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Abstract

The lowly state of the art for file system checking and
repair does not match what is needed to keep important
data available for users. Current file system checkers,
such as e2fsck, are complex pieces of imperfect code
written in low-level languages. We introduce SQCK, a
file system checker based on a declarative query lan-
guage; declarative queries are a natural match for the
cross-checking that must be performed across the many
structures of a file system image. We show that SQCK
is able to perform the same functionality as e2fsck with
surprisingly elegant and compact queries. We also show
that SQCK can easily perform more useful repairs than
e2fsck by combining information available across the
file system. Finally, our prototype implementation of
SQCK achieves this improved functionality with compa-
rable performance to e2fsck.

1 Introduction

Access to data is critical for both business and personal
users of computer systems. Data is often either priceless
or very expensive to re-obtain if lost; downtime and data
loss combine to cost companies and end-users billions of
dollars each year [22, 29]. As the central repository for
much of the world’s data, file systems play a central role
in data protection and management. Thus, file systems
should be robust and reliable.

A key component to a robust file system is a robust off-
line file system checker. Tools such as fsck have existed
for many years [24] and are applied to restore a damaged
or otherwise inconsistent file system image to a working
and usable state. Although many newer file systems have
tried to avoid the inclusion of an offline checker in their
tool suite [19] (for example, by assuming that journaling
always keeps the file system consistent), they inevitably
find that a checker must be deployed. For example, SGI’s
XFS was introduced as a file system with “no need for
fsck, ever,” but soon found it necessary to deliver such a
tool [15].

Unfortunately, robust checkers are not currently
straightforward to design or implement. First, check-
ers are large and complex beasts; for example, the Linux

ext2 checker contains more than thirty thousand lines of
C code, while the ext2 file system itself is less than ten
thousand lines. Checkers are often written in a low-level
systems language such as C, which can be difficult to
reason about. Checkers also are hard to test, given the
huge possible state space of input file systems. Finally,
checkers are often run only when a serious problem has
occurred; it is well known that rarely-run recovery code
tends to be less reliable [9, 28].

Given these realities, it is perhaps not surprising that
file system checkers often corrupt or lose data [31, 32].
Recent work in model checking has found many seri-
ous implementation flaws in checkers, including invalid
write ordering, buggy transaction abort, incorrect opti-
mization, and unattempted recovery of invalid directory
entries [31, 32]. Our evaluation of e2fsck, the Linux
ext2/3 checker, confirms that it has many weaknesses.
In particular, e2fsck sometimes performs inconsistent re-
pairs that can corrupt the file system image by over-
writing important metadata (including the superblock);
e2fsck also sometimes does not use all available infor-
mation and can lose portions of the directory tree.

To build a new generation of robust and reliable file
system checkers, we believe a new approach is required.
The ideal approach should enable the high-level intent
of the checker to be specified in a clear and compact
manner; further, the description of the intent should be
cleanly separated from its low-level implementation and
how it is optimized. A high-level specification has multi-
ple benefits: by its very nature it is easier to understand,
modify, and maintain.

In this paper, we introduce SQCK (pronounced
“squeak”), a novel file system checker. Borrowing heav-
ily from the database community, SQCK employs declar-
ative queries to check and repair a file system image.
We find that a declarative query language is an excellent
match for the cross-checks that must be made across the
different structures of a file system.

Our experience shows that declarative repairs can be
surprisingly elegant and compact, especially compared
to the original e2fsck code. Specifically, we find that
SQCK can reproduce the functionality of e2fsck in many
fewer lines of code; the SQCK checks and repairs require
only about 1100 lines of SQL (along with some helper
code written in C).
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We find that SQCK can improve upon the traditional
checks and repairs as well. First, SQCK avoids the in-
consistent repairs performed by e2fsck by ensuring that
its queries are executed in the correct order; specifically,
a file system structure is only repaired after the loca-
tion of that structure has been validated. Second, SQCK
can perform more interesting and complete repairs than
e2fsck by combining information from multiple sources.
For example, SQCK performs majority voting over su-
perblock and group descriptor replicas to handle the case
where the primary copy is corrupted. SQCK also exam-
ines the “..” entry of a directory to verify the correct par-
ent when there is conflicting information. Finally, SQCK
ensures that its repairs follow the same allocation poli-
cies as ext2 by laying out new blocks with the appropri-
ate locality.

SQCK achieves this simplicity and completeness with
no cost to performance. Our evaluation of the first-
generation prototype of SQCK on top of the MySQL
DBMS [1] shows that SQCK can handle even large
file system partitions with comparable performance to
e2fsck. Overall, we believe that the SQCK-style declara-
tive approach will lead to a new generation of simpler,
more robust, and more complete file system checking
and repair.

The rest of this paper is organized as follows. In Sec-
tion 2, we present background information on the state
of the art of checking and evaluate a traditional file sys-
tem checker. We present the design and implementation
of SQCK in Sections 3 and 4 and then evaluate SQCK in
Section 5. We then discuss related work in Section 6 and
conclude in Section 7.

2 Fsck Background
To create a better file system checker, one first needs
to understand the current state of the art. In this sec-
tion, we give a brief overview of the checks and repairs
performed by e2fsck for an ext2 file system [10]. We
then describe in detail the weaknesses and non-optimal
repairs performed by e2fsck. Finally, we explain why
modeling languages [11, 12, 21] are not as suitable as
declarative query languages for file system checking.

2.1 Fsck Overview
Despite the best efforts of the file and storage system
community, file system images become corrupt and re-
quire repair. While it is obvious that non-journaling
file systems (e.g., ext2) can easily become inconsistent
due to untimely crashes, other file systems can as well.
In particular, problems with many different parts of the
file and storage system stack can corrupt a file sys-
tem image: disk media, mechanical components, drive
firmware, the transport layer, bus controller, and OS

drivers [6, 7, 17, 18, 27, 30]. Since file systems do not
usually contain the machinery to fix corruptions them-
selves [8, 27], there is a broad need for robust file system
checkers.

Given both its popularity and our ability to access its
source code, we focus on the file system checker for
ext2/ext3, e2fsck. The purpose of the e2fsck utility is to
check and repair the data structures of an ext2/ext3 file
system on disk; in the ideal case, the repaired file system
is readable, writable, and contains all of the directories,
files, and data of the original file system.

e2fsck is a non-trivial piece of code: it contains more
than 30,000 lines of C code and can identify and return
269 different error codes. Its checks and repairs are per-
formed in six different phases [24], in which scanning
the disk, checking the data structures, and repairing any
inconsistencies are all intermixed. Many of the simplest
checks examine individual structures in isolation (e.g.,
that superblock fields, inode fields, and directory entries
all appear valid) or verify that pointers fall within the
expected ranges. More interesting and costly checks val-
idate that no two pointers (e.g., across all inodes) point to
the same data block. Other intensive checks peruse the
file system tree, ensuring that all files and directories are
properly connected.

2.2 Fsck Weaknesses
To understand the weaknesses of e2fsck, we need to un-
derstand the individual repairs performed by e2fsck in
response to different errors it encounters. We are not
explicitly interested in finding implementation bugs [31,
32], but in understanding when e2fsck could have made
better repairs than it did for a given corruption.

2.2.1 Fault Injection Methodology

To begin to understand the complex runtime behavior of
e2fsck, we explore how e2fsck repairs a single on-disk
corruption. Given that it is infeasible to exhaustively cor-
rupt every data structure field to every possible value, we
limit our scope to corrupting on-disk pointers. Ext2 con-
tains two classes of pointer. First, a block pointer con-
tains a physical block number; for example, data block
pointers in inodes contain the block numbers of corre-
sponding data blocks. Second, an index pointer contains
an index into a table; for example, an inode index picks
an entry in the inode table within a block group.

We use our knowledge of ext2 to further reduce the
search space. In particular, we corrupt pointers in a type-
and location-aware fashion [8]. Specifically, we assume
that the e2fsck repair depends only on: (i) the type of
pointer that has been corrupted, and (ii) the type of block
that it points to after corruption and whether it lives in
the same or a different block group. For example, (i)
corrupting File A’s data pointer is the same as corrupting
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File B’s data pointer, and (ii) corrupting a pointer to refer
to inode-block P in group G is the same as corrupting it
to refer to inode-block Q in group G.

To corrupt the file system and examine the results, we
use the debugfs utility [2]. We corrupted approximately
10 different pointers to 18 different values for a total of
180 corruption tests. To the best of our knowledge, all of
our findings are new.

2.3 Results
From our fault injection experiments, we find that e2fsck
fails along four different axes. First, e2fsck does not al-
ways create a consistent file system, even though this is
the explicit purpose and goal of fsck. In fact, in some
cases, e2fsck will perform an imprudent “repair” that
transforms a file system with a relatively small incon-
sistency into one that is completely unreadable.

Second, e2fsck does not always perform an
information-complete repair. We define a repair to
be information-complete if it reconstructs the file system
to match the original file system to the greatest extent
possible given the information available on disk. The
notion of an information-complete repair is needed be-
cause a repair can easily create a consistent, but useless
file system by simply removing all of the contents. For
example, an information-complete repair should always
incorporate redundant copies.

Third, e2fsck does not always perform a policy-
consistent repair. We define a repair to be policy con-
sistent if it follows the same policies as the original file
system; for example, since ext2 allocates data blocks in
the same group as its corresponding inode, e2fsck should
as well.

Finally, e2fsck does not always perform a secure re-
pair. Specifically, e2fsck sometimes leaks information
from one data structure to another when it clones blocks.
In this way, it is possible for a user’s file to be “repaired”
to contain data from a file in the root directory.

We now describe the specific behavior of e2fsck that
leads to these problems.
Inconsistent Repair: Clears “Indirect Blocks” Incor-
rectly. Fundamentally, e2fsck checks and repairs certain
pointers in an incorrect order; as a result, e2fsck can it-
self corrupt arbitrary data on disk, even the superblock.
Specifically, e2fsck clears block pointers that fall out of
range of the file system inside indirect blocks without
first checking that the pointer to the indirect block it-
self is correct. Thus, if an indirect pointer was corrupt,
e2fsck may clear the block that the indirect pointer in-
correctly refers to. This clearing can lead to arbitrary
corruptions of file, directory, and meta-data in the file
system; most notably, if the file system contains only a
single superblock, the file system can even be unmount-
able after running e2fsck.

Figure 1: The false parenthood problem. This figure
shows the problem in the recovery done by e2fsck for corrup-
tion in directories. Each node is a directory in the file system.
For clear understanding, we use dotted backpointers to show
the parent for each directory as present in the ‘..’ entry for that
directory. Part (a) of the figure shows the initial file system
structure. Part (b) shows the file system structure after cor-
ruption. We inject this fault where the entry for dir3 in dir1
is corrupted to point to the inode of dir4. After recovery by
e2fsck, the dir1 claims dir4 and the original parent child link
between dir2 and dir4 is deleted. This results in totally different
structure of the file system after recovery as shown in part (c).
For convenience we show the lost+found (L&F) directory only
in the final structure.

Information Incomplete: False Parenthood. e2fsck
does not always use all of the information available to
it regarding directories. One example is the case where
an inode index within a directory is corrupted to point
to a different valid directory inode. This situation is il-
lustrated in Figure 1. If a directory entry is corrupted
to point to another target directory (parts a and b), the
e2fsck repair might move the target directory to the
wrong parent (part c).

We emphasize that enough information is available in
an ext2 file system for e2fsck to make the correct repair:
each directory contains an entry for its parent (denoted
“..”). To perform an information complete repair, e2fsck
could simply observe this entry to keep the target direc-
tory with its correct parent and to reattach the lost di-
rectory to its parent instead of moving it to lost+found.
In general, the directory hierarchy in ext2 contains much
more information than is being used currently in e2fsck.
Information Incomplete: Ignores Replicas of Inode
Table Pointers. Ext2 contains replicas for important
meta-data, such as pointers to the inode tables; how-
ever, e2fsck does not always use this redundant infor-
mation. For example, when an inode table pointer be-
comes corrupted and points to other blocks inside the
same block group, e2fsck assumes the pointer is correct;
e2fsck then finds that the “inodes” are not valid. For con-
sistency, e2fsck removes the corresponding directories
and files from the directory tree; if this group contains
the root directory, the file system is trivially consistent
with no directories. Again, enough information is avail-
able for e2fsck to make the correct repair: each inode
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table pointer is replicated across block groups; e2fsck
should check that all block groups agree on these impor-
tant values.
Policy Inconsistent: Different Layout. e2fsck does not
allocate blocks on disk with the same layout policy as
ext2; as a result, e2fsck can fragment files and direc-
tories, degrading the future performance of file system
operations. For example, when e2fsck detects that the
same data block is pointed to by both a directory and a
file, e2fsck clones the block by allocating a new block for
the file and retaining the old block for the directory. To
perform a policy-consistent repair, e2fsck should allow
the closer inode to retain the original data block.
Insecure Repair: Copies Data Freely. Whenever e2fsck
discovers that two pointers refer to the same block,
e2fsck clones the block. However, this policy has the po-
tential to leak private information. For example, if a data
block is shared by two inodes, one in the /home/userA
directory and one in the /root directory, we might want
to remove the pointer from userA and keep the one from
the root.
Summary: We have found that e2fsck has a number of
problems in how it performs repairs; we note that these
problems are not simple implementation bugs, but are
fundamental design flaws. In particular, it is difficult for
e2fsck to combine the many pieces of information avail-
able (e.g., replicas of pointers and parent directory en-
tries) and to ensure that all checks and repairs are done
in the correct order.

2.4 Other Approaches
Given the difficulties of implementing a file system
checker, an alternative is needed. File system check-
ing can be viewed as ensuring that the content satis-
fies a specification; therefore, some researchers have at-
tempted to auto-generate fsck code by writing a spec-
ification in an object modeling language. Specifically,
Demsky and Rinard’s work repairs inconsistencies auto-
matically given specified constraints [12]. Their auto-
mated repair finds the cheapest way to repair the system
such that it satisfies the constraints again. For example,
if two inodes share the same data block, the cheapest re-
pair could simply remove one of the pointers; however,
this may not be the desired result. In fact, there are many
ways to solve the problem: the inode with the earliest
modification time could release the block [24], the block
could be cloned (e2fsck’s way), or the operator could de-
cide. In our terminology introduced above, previous ap-
proaches ensure that the repairs are consistent, but not
necessarily information-complete or policy-consistent.

When reinventing fsck, we need a language that can
declaratively express both the checks and the repairs.
Like others who have applied declarative languages to
domains such as system configuration [13] and network

Figure 2: Architecture. The diagram depicts the ba-
sic SQCK architecture. The left part of the design, the loader
and scanner, and the right part of the design, the checker and
flusher are decoupled, allowing us to optimize each component
in isolation.

overlays [23], we believe that the solution is to use a
declarative query language. Declarative query languages
have been built from day one to both cross-check and
update massive amount of data. Hence, we believe uti-
lizing a declarative language is a better fit than a specific
modeling language for fsck.

3 Designing SQCK
In this section, we describe the design of SQCK, our file
system checker based on declarative queries. We first de-
scribe our goals and then present the overall architecture
of SQCK, including how declarative checks and declar-
ative repairs are performed. We then describe three sim-
ple versions of SQCK: one that emulates e2fsck, one that
fixes the inconsistent repairs of e2fsck, and one that sig-
nificantly improves the types of repairs performed.

3.1 Goals
We believe that a file system checker should be correct,
flexible, and have reasonable performance; we believe a
declarative language will enable us to meet these goals
for the following reasons.
Correctness: The primary responsibility of a file sys-
tem checker is to produce a consistent file system image.
A declarative language allows one to check and repair
hundreds of corruption scenarios in a clean and compact
fashion; we believe the ability to produce correct repairs
is improved due to the simplicity of the queries and the
separation of the specification from the implementation.
A secondary goal is to produce repairs that leverage all
of the on-disk information to retain as much as possible
of the file system. We believe declarative languages al-
low one to easily combine the disparate information that
resides throughout the file system.
Flexibility: Given a single corruption, there are many
reasonable repairs that could be performed. The simplic-
ity of a declarative language encourages one to explore
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Tables Fields
Superblock blkNum, copyNum, dirty,
Table firstBlk, lastBlk, blockSize, ...
GroupDesc blkNum, gdNum, copyNum, dirty,
Table start, end, blkBitmap, inoBitmap, iTable, ...
Inode ino, blkNum, used, dirty,
Table mode, linksCount, blocksCount, size, ...
DirEntry blkNum, entryNum, dirty,
Table ino, entryIno, recLen, nameLen, name
Extent start, end, pBlk, pByte, type,
Table startLogical, endLogical,

ino, dirty, ...

Table 1: SQL Tables. Italic fields represent information
we generate since they are not stored on the disk.

this policy space and even provide different modes of re-
pair (e.g., fast but partial repair, or slow but full/smart
repairs).
Performance: While the performance of a file system
checker is not a primary concern, it must not be pro-
hibitively slow; specifically, the checker must be able to
handle the amount of data on modern disks and storage
systems. Thus, our goal is to create a checker that is
competitive in speed to the original e2fsck.

3.2 Architecture
SQCK contains five primary components, as shown in
Figure 2. The scanner reads the relevant portions of
the file system from the disk, while the loader loads
the corresponding information into the database tables.
The checker is then responsible for running the declar-
ative queries that both check and repair the file system
structures. The flusher completes the loop by writing out
the changes to disk. We postpone our description of the
scanner, loader, and flusher until Section 4. In this sec-
tion, we explain the tables and the checker.

3.2.1 Database Tables

It is important to construct the database tables such that
the SQCK checker can perform efficient queries that
cover the same repairs as e2fsck. Conceptually, SQCK
contains a table for each of the different metadata types
in the file system: superblocks, group descriptors, in-
odes, directories, and block pointers [10]. Together, the
tables store all of the information about the file system
image that was originally on disk. However, with this
on-disk information alone, the SQCK checks and repairs
are neither simple nor efficient; therefore, SQCK stores
extra, easily calculated information in the tables. Table 1
shows the five database tables utilized by SQCK. We de-
scribe briefly the important fields in each table.
Superblock: Since the superblock is replicated, we
load each replica into a row of the table; this table al-

lows SQCK to easily check the consistency across su-
perblocks. As expected, each row contains the informa-
tion available from the superblocks on disk. To be able
to reflect repairs back to the disk in the flusher, we also
introduce copyNum and blkNum fields that specify where
a replica lives on the disk and a dirty field.
GroupDescTable: Each group descriptor and its replicas
are loaded into separate rows of this table; as expected,
we store here the on-disk information such as the point-
ers to the block bitmap, inode bitmap, and inode table.
SQCK also adds the start and end block of each group;
this addition allows SQCK to easily check whether point-
ers fall within the desired range of the block group.
InodeTable: Each row of the table corresponds to a dif-
ferent allocated inode, with appropriate fields for the on-
disk information such as mode, links, and size. The used
field tracks which inodes are part of the final directory
tree so that SQCK can calculate the final inode bitmap.
DirEntryTable: Each row of the table corresponds to a
different directory entry. SQCK performs many cross-
checks on this table to verify the directory tree structure.
ExtentTable: The conceptual idea of this table is to
record all of the pointers to data blocks, so that SQCK
can ensure that no two pointers refer to the same block.
In our initial implementation, we loaded each direct
pointer as its own row; however, this is intractable for
a large file system because the table grows too large
and the loader takes too long. Therefore, we switched
our table design to represent extents of contiguous direct
blocks; specifically, each extent specifies the start and
end block. Additionally, each row records the location
of the original pointer and the type of the pointer (e.g.,
direct, single, double, or triple indirect).

3.2.2 Declarative Checks

A declarative query language is an excellent match for
the checks and repairs that must be performed by a file
system checker. To give some intuition as to why this
is true, we categorize the different checks that must be
made and show how a prototypical check from each cat-
egory can be specified with SQL [3].

The original e2fsck performs a total of 121 interesting
repairs. We have categorized all of these repairs into four
categories, depending upon how many file system struc-
tures the repair must simultaneously peruse. As shown
in Table 2, a repair can touch a single instance of a single
structure type, one instance of one type with another of
a different type, multiple instances of the same type, or
multiple instances from multiple types.

There are 63 fsck repairs that involve fields of a sin-
gle structure in isolation. A simple example of this type
of repair is ensuring that the deletion time of a used in-
ode is zero. Another example is verifying that the block
bitmap for a group is located within that group. We show
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SELECT *
FROM GroupDescTable G
WHERE G.blkBitmap NOT BETWEEN G.start AND G.end

Figure 3: Check block bitmap not in group. This
query finds a block bitmap pointer (blockBitmap) of a group
that points outside the group.

SELECT X.*
FROM ExtentTable X, SuperblockTable S
WHERE S.copyNum = 1 AND

X.type = INDIRECT_POINTER AND
(X.start < S.firstBlk OR
X.end >= S.lastBlk)

Figure 4: Check illegal indirect block. An illegal
indirect block is one that points to outside the file system range

SELECT *
FROM DirEntryTable P, DirEntryTable C
WHERE // P says C is his child

P.entryNum >= 3 AND
P.entryIno = C.ino AND
// but C says P is not his parent
C.entryNum = 2 AND
C.entryIno <> P.ino

Figure 5: Bad dot dot. This query finds a directory entry
that does not claim the actual parent.

SELECT X.*
FROM ExtentTable X
WHERE EXISTS
(SELECT *
FROM SuperblockTable S
WHERE
// extent overlaps superblock copies
S.blk BETWEEN X.start AND X.end)

OR EXISTS
(SELECT *
FROM GroupDescTable G, SuperblockTable S
WHERE
// or extent overlaps group descriptors
(X.start BETWEEN G.blk AND G.blkEnd OR
X.end BETWEEN G.blk AND G.blkEnd) OR
// or extent overlaps inode table
(X.start BETWEEN G.iTbl AND G.iTblEnd OR
X.end BETWEEN G.iTbl AND G.iTblEnd) OR
// or extent overlaps block bitmap
G.blkBitmap BETWEEN X.start AND X.end OR
// or extent overlaps inode bitmap
G.inoBitmap BETWEEN X.start AND X.end)

Figure 6: Check block overlaps metadata. This query
locates inode’s extents that overlap with the filesystem meta-
data. To reduce space, we abbreviate some fields: G.iTblEnd
should be G.iTable + S.inodeBlocksPerGroup - 1; G.blkEnd
should be G.blk + S.gdBlks - 1.

Single Multiple
instance instances

Intra Category #1 Category #3
structure 63 checks 11 checks

Inter Category #2 Category #4
structures 12 checks 35 checks

Table 2: Taxonomy of fsck cross-checking. We distin-
guish four types of cross-check. We report the number of checks
that fall into each category. In the first category, a cross-check
can be made within an instance of a structure. In the second,
a cross-check is performed on an instance of a structure and
an instance of another different structure. The third category
cross-checks multiple instances of a structure. Finally, the last
category involves information stored in multiple instances of
more than one structures. Each number in the box represents
the number of checks that are done by e2fsck in each category.

how this check can be expressed simply and efficiently
using SQL in Figure 3. The query simply performs a SE-
LECT from the group descriptor table to find any bitmaps
that are not within the desired range for the group. Thus,
range-checking queries are easily specified.

The second category includes checks between one in-
stance of a structure and an instance of another dif-
ferent structure; fsck runs 12 checks of this type. A
simple example is verifying that all pointers refer to
blocks within the file system; this check involves ver-
ifying that every pointer is within the range specified
in the primary superblock. Unlike the previous exam-
ple, this example must examine values in different struc-
tures and subsequently different tables. Figure 4 shows
how to check that no indirect block points outside the
file system. Specifically, the query returns all extents
(X.start..X.end) corresponding to indirect pointers
that fall outside the file system range specified in the pri-
mary superblock (S.firstBlk..S.lastBlk). Hence,
SQCK can easily join multiple structures to perform the
necessary cross-checks.

The third category contains 11 cross-checks of mul-
tiple instances of the same structure. One example of
this type of repair is checking that multiple inodes do
not point to the same data block. A second example,
shown in Figure 5 checks that the “..” entry of a direc-
tory points to the actual parent. This check can be done
easily in SQL: the query simply joins the directory entry
table with itself, selecting cases where the parent direc-
tory contains an entry for a child (where P.entryNum
>= 3), but the child’s entry for “..” (P.entryNum = 2)
is not the parent’s inode.

Finally, 35 checks fall into the fourth category in
which the cross-checks involve multiple instances of
more than one structure. One example is the rule that
validates the link count of an inode, since it must traverse
all directory entries and count how many times each en-
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SELECT P.entryIno, COUNT(*), MIN(P.ino)
FROM DirEntryTable P, InodeTable I
WHERE P.entryNum >= 3 AND

P.entryIno = I.ino AND
I.mode = DIR

GROUP BY P.entryIno
HAVING (COUNT(P.entryIno) > 1)

Figure 7: Check multiple parents. This query returns di-
rectories that have multiple parents. The parent that has the
smallest inode number (MIN(P.ino)) will be the one that
keeps the child directory.

UPDATE ExtentTable X
INNER JOIN
(Query in Figure 4) AS V
ON X.ino = V.ino AND

X.type = V.type AND
X.start = V.start AND
X.end = V.end

SET X.start = 0, X.end = 0, X.dirty = 1

Figure 8: Repair illegal indirect block number. This
query repairs indirect block numbers that fall outside the file
system range (returned by query in Figure 4), by clearing them
to zero.

result = run(findUnconnectedDir.sql); [9]
while(dir = mysql_fetch_row(result)) {
run(changeDotDot.sql, dir, lfIno); [3]
slot = run(findEntrySlot.sql, lfIno); [7]
if (!slot) {
lfBlk = run(getLocation.sql, lfIno); [3]
newBlk = run(allocNewBlock.sql, lfBlk); [25]
if (run(needIndirect.sql, lfIno)) [5]
{ // alloc indirect (not shown) }

run(addNewBlock.sql, newBlk, lfIno); [3]
run(addInodeSize.sql, lfIno); [3]
run(initNewDirBlk.sql, newBlk, lfIno); [3]
slot = run(findEntrySlot.sql, lfIno); [7]

}
// now break the slot and prepare [13]
// newSlot based on dir. (not shown)
run(updateOldSlot.sql, oldSlot); [3]
run(insertNewSlot.sql, newSlot); [3]
run(incrementLinkCount.sql, lfIno); [3]

}

Figure 9: Complex repair. The C pseudo-code above il-
lustrates the complex repair in reattaching unconnected direc-
tories to the lost+found directory. The bold texts are the SQL
files that are executed. The bold numbers in the brackets repre-
sent the lines count of each SQL file. The italic number is the
lines count of the C code. lfIno is the inode number of the
lost+found directory.

try appears. We give two examples of these queries
to further convince the reader that even these types of
seemingly complicated checks are surprisingly straight-
forward to express.

The first example checks for conflicting block point-
ers; in ext2, block pointers are stored in many places and
none should refer to the same block. Figure 6 shows a
query that ensures blocks pointed from an inode do not
overlap with file system metadata blocks. The query is
a little bit cumbersome because it checks whether an ex-
tent overlaps with each piece of file system metadata sep-
arately (i.e., superblock copies, group descriptors, inode
bitmaps, block bitmaps, and inode tables).

The second example verifies that multiple directory
entries do not point to a same directory, corresponding to
the false parenthood problem discussed in Section 2.3;
we show how it can be expressed in SQL in Figure 7.
Basically, the query selects directory entries that appear
more than once in the tree structure. In more detail, the
query does not select the “.” or “..” entries and selects
only directory inodes, as determined by their mode field
in the inode table. Counting the number of entries satis-
fying this constraint is straightforward with the ORDER

BY and HAVING features of the query language. Note
that this query returns the smallest inode number among
the parents (MIN(P.ino)), which is needed to mimic
how e2fsck incorrectly repairs this problem. In partic-
ular, e2fsck always assumes the parent with the smallest
inode number is the real parent without consulting the
“..” entry of the child. We show how we can easily im-
prove this query in Section 3.3.3.

3.2.3 Declarative Repairs

Performing checks of file system state is only part of the
problem; after SQCK detects an inconsistency, it must
then perform the actual repair. SQCK performs the re-
pair by first modifying its own tables; the flush process
then propagates these changes to the disk itself. We have
found that repair operations on the tables can be per-
formed in one of two ways.

In the simplest cases, a repair must simply adjust a few
fields within a table. These repairs can be performed by
embedding the declarative checks presented previously
into a larger query that then sets fields within the selected
rows. For example, an illegal indirect block pointer (one
that points outside the file system range) is fixed by clear-
ing the pointer to zero. Figure 8 shows that these pointers
can be cleared with a query that sets to zero the illegal ex-
tents found by the check query in Figure 4. Note that the
query also sets the dirty flag so that the flusher will later
propagate these changes from the database tables to the
on-disk structures.

In more complex cases, repairs may need to update
more than one table. In these cases, SQCK combines a
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series of SQL queries with C code. SQCK currently sup-
ports a variety of repair primitives, such as finding free
blocks and inodes and adding and deleting extents, di-
rectory entries, and inodes. Figure 9 shows how a valid
directory with a reference count of zero (i.e., a lost direc-
tory) is reconnected to the lost+found directory. Briefly,
the code behaves as follows. After a query finds the set
of unconnected directories, SQCK performs the follow-
ing operations on each such directory. First, the “..” en-
try is adjusted to point to lost+found. Next, a directory
entry slot is allocated within lost+found, which may re-
quire allocating new blocks and increasing the size of the
lost+found. After the slot is ready, the entry is filled to
correspond to the unconnected directory.

3.3 Possible Repair Policies
The simplicity of implementing checks and repairs in
SQCK enables one to construct different versions with
different repair policies. At this time, we have created
three versions of SQCK: one that emulates e2fsck with
both its good and bad polices, one that fixes what e2fsck
does wrong (i.e., fixes the inconsistent repairs described
in Section 2), and one that adds new functionality that
e2fsck does not even attempt (i.e., performs information-
complete and policy-consistent repairs). We briefly de-
scribe these three different versions.

3.3.1 Emulating e2fsck

Our basic version, SQCKfsck, emulates the repairs made
by e2fsck. From our analysis of e2fsck, we have deter-
mined that it performs 153 different repairs, of which 121
are significant and interesting for ext2 (the remaining 32
repairs fix the ext3 journal and other optional features).
These 121 repairs are detailed in Table 3. As shown,
e2fsck performs these repairs in six distinct phases, in
which reading the file system image from the disk is in-
termixed with the actual checks and repairs. SQCKfsck

implements these 121 repairs each as a separate query
within the check and repair process.

3.3.2 Fixing e2fsck

Our second version, SQCKcorrect, fixes the inconsistent
repairs performed by e2fsck. As described in Section 2,
if e2fsck follows a bad pointer to what it believes is an
indirect block, it can corrupt the file system and leave it
in an inconsistent state. The basic flaw of e2fsck is that
it performs certain checks and repairs in the incorrect or-
der: it wrongly “repairs” direct pointers before checking
that the indirect block containing those pointers is valid.

In general, repairs of a complex data structure must
be performed in a specific order; specifically, if a piece
of information A is obtained from B, then B must be
checked and repaired first.

# Checks Performed
28 Phase 0: Check consistency in the superblock
23 Field check: Check all superblock fields (e.g., fs size,

inode count, groups count, mount/write time)
3 Range check: Ensure pointers to block bitmap, inode

bitmap, inode table are in the group
2 Special feature: Check resize inode feature

35 Phase 1: Scan and check inodes and block pointers
9 Bad block: Check fields of bad-block inode; ensure

superblocks and group descriptors in healthy blocks
18 Inode structure: Check fields (e.g., mode, time, size)

of different inodes (e.g., root, reserved, boot load)
1 Range check: Ensure direct and indirect pointers

point within the file system
7 Conflicts: Ensure no conflict among block pointers

(e.g., two inodes should not share a block)
38 Phase 2: Scan and check all directory entries
16 Directory: Check each has ’.’ and ’..’ entry,

’.’ points to itself, does not have missing block,
fields of dir inode consistent (e.g., acl, fragment size)

9 Dir Entry: Check each entry has correct name length,
each points to an in-range inode, record length valid,
filename contains legal characters

5 Pathnames: Each entry points to used inode, does not
point to self, does not point to inode in bad block,
does not point to root, dir has only one parent

8 Special inodes: Check device inodes and symlinks
6 Phase 3: Ensure all directories are connected to

the file system tree
3 lost+found: Ensure lost+found directory is valid and

ready to be populated
3 Reattach: Reattach orphan directory to lost+found
3 Phase 4: Fix reference counts and

reattach zero-linked file to lost+found
11 Phase 5: Check block and inode bitmaps against

on-disk bitmaps
121 Total

Table 3: Repairs performed by fsck and SQCKfsck.
The table summarizes the 121 repairs performed by the tradi-
tional fsck.

We have constructed an information dependency
graph for the data structures in ext2 to ensure that re-
pairs are performed in the correct order. A portion of this
graph is shown in Figure 10. The figure illustrates that
e2fsck does not follow the order specified by the depen-
dency graph. SQCKcorrect reorders the relevant queries
to ensure that single, double, and triple indirect blocks
are all validated in the correct order before repairing the
direct pointers themselves. We find that reordering re-
pairs in SQCK is straightforward due to the structure of
the queries; we do not believe such reordering is simple
in e2fsck.

Currently, the dependency graph must be manually
constructed by the file system developer/administrator.
Since the repair queries in SQCK are neatly structured,
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Figure 10: Information dependency graph. The figure shows a chain of information dependency. Note that the full graph
forms a tree-like graph; to save space, only a partial dependency chain is shown. Each box contains three rows: a new information
obtained from the previous box, the check (and the corresponding repair, not shown), and the new state of the information after
the check. For example, in box 1, an indirect pointer is obtained from a valid inode. After the range-check, the indirect pointer is
marked in-range, but not yet valid. After it passes the conflict-check in box 2, it is finally marked as valid, which implies that we can
proceed to box 3 which repairs out-of-range direct blocks contained in this indirect block. Unfortunately, e2fsck does not follow
this ordering, as shown by the dashed lines; fsck proceeds repairing the direct pointers from a not yet valid indirect block. When
e2fsck later finds out that the indirect block is indeed invalid (e.g., conflicting with other file system metadata), the content of the
metadata has been accidentally corrupted in box 3.

LOC LOC
New Repair (C) (SQL)

Majority rule on block bitmap pointers 40 22
Majority rule on inode bitmap pointers 40 22
Majority rule on inode table pointers 40 22
Finding false parents 13 14
Reconstructing missing directories (*) 47 20
Precedence cloning 23 19
Secure cloning (**) 41 8

Table 4: New repairs. The table lists all the new repairs
we introduce. (*) In addition to the number of lines reported
here, this new rule heavily uses the primitives as in Figure 9.
(**) The number of lines reported for this rule is the additional
code to the original cloning repair.

the ordering can then be manually verified against the
dependency graph. More ideally, a static tool could be
built on top of SQCK to verify the ordering automati-
cally. Specifically, each query could be tagged with a
unique name that describes the check/repair performed,
then a parser could automatically construct the ordering
from the code, and finally a verifier could compare the
constructed ordering against the specified ordering. This
highlights that a structured fsck can be easily verified
than a cluttered one.

3.3.3 Improving e2fsck

Our final version, SQCKimproved, improves how the file
system is checked by utilizing more of the information
that resides within the file system image. Table 4 lists the
new information-complete, policy-consistent, and secure
repairs in SQCKimproved.

The first three repairs utilize the replicas that ext2
keeps of the group descriptor blocks on disk. While

SELECT F.*
FROM DirEntryTable P, DirEntryTable C,

DirEntryTable F
WHERE // P says C is his child

P.entry_num >= 3 AND
P.entry_ino = C.ino AND
// and C says P is his parent
C.entry_num = 2 AND
C.entry_ino = P.ino AND
// but F, the false parent, says
// C is also his child. P wins.
F.ino <> P.ino AND
F.entry_num >= 3 AND
F.entry_ino = C.ino

Figure 11: Finding false parents. This query returns the
actual false parents. A false parent is a parent that claims to
own a child even though the child is already strongly connected
to another parent.

e2fsck does examine these replicas if the primary copy is
obviously corrupted, e2fsck misses opportunities to use
correct replicas when the primary “looks” fine. Thus,
SQCKimproved always examines all replicas and per-
forms majority voting across them to determine the cor-
rect values; this voting is performed for three impor-
tant fields: the pointer to the data block bitmap, the
inode bitmap, and the inode table. With these fixes,
SQCKimproved performs information-complete repairs
when the pointer to the inode table is corrupted, as de-
sired (described in Section 2). These new repairs are
straightforward to implement, requiring only 22 lines of
SQL and 40 lines of C.

The fourth repair utilizes the extra information kept in
directory “..” fields to repair corrupted directories. First,
we fix the false parenthood problem exhibited by e2fsck.
With SQCK, we replace the incorrect check of e2fsck
originally shown in Figure 7 with the one in Figure 11.
This new query elegantly expresses relatively complex
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SELECT X.ino, X.start, X.end,
V.start, V.end,
(ABS(X.pBlk-V.start)) as distance

FROM ExtentTable C,
(A query that returns the start and
end of a shared extent) AS V

WHERE X.start <= V.start AND V.end <= X.end
ORDER BY V.start, distance

Figure 12: Locality-aware repair. The query above re-
turns shared blocks that are sorted based on the locality dis-
tance from the pointers. The inner query (not shown), stored in
Table V, returns a the list of duplicate blocks. The ABS com-
mand helps sorting the result based on locality distance.

behavior: it only returns false directory entries in which
the child directory does not claim them as a parent with
“..”; thus, this false directory entry is correctly cleared
instead of that of the rightful parent.

We can extend this repair slightly to write the fifth
repair, which corrects even more complicated corrup-
tions of the directory hierarchy. For example, if a path
/a/b/c/ exists and b’s inode is corrupted such that b no
longer appears to be a directory, e2fsck does not do any
reconstruction and simply moves c to lost+found. How-
ever, SQCKimproved completely reconstructs the con-
tents of b from the back pointers of its children. The
complete rule requires a total of 20 new SQL lines with
C code similar to that shown in Figure 9.

The sixth repair corrects the allocation policy of
e2fsck. Specifically, e2fsck clones data blocks without
checking which file is closer to the shared data block.
Ideally, the repair should give the existing block to the
closest inode and allocate the new clone to the other in-
ode. With SQCK, locality optimizations are easily per-
formed. For example, Figure 12 shows how we utilize
the ABS and ORDER BY SQL commands to calculate the
distance between a block and its pointer. The bold text
shows that the results are sorted on the start of the shared
extents and then on the distance between the shared ex-
tent and the blocks that point to the extent (X.pBlk).
Given this list, SQCK can easily perform the repair such
that the shared extent is kept with its closest pointer.

Finally, the seventh repair adds secure cloning. This
is done in two ways. First, suppose a corrupt direct
pointer incorrectly points to a bitmap block; since the
bitmap block is pointed to by more than one group de-
scriptor replica, it is more likely the direct pointer is mis-
taken than all of the group descriptor replicas; therefore,
cloning of that block simply leaks information and does
not need to be performed.

Second, suppose a data block is shared by two inodes,
one in the /root directory and one in the /home/UserA
directory. In this case, if we want to prevent leaking of in-
formation, we might not want to clone the shared block,

first_block = sb->s_first_data_block;
last_block = first_block + blocks_per_group;

for (i = 0, gd=fs->group_desc;
i < fs->group_desc_count;
i++, gd++) {

if (i == fs->group_desc_count - 1)
last_block = sb->s_blocks_count;

if ((gd->bg_block_bitmap < first_block) ||
(gd->bg_block_bitmap >= last_block)) {
px.blk = gd->bg_block_bitmap;
if (fix_problem(PR_0_BB_NOT_GROUP, ...))

gd->bg_block_bitmap = 0;
}
...

}

Figure 13: C-version of Figure 3. The C fragment above
shows the e2fsck’s implementation of the “check block bitmap
not in group” shown in Figure 3.

if ((dot_state > 1) &&
(ext2fs_test_inode_bitmap
(ctx->inode_dir_map, dirent->inode))) {

// ext2fs_get_dir_info is 20 lines long
subdir = e2fsck_get_dir_info(dirent->inode);
...
if (subdir->parent) {
if (fix_problem(PR_2_LINK_DIR, ...)) {

dirent->inode = 0;
goto next;

}
} else {
subdir->parent = ino;

}
}

Figure 14: C-version of Figure 7. The C fragment
above shows the e2fsck’s implementation of the “check multiple
parents” shown in Figure 7.

instead we remove the pointer from the user and keep the
one from the root inode. In addition to the existing block
conflict check and cloning primitives, this new rule only
requires additional two SQL files, for a total of 8 lines to
do the path traversal, and 41 lines of C code.

The secure clone repair could be seen as an exam-
ple where an administrator’s decision is more appropriate
than an automated one. SQCK does not throw away the
need to ask the administrator for the right decision. In
such cases, different policies should be present for the
administrator to choose from. In SQCK, we can execute
different policies easily; each policy is simply mapped to
a query or a set of queries.

3.4 Summary
In summary, we have found that declarative queries can
succinctly express the many different types of checks and
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Improving Scan Time
1 Reduce seek time with sorted job queue

Improving Load Time
2 Make the table content compact
3 Only load checked information
4 Use threads to exploit idle time

Improving Check Time
5 Write queries that leverage indices
6 Leverage fs domain specific knowledge
7 Use bitmaps to reduce search space

Table 5: Optimization Principles. The table lists the
optimizations that we have performed such that performance
of SQCK is competitive with e2fsck.

repairs that fsck performs. Our experience also shows
that writing checks and repairs in declarative queries is
relatively straightforward; each query is written in a few
iterative refinement. A complex check or repair, with a
little bit of help from C code, can be broken into sev-
eral short queries that are easy to understand. On av-
erage, each query we have written is 7 lines long, and
the longest one is 22 lines. Furthermore, only 24 re-
pairs require help from C code. The functionalities of
the corresponding C code are generally simple; C code
is only used to run a set of queries and iterate the query
results. Note that this is different than how C code is
used for cross-checking in e2fsck, as illustrated in Fig-
ure 13 and 14. Both of the code segments illustrate that
a low-level C implementation tends to make a simple
check hard to understand and debug. Given such exam-
ples, adding the new repairs described in the previous
section into e2fsck is likely to complicate the code more.

4 Implementation
We now describe our implementation of the SQCK
phases for scanning the file system image from disk,
loading the database tables, checking and repairing the
structures, and finally flushing the repairs to disk. Our
current implementation of SQCK runs on top of a
MySQL database and targets the ext2 file system in
Linux 2.6.12. When describing our implementation, we
focus on the optimizations we found were necessary for
achieving respectable performance; Table 5 summarizes
these optimizations across the phases.

4.1 Scanning and Loading
In our current implementation, SQCK combines its scan-
ning and loading phases. Conceptually, SQCK main-
tains a queue of the structures that must be read from
disk, processed, and loaded into the tables. As structures
are processed, SQCK follows their pointers to determine

the next structures. For example, the queue is initialized
from the primary superblock; after the superblock, the
locations of the group descriptor copies are known; sub-
sequently, the inode tables are processed, which leads to
individual inodes and their data blocks.

SQCK implements a number of performance opti-
mizations for scanning and loading. First, to reduce the
scan time, SQCK sorts the requests in the queue based on
their on-disk locations; sorting the requests minimizes
disk head positioning time, especially for file systems
that are fragmented. We note that although e2fsck per-
forms a partial optimization of this sort (i.e., directory
blocks are sorted before read from the disk [10]), e2fsck
is not able to perform the same optimization (e.g., indi-
rect blocks still have to be traversed logically) because it
heavily intermixes scanning with checking [19]. SQCK
is able to optimize scanning because reading from disk
is completely decoupled from checking; hence, SQCK
does not need to follow structures in a logical manner.

The primary reason we decouple scanning from
checking is because we want to make the common case
fast; if corruption is a rare case than our approach im-
proves the overall fsck time. However, there is a trade-
off: if corruption is huge, extra work is needed to invali-
date the garbage loaded into the database. Our design is
not limited to that only approach; if desired, SQCK can
be redesigned by intermixing some phases of scanning
and checking according to the structural logical hierar-
chy. For example, when loading and checking indirect
blocks, triple indirect blocks will be loaded and repaired
in the database, then only valid double indirect blocks
will be loaded to the database, and so on.

Second, SQCK improves load time (and check time)
by reducing the size of the initial database tables.
Our initial implementation loaded the ext2 structures to
match their on-disk format; specifically, SQCK loaded
each on-disk pointer as a direct pointer. However, we
found that this approach made checking even 100 GB
file systems unattractive. Therefore, our next optimiza-
tion modified the tables to instead use extents to represent
pointers referring to contiguous blocks.

Third, SQCK reduces loading time by only loading al-
located meta-data. Given that most file systems are half-
full [5], a great deal of the inodes are not actually used.
To reduce the size of the tables, SQCK does not load
the unused inodes into the database tables (though it of
course still scans them from disk). However, e2fsck per-
forms one check on unused inodes that SQCK must be
able to replicate: e2fsck verifies that each inode with a
link count of zero also has a deletion time of zero. To
handle this repair, SQCK performs this one check during
processing. If SQCK finds a non-conforming inode, that
inode is loaded into the table on the fly; to mark that the
inode has been repaired, its used field is cleared and the
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dirty field is set. We note that this optimization is con-
sistent with the direction in which future file systems are
going: ext4 explicitly marks unallocated sections of the
inode table to help e2fsck run more efficiently [4].

Fourth, the scanner-loader in SQCK is multi-threaded.
Each thread within the pool is able to independently grab
a structure from the queue, read the data from disk, pro-
cess it, and load the information into the corresponding
table. Multiple threads allow SQCK to overlap reading
requests from disk with loading the tables. As we will
see in our evaluation, this optimization is especially im-
portant for large partitions.

4.2 Checker

After all metadata has been uploaded into the database
tables, SQCK initiates the checking phase, which runs
the queries as discussed in the previous section. One im-
portant note is that since the checker runs only after the
loader, corrupt data can be loaded into the tables. Hence,
SQCK provides primitives to invalidate a structure along
with the information that originates from it. For exam-
ple, if the block number that points to an inode table is
corrupt, the wrong inodes and the wrong data pointers
will be loaded into the table. Later, when the checker
discovers that the inode table pointer is corrupt, it simply
calls the SQCK primitives to invalidate the correspond-
ing inodes, extents, and directory entries.

The checker has been optimized for performance in
three main ways. First, we have found that SQCK must
contain appropriate indices for each table; without in-
dices a full scan must be done for each check and joining
multiple tables requires a very long time. Thus, each ta-
ble contains indices over the fields that are checked with
the comparison operators.

Given the indices, some queries must be rewritten to
leverage them. In our experience, MySQL is not able to
always extract the implicit index comparisons in some
queries. For example, the check that no directory en-
try points to an unused inode was originally written as
shown in the top half of Figure 15. When the rule
was rewritten to make the index comparison explicit, as
shown in the bottom part of the figure, the query time
improved significantly. Thus, making index comparison
explicit is an important principle to do fast checking. We
rewrote a total of four queries in this manner, reducing
the check time for those four queries from 72 seconds
down to just 0.09 seconds on a 1 GB partition.

Second, we have found it beneficial to incorporate file
system domain knowledge into the queries. One ex-
ample is the rule that counts how many blocks are be-
ing used in a group. Since SQCK uses extents, it must
first select the extents in that group. The naive range-
checking query could be written as follows: (G.start

// find an entryIno that is in the list of
// unused inodes
SELECT *
FROM DirEntryTable
WHERE entryIno IN

(SELECT ino
FROM InodeTable
WHERE used = 0)

---- vs. ----
// find an entryIno that exists in the
// InodeTable and the used field is zero
SELECT *
FROM DirEntryTable
WHERE EXISTS

(SELECT *
FROM InodeTable AS I
WHERE I.ino = D.entryIno AND

I.used = 0)

Figure 15: Explicit index comparison. We rewrite the
code to unearth the index comparison.

<= X.start AND X.end <= G.end). However,
given that we know valid extents cannot overlap group
boundaries (this has been verified in previous queries),
the range-check query can be simplified to (G.start
<= X.start <= G.end). This simplified query im-
proves check performance.

The final optimization addresses how to join tables
where an index comparison is not possible. For exam-
ple, the query finding shared blocks across files joins
the ExtentTable with itself to find any overlapping ex-
tents. We optimize this query by making the search space
smaller with bitmaps. For this example, SQCK uses two
bitmaps: one for marking used blocks and one for mark-
ing shared blocks; the latter bitmap provides a hint as
to which extents have overlapping blocks. To find out
which part of an extent is actually overlapping, SQCK
joins the resulting small table with itself.

4.3 Flusher

Finally, SQCK needs to update any repaired structures
to the disk. SQCK is able to determine which structures
have been modified by selecting those entries where the
dirty flag is set. Following the same behavior as e2fsck,
SQCK updates the structures in-place on disk (i.e., it
does not currently use a separate journal).

To ensure the metadata writes are ordered cor-
rectly [16], currently SQCK performs a series of queries
ordered by the dependency graph; the graph ensures that
blocks are updated before the pointers to those blocks. In
the next generation of SQCK, a journaling facility will
be added to ensure that a crashed repair process will not
modify the old data partially.
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C Code SQL
Component LOC ; count LOC

Scanner 2759 1378 –
Loader 609 177 103
Checker+Repair *2527 1468 910
Primitives 695 348 98
Flusher 114 49 27
Total 6704 3420 1138

Table 6: SQCKimproved LOC. The table
presents the complexity of SQCKimproved. Scan-
ner includes threads and functions that process the
structures. (*) The C code for the checkers and re-
pairs are mostly wrappers that call the SQL files.

SQCK ext2 ReiserFS XFS
LOC 2527 16472 11281 21773
# Chks 121 121 156 344
Instr. gap 16 ± 16 71 ± 161 56 ± 203 128 ± 257
Func. gap 1 ± 1 4 ± 6 1 ± 3 5 ± 6
# Chk func. 121 31 32 72
# Chks/chk-func 1 ± 0.1 4 ± 5 5 ± 8 5 ± 5

Table 7: Checkers complexity. The table shows the logical com-
plexity of SQCKcorrect, ext2, ReiserFS and XFS checker codes (excluding
libraries). Standard deviation is shown right next to the ± sign. “Inst. and
Func. gaps” quantify the number of C instructions and functions separat-
ing one check from the next check. “# Chk func” shows in how many func-
tions the checks are diffused. Finally, “# Chks/func” averages the number
of checks performed in each checker function.

5 Evaluation
In this section we evaluate SQCK along three axes: com-
plexity, robustness, and performance. Overall, we be-
lieve many of the goals of SQCK have been achieved.

5.1 Complexity
Table 6 presents the complexity of SQCKimproved, the
most complete version of SQCK. As the table suggests,
SQCK is comprised of C and SQL code. The scanner is
the only place where the complexity of the C code still
exists. However, the code is generally simple because it
scans the file system in a logical hierarchy. The checker
code looks big, however, it is mostly wrapper functions
that call the corresponding queries; most wrappers con-
sist of the same 15 lines of C code. A generic wrapper
could be built to reduce the amount of C code.

SQCK so far has been written all at once by one small
group. Thus, it is possible that SQCK will become more
complex when developed by a bigger group over a longer
period of time. However, we believe the core power of
SQCK lies within the simple and robust queries; each
query consists of 7 lines of code on average. These
queries decouple the checks from the C code, enabling
us to maintain reliability in an easier way. Compared to
e2fsck, which consists of 16 thousand LOC of cluttered
checks and repairs and 14 thousand LOC of scan utilities,
all written in low-level C code, SQCK can be considered
a big step towards simplifying file system checkers.

To show that we are solving a broader significant prob-
lem, Table 7 attempts to quantify the logical complexity
of ext2, ReiserFS, and XFS checker utilities, all writ-
ten in C. The metrics shown in the table are generated
by our parser written using CIL [25]. In fsck-related
code, we annotate the location where each check is per-
formed. The parser computes the complexity-metrics as
described in the table. For example, we compute how
many instructions and function calls separate each neigh-

boring checks. If the numbers are high, the checks are
most likely diffused and reasoning about their correct-
ness might be nontrivial, if not impossible. The num-
bers reported in Table 7 exclude fsck libraries (e.g., scan-
ner), hence they only depict the logical complexity of the
checker component.

We make two important observations: First, the aver-
age number of C instructions and functions that separate
two checks are high in all fsck utilities, with significant
standard deviations; the separation can be as low as 4 or
as high as 1700 instructions. Second, checks are greatly
diffused in many functions; a function could make a
small number of checks while some other could perform
as many as 47 checks. In such implementations verifying
that all checks are complete and ordered correctly can be
cumbersome. On the other hand, SQCK hides the com-
plex logic of the checks in declarative queries, greatly
reducing the gap between neighboring checks; the stan-
dard deviations shown in the SQCK column illustrate the
neat organization we have achieved. In summary, we be-
lieve all C-implementations of fsck are likely to suffer
from the same problems as e2fsck.

5.2 Robustness

To test the robustness of the three versions of SQCK, we
have injected a total of 356 corruption scenarios. In each
scenario, we injected corruption into one or more fields
to test whether a check and the corresponding repair be-
have as expected. First, we have injected 55 faults to
ensure that SQCKfsck passes most of the interesting re-
pairs out of the total 121 repairs. Injecting faults for the
rest of the tests should be straightforward. Second, we
have verified that SQCKcorrect passes the fsck reliabil-
ity benchmark described in Section 2 by injecting addi-
tional 180 faults. Finally, we injected 10 new faults to
test the new repairs that we introduced in SQCKimproved

and verified the resulting repairs.
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Figure 16: Overall runtime comparison . The bar graph
shows the comparison of the total runtime of e2fsck and fully
optimized SQCK for different file system sizes. The bars are
all normalized to e2fsck runtime and the SQCK bar show the
relative slowdown. The absolute runtime figures in seconds are
shown on top of the bars.

5.3 Performance
The experiments in this section were performed on an
2.2 GHz AMD Opteron machine with 1 GB memory
and 1 TB WDC WD10EACS disk. We used Linux
2.6.12, e2fsck 1.39, and MySQL 5.0.51a. The tables are
mounted on a 512 MB ramdisk.

We test the performance of SQCK and e2fsck on four
partitions with different sizes: 1, 10, 100, and 800 GB.
Each of the partition is made half-full [5] by filling it with
the root file system image of a machine in our laboratory
along with a large number small files from kernel builds
and large files from virtual machine images.

Figure 16 shows e2fsck compared to our fully opti-
mized SQCK. The fully optimized SQCK incorporates
all the principles described in Table 5; specifically, it
sorts the block scan, loads extents and linked inodes only,
uses 16 worker threads, and uses fast queries. In our first
generation prototype we managed to keep the running
time of SQCK within 1.5 times of e2fsck runtime.

We show in more detail how each of the scan and load
optimization principles improve the runtime significantly
by turning off one optimization feature at a time. The
runtime of each of these unoptimized versions are com-
pared relative to the fully optimized SQCK.

First, the sorted job queue is disabled such that we
scan the file system logically. Figure 17 shows that for
a large file system (e.g., 800 GB), sorting the job queue
plays a significant role; scanning the file system logically
takes almost 3 times as long as the fully optimized one.
Note that in this experiment, we disabled the loading
phase to compare only the scan performance. The serial
scanning for the 100 GB file system is 8 seconds faster
than the fully optimized SQCK because the file system
was almost not fragmented at all; the advantage of the
sorted scanning is noticeable for fragmented and/or big
file systems.

Second, we show the importance of making the initial
table compact. Figure 18 shows the slowdown of two
unoptimized versions: one that loads all inodes, and one
that loads direct pointers instead of extents. When load-
ing all inodes, the runtime is increased significantly; for
800 GB file systems, 97 million inodes will be loaded out
of which only 900 thousand have non-zero link counts.
When loading direct pointers, the runtime increases dra-
matically. For the 100 GB file system, the DirectPoint-
erTable already consumes 360 MB, while the Extent-
Table only consumes 9 MB.

Third, Figure 19 shows how multiple threads enable
us to significantly overlap scan and load time. When the
number of worker threads is reduced to one, the slow-
down is almost 1.5 times in all file systems. For large file
systems, increasing the number of threads gives a faster
runtime; at 800 GB, using 16 worker threads improves
the runtime.

In summary, our evaluation of the first generation pro-
totype of SQCK shows that SQCK obtains comparable
performance to e2fsck. In the next generation of SQCK,
we plan to perform two additional enhancements. First,
some checks can be merged so that the table-scan time
can be reduced. If the checks find a problem, then nested
sub-checks will be run to pinpoint the actual problem.
Second, we plan to run some checks and repairs concur-
rently by utilizing the information dependency graph in
Figure 10. The graph provides the dependency tree that
tells which checks and repairs are safe to run in paral-
lel. With a faster overall check time, we hope file system
developers will be encouraged to write as many rules as
needed.

6 Related Work
We believe that SQCK is the first tool to apply a declar-
ative query language for checking and repairing file sys-
tems. We briefly compare SQCK to research on specifi-
cation and declarative languages and efforts focused on
improving fsck.

Specification languages like Alloy [21] and Z [11] are
useful for describing constraints of a system and then
finding violations of that model. Similar in goals to
SQCK, Demsky and Rinard took this approach for au-
tomatically repairing file systems [12]; however, we be-
lieve the drawback of their work is that it does not allow
one to naturally express the repairs that should be per-
formed when violations are discovered.

Numerous researchers have recently explored the ad-
vantages of using declarative languages in other do-
mains, such as system configuration [13] and network
overlays [23].

Finally, other researchers have proposed a technique
for optimizing the performance of file system check-
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ers [20, 26]. The basic approach in both checkers is to
track which portions of the disk are being written to and
focus repair on only those active portions of the disk.
While this technique can certainly improve performance,
it does not simplify the implementation of the checker
nor enable fundamentally new repairs, as does SQCK.

7 Conclusion
Recovery code is complex and hard to get right. Current
approaches describe recovery at a very low-level: thou-
sands of lines of C code. One approach to improving the
state of the art is to apply more formal techniques that
find bugs in such code [14] and thus evolve the code to-
wards a less-buggy future.

We instead advocate a higher-level strategy. By en-
capsulating the logic of a file system checker in a set
of declarative queries, we provide a more concise de-
scription of what the checker should do. Complexity is
the enemy of reliability; by paring down the checker to
its declarative core, we believe we have taken an impor-
tant step towards improving the robustness of file system
checking.
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