- 99.

CHRISTODORESCUYM., AND JHA, S. Static Analysis of Executa-
bles to Detect Malicious Patterns. USENIX Securityf2003).
COMPARETTI, P. M., SALVANESCHI, G., KIRDA, E., KoL-
BITSCH, C., KRUEGEL, C., AND ZANERO, S. ldentifying Dor-
mant Functionality in Malware Programs. IBEE S&P(2010).
DoLEey, D., DWORK, C., AND NAOR, M. Nonmalleable cryp-
tography.SIAM J. Comput. 3@ (2000), 391-437.

FALLIERE, N., MURCHU, L. O.,AND CHIEN, E. W32.Stuxnet
Dossier, 2010. Version 1.3 (November 2010).

FINNEY, H. PrivacyCA, 2009. htt p: // www. pri vacyca.
com

GENTRY, C. Fully homomorphic encryption using ideal lattices.
In STOC(2009), pp. 169-178.

HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARK-
SON, W., PauL, W., CAL, J. A., FELDMAN, A. J.,AND FELTEN,
E. W. Lest we remember: Cold boot attacks on encryption keys.[56]
In USENIX Security2008).

Hu, X., CKER CHIUEH, T., AND SHIN, K. G. Large-scale Mal-
ware Indexing Using Function-call Graphs. @CS(2009).
KAssLIN, K., AND FLORIO, E. Your Computer is Now
Stoned (...Again!). The Rise of the MBR Rootkits, 2008. [58]
http://ww. f - secure. conf webl og/ ar chi ves/

Kassl i n- Fl ori o- VB2008. pdf .

KAUER, B. OSLO: Improving the security of trusted computing. [59]
In USENIX Security2007).

KiviTy, A. kvm: The Linux Virtual Machine Monitor. 'Dttawa

Linux Symposiun2007).

KNOWLES, D., AND PERRIOTT, F. W32.Blaster.Worm, 2003.
http://ww. symant ec. com security_response/
writeup.jsp?doci d=2003- 081113- 0229- 99.

KoLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA,

E., ZHou, X., AND WANG, X. Effective and Efficient Malware
Detection at the End Host. MSENIX Security2009).

KoLBITscH, C., HoLz, T., KRUEGEL, C., AND KIRDA, E.

[37]

(38]

(39]

[40]

[41]
[42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]
(53]

(54]

[55]

[57]

16

Inspector Gadget: Automated Extraction of Proprietary gessl
from Malware Binaries. INEEE S&P(2010).

KURSAWE, K., SCHELLEKENS, D., AND PRENEEL, B. Ana-
lyzing Trusted Platform Communication. ECRYPT Workshop,
CRASH CRyptographic Advances in Secure HardW2065).
MATROSOV, A., RobloNoV, E., HARLEY, D., AND MALCHO,
J. Stuxnet Under the Microscope, 2010. Revision 1.2.
McCuNE, J. M., L, Y., Qu, N., ZHou, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB Re-
duction and Attestation. IEEEE S&P(2010).

McCUNE, J. M., RRNO, B., PERRIG, A., REITER, M. K., AND
Isozakl, H. Flicker: An Execution Infrastructure for TCB Mini-
mization. InEuroSyq2008).

MCcCuNE, J. M., FERRIG, A., AND REITER, M. K. Safe passage
for passwords and other sensitive dataNDSS(2009).
MITCHELL, C. J., EdTrusted Computingnstitution of Electrical
Engineers, 2005.

NAzARIO, J. The Conficker Cabal Announced, 2009.
http://asert.arbornetworks. conf 2009/ 02/

t he- confi cker - cabal - announced/ .

O’DEA, H. The Modern Rogue - Malware with a Face.Vinus
Bulletin Conferencé2009).

PORRAS, P., SAIDI, H., AND YEGNESWARAN, V. An Analysis
of Conficker's Logic and Rendezvous Points, 200% t p: //
ntc.sri.com Conficker/.

PosT, A. W32.Storm.Worm, 200/t t p: / / www. symant ec.
com security_response/ witeup.jsp?docid=

2001- 060615- 1534- 99.

PREDA, M. D., CHRISTODORESCYM., JHA, S.,AND DEBRAY,
S. A Semantics-based Approach to Malware DetectiorRP@iPL

(2007).

SAcco, A. L., AND ORTEGA, A. A. Persistent BIOS
Infection. In CanSecWest Applied Security Conference
(2009). http://ww. coresecurity.conifcontent/

Per si stent- Bi os- I nfection.

SINGH, S., ESTAN, C., VARGHESE, G.,AND SAVAGE, S. Auto-
mated Worm fingerprinting. I@SDI (2004).

STRASSER M., STAMER, H., AND MOLINA, J. TPM Emulator,
2010.http://tpm emul ator. berli os. de/.
TARNOVSKY, C. Hacking the Smartcard Chip. Black Hat
(2010).

TRUSTEDCOMPUTING GROUP. TPM Main Specification2007.
WHEELER, D. A. SLOCCount. htt p: // www. dwheel er.
cont sl occount/,2001.

WoJaTczuk, R. Exploiting large memory management vulnera-
bilities in Xorg server running on Linux. Invisible Thingsahb,
2010.

Wo0JTCZUK, R., RUTKOWSKA, J., AND TERESHKIN, A. An-
other Way to Circumvent Intel Trusted Execution Technoldgy
visible Things Lab, 2009.

WoJTczuk, R., AND TERESHKIN, A. Attacking Intel BIOS.
Invisible Things Lab, 2010.

WONG, C., BIELSKI, S., MCCUNE, J. M., AND WANG, C. A
Study of Mass-mailing Worms. IACM Workshop On Rapid Mal-
code(2004).

YIN, H., SONG, D., EGELE, M., KRUEGEL, C.,AND KIRDA, E.
Panorama: Capturing System-wide Information Flow for Mailsv
Detection and Analysis. 18CS(2007).

YOUNG, A., AND YUNG, M. Malicious Cryptography: Exposing
Cryptovirology. Wiley, 2004.

