
Fidelity and Yield in a
Volcano Monitoring Sensor Network

Geoff Werner-Allen?, Konrad Lorincz?, Jeff Johnson†, Jonathan Lees‡, and Matt Welsh?

? Division of Engineering and Applied Sciences, Harvard University
† Dept. of Earth Sciences, University of New Hampshire

‡ Dept. of Geological Sciences, University of North Carolina

Abstract

We present a science-centric evaluation of a 19-day sensor net-

work deployment at Reventador, an active volcano in Ecuador.

Each of the 16 sensors continuously sampled seismic and acoustic

data at 100 Hz. Nodes used an event-detection algorithm to trigger

on interesting volcanic activity and initiate reliable data transfer

to the base station. During the deployment, the network recorded

229 earthquakes, eruptions, and other seismoacoustic events.

The science requirements of reliable data collection, accurate

event detection, and high timing precision drive sensor networks

in new directions for geophysical monitoring. The main contri-

bution of this paper is an evaluation of the sensor network as a

scientific instrument, holding it to the standards of existing instru-

mentation in terms of data fidelity (the quality and accuracy of the

recorded signals) and yield (the quantity of the captured data). We

describe an approach to time rectification of the acquired signals

that can recover accurate timing despite failures of the underlying

time synchronization protocol. In addition, we perform a detailed

study of the sensor network’s data using a direct comparison to a

standalone data logger, as well as an investigation of seismic and

acoustic wave arrival times across the network.

1 Introduction

Sensor networks are making inroads into a number of

scientific explorations, including environmental monitor-

ing [1, 25], habitat monitoring [2, 10, 23], and structural

monitoring [16, 14, 30]. In each of these domains, the use

of low-power wireless sensors offers the potential to collect

data at spatial and temporal scales that are not feasible with

existing instrumentation. Despite increased interest in this

area, little has been done to evaluate the ability of sensor

networks to provide meaningful data to domain scientists.

A number of challenges confound such an effort, includ-

ing node failure, message loss, sensor calibration, and inac-

curate time synchronization. To successfully aid scientific

studies, sensor networks must be held to the high standards

of current scientific instrumentation.

In this paper, we take a hard look at the performance

of a wireless sensor network deployed on an active vol-

cano. We evaluate its effectiveness as a scientific instru-

ment using two metrics: data fidelity and yield. Data fi-

delity encompasses the quality and consistency of retrieved

seismoacoustic signals, while data yield reflects the quan-

tity of data delivered by the network.

Typical volcano monitoring studies employ GPS-

synchronized data loggers recording both seismic and

acoustic signals. These provide high data fidelity and yield

but are bulky, power hungry, and difficult to deploy. Exist-

ing analog and digital telemetry is similarly cumbersome.

The use of wireless sensors could enable studies involving

many more sensors distributed over a larger area. However,

the science requirements pose a number of difficult chal-

lenges for sensor networks. First, seismoacoustic monitor-

ing requires high data rates, with each node sampling mul-

tiple channels at 100 Hz. Second, signal analysis requires

complete data, necessitating reliable data collection. Third,

volcano studies compare signals across multiple sensors,

requiring that collected data be accurately timestamped

against a GPS-based global clock.

The core contribution of this paper is an analysis of the

efficacy and accuracy of a volcano-monitoring sensor net-

work as a scientific instrument. This is the first paper to

our knowledge to take a science-centric view of a sensor

network with such demanding data-quality requirements.

In this paper, we evaluate the data collected from a 19-day

field deployment of 16 wireless sensors on Reventador vol-

cano, Ecuador, along the following axes:

• Robustness: We find that the sensor nodes themselves

were extremely reliable but that overall robustness was

limited by power outages at the base station and a single

three-day software failure. Discounting the power out-

ages and this single failure, mean node uptime exceeded

96%.

• Event detection accuracy: Our network was designed

to trigger data collection following volcanic events such

as earthquakes and eruptions. We measure the accuracy

of our distributed event-detection algorithm, finding that

the algorithm has a zero false positive rate. However,

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 381

 



the network failed to detect many seismic events due to

a poor choice of event-detection parameters and limita-

tions of our data collection protocol.

• Data transfer performance: We evaluate the ability of

our data collection protocol to transfer complete signals

following an event. We find a 90th percentile event yield

(fraction of nodes for which all data for an event was

collected) of 94% and a latency of 63 sec per radio hop

for downloading 60 sec worth of data.

• Timing accuracy: Data collected by each node must

be timestamped to within a single sample time (10 ms)

to enable seismological analysis. We evaluate the sta-

bility of the underlying time synchronization protocol

(FTSP [11]), and develop a novel approach to time recti-

fication that accurately timestamps each sample despite

failures of the FTSP protocol. We show that this ap-

proach recovers timing with a 90th-percentile error of

6.8 msec in a 6-hop network.

• Data fidelity: Finally, we take a seismological view of

the captured data and present a head-to-head compari-

son of data recorded by our sensor network against a

colocated data logger. We also evaluate the consistency

of the recorded signals in terms of seismic and acoustic

wave arrival times across the network, showing that the

data is consistent with expected physical models of the

volcano’s activity.

The rest of this paper is organized as follows. The next

section provides background on the use of wireless sen-

sors for volcano monitoring and outlines the underlying

science goals. In Section 3 we describe the architecture of

our system and the field deployment at Reventador. Sec-

tions 4 through 8 present a detailed analysis of the net-

work’s performance along each of the evaluation metrics

described above. Section 9 discusses related work and Sec-

tion 10 presents several lessons learned from the deploy-

ment. Section 11 outlines future work and concludes.

2 Background

Scientists monitor volcanoes for two non-exclusive rea-

sons: (1) to monitor hazards by assessing the level of vol-

canic unrest; and (2) to understand physical processes oc-

curring within the volcano, such as magma migration and

eruption mechanisms [21, 12]. The most common instru-

ment used is the seismometer, which measures ground-

propagating elastic radiation from both sources internal to

the volcano (e.g., fracture induced by pressurization) and

on the surface (e.g., expansion of gases during an erup-

tion) [12]. In addition, microphones are sometimes em-

ployed to record infrasound, low-frequency (< 20 Hz)

acoustic waves generated during explosive events. Infra-

sound is useful for differentiating shallow and surface seis-

micity and for quantifying eruptive styles and intensity [7].

2.1 Existing volcano instrumentation

The type of instrumentation used to study volcanoes de-

pends on the the science goals of the deployment. We are

focused on the use of wireless sensors for temporary field

deployments involving dozens of sensor stations deployed

around an expected earthquake source region, with inter-

node spacing of hundreds of meters. A typical campaign-

style deployment will last weeks to months depending on

the activity level of the volcano, weather conditions, and

science requirements.

Geophysicists often use standalone dataloggers (e.g.,

Reftek 130 [20]) that record signals from seismometers

and microphones to a flash drive. These data loggers are

large and power-hungry, typically powered by car batter-

ies charged by solar panels. The sheer size and weight

precludes deployments of more than a small number of

stations in remote or hazardous areas. Additionally, data

must be retrieved manually from each station every few

weeks, involving significant effort. Analog and digital ra-

dio telemetry enables real-time transmission of data back

to an observatory. However, existing telemetry equipment

is very bulky and its limited radio bandwidth is a problem

for collecting continuous data from multiple channels.

2.2 Sensor network challenges

Wireless sensor networks have the potential to greatly en-

hance understanding of volcanic processes by permitting

large deployments of sensors in remote areas. Our group

is one of the first to explore the use of wireless sensor net-

works for volcano monitoring. We have deployed two wire-

less arrays on volcanoes in Ecuador: at Volcán Tungurahua

in July 2004 [27], and at Reventador in August 2005 [28].

The science requirements give rise to a number of unique

challenges for sensor networks, which we outline below.

High-resolution signal collection: Data from seis-

mometers and microphones must be recorded at relatively

high data rates with adequate per-sample resolution. A

sampling rate of 100 Hz and resolution of 24 bits is typi-

cal. This is in contrast to sensor networks targeting low-rate

data collection, such as environmental monitoring [23, 25].

Triggered data acquisition: Due to limited radio band-

width (less than 100 Kbps when accounting for MAC over-

head), it is infeasible to continuously transmit the full-

resolution signal. Instead, we rely on triggered data collec-

tion that downloads data from each sensor following a sig-

nificant earthquake or eruption. This requires sensor nodes

to continuously sample data and detect events of interest.

Event reports from multiple nodes must be collated to ac-

curately detect global triggers across the network.

Timing accuracy: To facilitate comparisons of signals

across nodes, signals must be timestamped with an accu-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association382



����� ��	

��
�� ��
�

��
��� ��� ����


������� ���������

���
�� ���������


������������ ��
�

� ���� ��������


Figure 1: Our wireless volcano monitoring sensor node.

racy of one sample time (i.e., 10 ms at 100 Hz). Data log-

gers generally incorporate a GPS receiver and use low-drift

oscillators to maintain accurate timing. However, equip-

ping each sensor node with a GPS receiver would greatly

increase power consumption and cost. Instead, we rely

on a network time synchronization protocol [4, 11] and

a single GPS receiver. However, correcting for errors in

the time synchronization protocol requires extensive post-

processing of the raw timestamps.

3 System Architecture

In this section we provide a brief overview of the design

of our volcano monitoring sensor network and details of

the deployment at Reventador. In an earlier magazine ar-

ticle [28] we describe the system and deployment in more

detail, although we have not previously published results

evaluating its performance.

3.1 Sensor hardware

Our wireless sensor node (Figure 1) is based on the TMote

Sky [13] platform, which integrates a TI MSP430 proces-

sor, 10 KB of SRAM, 48 KB of program ROM, 1 MByte

of flash memory, and a Chipcon CC2420 radio. All soft-

ware is implemented in TinyOS [5]. We designed a cus-

tom sampling board that provides four channels of 24-bit

analog-to-digital conversion (TI AD7710).

Nodes were interfaced to either a single-axis seismome-

ter (GeoSpace GS-11) or three seismometers in a triaxial

configuration (GeoSpace GS-1). Both sensors are passive

instruments; ground motion generates a voltage which is

amplified and digitized by the sampling board. In addition,

each node was attached to an omnidirectional microphone

(Panasonic WM-034BY). This microphone has been used

in other infrasonic monitoring studies [7].

Each node was equipped with an 8.5 dBi omnidirec-

tional antenna mounted on 1.5 m of PVC pipe. This per-

mitted line-of-sight radio range of over 1 km without am-

plification; nodes were typically placed 200-400 m apart in

our deployment. Nodes were powered by two D-cell bat-

teries with a lifetime of approximately 1 week. Each node

was enclosed in a weatherproof Pelican case.

Several other pieces of hardware complete the system.

FreeWave radio modems provided a long-distance radio

link between the sensor array and the volcano observa-

tory, 4.6 km away. A laptop located at the observatory

logged data and was used to monitor and control the net-

work. Finally, to establish a global timebase, we used a

single Crossbow MicaZ [3] mote interfaced to a GPS re-

ceiver (Garmin OEM 18 LVC). The GPS receiver provided

a 1 Hz pulse that is accurate to GPS time within 1 µs, and

acted as the root of the network time synchronization pro-

tocol as described in Section 7.

3.2 Network topology and status monitoring

Nodes form a multihop routing tree rooted at the gateway

node that is physically attached to the FreeWave modem;

we use a variant of MintRoute [29] that uses the CC2420’s

Link Quality Indicator metric to select routing paths. Each

node transmits a status message every 10 sec that includes

its position in the routing tree, buffer status, local and

global timestamps, battery voltage, and other information.

In addition, the base station can issue a command to each

node, instructing it to respond with an immediate status

message, start or stop data sampling, and set various soft-

ware parameters. Commands are propagated using a sim-

ple flooding protocol. The Deluge protocol [6] was also

used to permit over-the-air reprogramming and rebooting

of nodes.

3.3 Event detection and data collection

Because of the high data rates involved (600-

1200 bytes/sec from each node) it is infeasible to

continuously transmit all sensor data. Rather, nodes are

programmed to locally detect interesting seismic events

and transmit event reports to the base station. If enough

nodes trigger in a short time interval, the base station

attempts to download the last 60 sec of data from each

node. This design forgoes continuous data collection for

increased resolution following significant seismic events,

which include earthquakes, eruptions, or long-period (LP)

events, such as tremor. The download window of 60 sec

was chosen to capture the bulk of the eruptive and earth-

quake events, although many LP events can exceed this

window (sometimes lasting minutes or hours). To validate

our network against existing scientific instrumentation, our

network was designed for high-resolution signal collection

rather than extensive in-network processing.

During normal operation, each node continuously sam-

ples its seismic and acoustic sensors at 100 Hz, storing the

data to flash memory. Data is stored as 256-byte blocks

in the flash. Each block is tagged with the local times-

tamp corresponding to the first sample in the block. This

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 383



��� �����	��
��� �
�
���
�
 �����	�
���

����� �����

������ ����� ����
��
� ��������
�� ���
����������

���

��� ��� ��� ��� ��� ���

��� ��	 ��� ��� ��


��
 ���

���

���

� � ��

Figure 2: Sensor network architecture. Nodes form a multihop
routing topology, relaying data via a long-distance radio modem
to the observatory. A GPS receiver is used to establish a global
timebase. The network topology shown here was used during our
deployment at Reventador.

timestamp is later mapped onto a global time reference as

described in Section 7. The 1 Mbyte flash is treated as a

circular buffer storing approximately 20 min of data.

In addition, nodes run an event detection algorithm

that computes two exponentially-weighted moving aver-

ages (EWMA) over the input signal with different gain set-

tings. When the ratio between the two EWMAs exceeds

a threshold, the node transmits an event report to the base

station. If the base station receives triggers from 30% of

the active nodes within a 10 sec window, it considers the

event to be well-correlated and initiates data collection.

Our reliable bulk-transfer protocol, called Fetch, oper-

ates as follows. The base station waits for 30 sec follow-

ing an event before iterating through all nodes in the net-

work. The base sends each node a command to temporarily

stop sampling, ensuring the event will not be overwritten

by subsequent samples. For each of the 206 blocks in the

60 sec window, the base sends a block request to the node.

The node reads the requested block from flash and trans-

mits the data as a series of 8 packets. After a short time-

out the base will issue a repair request to fill in any missing

packets from the block. Once all blocks have been received

or a timeout occurs, the base station sends the node a com-

mand to resume sampling and proceeds to download data

from the next node.

3.4 Deployment on Volcán Reventador

Our deployment at Reventador took place between Au-

gust 1–19, 2005. Reventador is an active volcano located

in northern Ecuador, about 100 km from Quito. During

this time, Reventador’s activity consisted of small explo-

sive events that ejected ash and incandescent blocks several

times a day. Associated seismicity included numerous ex-

plosion earthquakes as well as extended-duration shaking

(tremor) and shallow rock-fracturing earthquakes.

We deployed 16 sensor nodes on the upper flanks of

Reventador, as shown in Figure 3, over a 3 km linear con-

figuration radiating away from the vent. The resulting mul-

tihop topology is shown in Figure 2. The upper flanks of

����

�������

	
��


��
��

��
�����������

������� ���� ����������

����
�� �

Figure 3: Map of sensor deployment at Volcán Reventador.
In addition to the 16 sensor nodes, two broadband seismometers
with data loggers (RRVENT and RRLAV3) were colocated with
the network.

the volcano were completely deforested by a large erup-

tion in November 2002, allowing for line-of-sight radio

communication between adjacent sensor nodes. Two stan-

dalone seismic stations, consisting of a broadband sensor, a

Reftek 130 data logger with 1 GByte flash memory cards,

and a GPS receiver for timestamping, were colocated with

sensor nodes. The data from these stations is essential to

our network validation, described in Sections 5 and 7. The

base station was located at a small hotel 4.6 km from the

deployment site. The sensors were deployed for a total

of 19 days, during which time the network recorded data

from 229 earthquakes, eruptions, and tremor events, log-

ging 107 MBytes of data. The long hike and lack of roads

prevented frequent returns to the deployment site, although

we returned several times to change batteries and perform

other network maintenance.

4 Network Robustness

The first evaluation metric that we consider is the robust-

ness of the sensor network. Sensor network deployments

have typically been plagued by failures of individual nodes

and the support infrastructure. Clearly, robustness has a di-

rect effect on the resulting data yield. Our evaluation shows

that while nodes exhibited very high uptimes, the base sta-

tion infrastructure was very unreliable, and a single bug

affecting the Deluge protocol caused a three-day outage of

the entire network.

4.1 Overall network uptime

Figure 4 shows the number of nodes reporting over each

10-minute interval during the entire 19-day deployment. A

node is included in the count if any of its status messages

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association384



0

4

8

12

16

2019181716151413121110987654321

N
br
of
N
od
es

Date (August 2005)

1

2

3

4

5

6

Figure 4: Nodes reporting over time. This figure shows the
number of nodes reporting over each 10 min window during the
19-day deployment period. The annotations (1) through (6) are
described in the text.

were received at the base station during the 10-minute win-

dow. Annotations show several significant events that oc-

curred during the deployment. The network was installed

in two phases of 8 nodes each, the first on August 1 and the

second on August 3. At label (1) the entire 16 node network

is operational. However, initial software misconfiguration

required rebooting several nodes during a third visit to the

deployment site on August 5. The network then ran with

16 nodes active for a little more than 2 days.

At label (2) on August 8, a software command was

transmitted to reboot the network, using Deluge [6], in an

attempt to correct the time synchronization fault described

in Section 7. This caused a software failure affecting all

nodes, with only a few reports being received at the base

station later on August 8. After repeated attempts to re-

cover the network, we returned to the deployment site on

August 11 (label (3)) to manually reprogram each node.

However, only 11 nodes could be reached before nightfall,

forcing a return to the observatory. On August 12 (label

(4)) we returned to the deployment site and reprogrammed

the remaining 5 nodes.

From August 13 through 18, all 16 nodes were report-

ing nearly continuously. The intermittent failures (label

(5)) were caused by power outages at the observatory, caus-

ing the base station laptop and radio modem to fail. Dur-

ing these times no data was logged by the base station al-

though the sensor nodes themselves were probably opera-

tional, since all nodes would report when the base station

recovered.

Several days before the end of the deployment, node

204, located closest to the vent, stopped reporting data (la-

bel (6)). When the network was disassembled we discov-

ered that the antenna mast had been destroyed, most likely

by a bomb ejected from the volcano during an eruption,

although the node itself remained intact. This failure un-

derscores the importance of remote telemetry for acquiring

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

251250214213212210209208207206205204203202201200

N
od
e
do
w
nt
im
e

Node ID

Node uptime with Deluge failure with base failures

Figure 5: Individual node uptimes. This figure shows the per-
centage of time that each node reported status messages during
the 19-day deployment. Shown separately are the apparent node
uptimes caused by the whole-network outage and base station out-
ages. While the former was true sensor node failure, the latter did
not seem to affect the sensor nodes themselves.

data at hazardous volcanoes.

4.2 Individual node uptime

Figure 5 shows the uptime for each node during the 19-day

deployment. Each bar consists of three portions. The low-

est portion is the apparent uptime of each node accounting

for both the base station failures and single 3-day software

outage. Because base station failures did not affect indi-

vidual nodes, the middle bar shows the apparent uptime

including only the 3-day outage. In this case, the mean

node uptime is 69%. However, with the 3-day outage fac-

tored out, nodes achieved an average uptime of 96%. These

numbers are encouraging and suggest that the sensor nodes

were very reliable in spite of the software crash.

Based on discussions with the authors of Deluge, we

believe this failure was caused by a single bug in the

InternalFlash TinyOS component (which has since

been fixed). This bug prevented Deluge from storing criti-

cal state information, causing nodes to reboot continuously

at short intervals. We did not see this behavior in the lab

before deployment, although we had not rigorously tested

this portion of the code. In retrospect, it was optimistic of

us to rely on a complex network reboot protocol that had

not been field-tested. Deluge was removed from the binary

used during the network reprogram following the failure; it

was replaced with a simpler mechanism to reboot individ-

ual nodes using a radio command.

4.3 Discussion

Failures of the base station infrastructure were a significant

source of network downtime during the deployment. This

contrasts with common assumptions that the base station

is generally reliable and operating on a continuous power

source. This was our expectation prior to the deployment,

and we did not make adequate preparations for the intermit-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 385



0

200

400

600

800

1000

1200

1400

1600

1800

2000

Global251250214213212210209208207206205204203202201200

To
ta
ln
um
be
ro
fe
ru
pt
io
n
tri
gg
er
s

Node ID

Trigger count

Figure 6: Event triggers per node. This figure shows the total
number of event triggers reported by each node. It demonstrates
a wide variation in trigger rates that cannot be attributed only
to varying node uptimes. For example, node 204 had the lowest
uptime but the largest number of event triggers.

tent electrical supply at the observatory. A backup diesel

generator was used during nightly power outages, with ex-

tra laptop and car batteries supplying power when it failed.

However, this approach was not ultimately successful.

It may be surprising that node uptime is not related to

depth in the routing tree. This suggests that if a node is

“down” (i.e., we do not receive any status messages from it

during a 10-minute window) that it is still active and rout-

ing packets for its children in the tree, even as its own status

messages are being lost. An alternate explanation is that a

node could select an alternate parent in the routing topology

when its parent fails. However, our analysis of the routing

topology (Figure 2) does not support this view, since nodes

rarely use more than one parent. For example, node 214 al-

ways routes data through node 251. The volcano-induced

failure of node 204 near the end of the deployment is the

only notable failure of a single node.

5 Event Detector Accuracy

Our network was designed to capture interesting volcanic

signals. Thus, it is critical that the system correctly identify

and report such events. This section evaluates our event

detection algorithm both in terms of the number and rate

of event triggers as well as its ability to detect scientifically

interesting events.

5.1 Event triggers per node

Figure 6 shows the total number of events reported by each

node during the deployment. It shows a wide variation

in the event trigger rate, from 70 triggers for node 213 to

1830 triggers for node 204. Variation in the trigger rate can

be attributed to many factors, including the location of the

node, the orientation of the seismometer, and the quality of

the seismometer-to-ground coupling. Note that the trigger

rate does not seem to be related to distance from the vent.

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20
0
1
2
3
4
5

Ev
en
tt
rig
ge
rs
pe
rh
ou
r

G
lo
ba
le
ve
nt
tri
gg
er
s
pe
rh
ou
r

Date (August 2005) GMT

Individual node triggers
Global triggers

Figure 7: Event triggers over time. The upper graph shows
the total number of individual node triggers per hour. The lower
graph shows the corresponding number of global triggers. Reven-
tador’s varying seismic activity generated between 0 to 5 global
triggers per hour.

Although node 204 was closest to the vent and reported the

most triggers, nodes 200, 205, and 210 all had high trigger

counts despite being significantly farther away.

5.2 Event triggers over time

Figure 7 shows both the number of individual node and

global event triggers over each hour. We observe that the

volcano’s activity varied greatly, generating trigger counts

ranging between 2 and 405 events per hour when the net-

work was online. This activity translates into up to 5 global

event triggers an hour, each initiating a Fetch download cy-

cle of the associated data.

The volcano’s bursty and unpredictable activity makes

the network’s design more challenging than systems de-

signed for statically-scheduled data collection. The data

collection protocol, based on our earlier deployment at

Tungurahua [27], assumed that events would be rare and

that it would be unnecessary to simultaneously record sig-

nals for one event while downloading another. As a result,

we missed a number of impressive back-to-back eruptions

typical of the activity at Reventador. It is worth noting that

the variable number of event reports is itself a measure of

the volcano’s activity level and could be used to assess haz-

ard levels.

5.3 Event detector accuracy

The network detected 229 eruptions, explosions, earth-

quakes, and tremor events during the deployment. Ideally,

we would like to assess its accuracy in terms of the fraction

of true events detected, as well as the false positive rate.

Given the high degree of coherence required by the global

event detector (requiring 30% of the active nodes to trigger

within a short time window), we would be surprised if the

sensor network recorded any false events. Indeed, all of the

signals we did capture appear to be based on true volcanic

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association386



activity, indicating a zero false positive rate.

We intended to apply our event detection algorithm to

the signals collected by the two broadband seismic sta-

tions to establish the algorithm’s accuracy. Unfortunately,

we found this to be difficult for several reasons. First,

each of the broadband stations suffered intermittent power

and software failures, either preventing them from logging

any data, or corrupting the collected signals or timestamps.

Thus, even in those cases where broadband data is avail-

able, it is not always accurate. Second, the broadband sta-

tions deployed a more sensitive seismometer with a much

wider frequency response. The geophones used by our sen-

sor nodes have a corner frequency of 4.5 Hz, while the

broadband sensors have a corner frequency of 0.033 Hz.

Additionally, the broadband seismometers are much more

sensitive, generating voltages of 800 V/m/sec, whereas the

geophones have a sensitivity of only 32 V/m/sec. As a re-

sult, the broadband sensors are able to detect much weaker

seismic signals.

We focus our attention on a single day of data where

the broadband stations were recording clean data and the

sensor network was relatively stable. One of the authors, a

seismologist, visually extracted events from the broadband

data; during this 24-hour period, a total of 589 events were

recorded by the broadband sensors. During the same time,

the sensor network triggered on just 7 events, suggesting

that our detection accuracy is very low (about 1%).

The network could have failed to detect a seismic event

for one of four reasons: (1) failure of individual nodes; (2)

failure of the base station or radio modem; (3) the low sen-

sitivity of our seismometers; or (4) failure of the event de-

tection algorithm itself. To factor out the increased sen-

sitivity of the broadband seismometers, we only consider

the 174 events with SNR ≥ 10 from both stations, which

we expect the geophones should have been able to detect

as well. Also, Section 4 has already addressed the ques-

tion of uptime, so we focus here on the inherent accuracy

of the event detector when the network was operating cor-

rectly. 136 of the 174 broadband events occurred during

times when the network was operational. Taking these two

factors into account, the network’s detection accuracy is

still only about 5%.

Recall that during a Fetch download cycle, nodes dis-

abled sampling to avoid overwriting data in flash. Down-

load cycles could take up to several minutes per node (see

Section 6), meaning that there are significant time win-

dows when the network was unable to detect new events.

During the Fetch cycles on August 15, the broadband sta-

tions recorded 42 events, 24% of the total events detected.

This indicates that, all else being equal, the sensor network

could have detected approximately 24% more events had

we designed the protocol to sample and download simulta-

neously. We plan to add this feature in the next version of

our system.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

P
ro

b
[X

≤
x
]

Event node yield (%)

Figure 8: Event yield. This graph shows a CDF of the event
yield for each of the 229 events recorded during the entire de-
ployment. Event yield is the fraction of active nodes from which a
complete 60 sec signal was downloaded following an event.

In the end, we believe that our low detection rate is the

result of the parameters used in the EWMA-based event

detection algorithm. These parameters were chosen prior

to the deployment, based on our experience with detecting

infrasonic events at a different volcano [27]. We did not

experiment with modifying them in the field. Indeed, using

our algorithm with these same parameters on the broad-

band data for August 15 detects only 101 events, a fraction

of the events chosen manually by an expert. We plan to

tune our event-detection parameters for future deployments

based on the data collected by the broadband stations.

6 Data Collection Performance

In this section we assess the performance of the Fetch data

collection protocol. We evaluate Fetch in terms of its yield,

its ability to successfully collect requested data; and its la-

tency, the time to download events from the network.

6.1 Data yield

We define the event yield of a Fetch transfer as the fraction

of nodes for which the entire 60 sec signal was successfully

downloaded following an event. The calculation only con-

siders those nodes that were active at the time of the event

detection (Figure 4). For example, if 10 nodes were active

during an event, then the event yield is defined in terms of

10 nodes. Note that the Fetch protocol attempts to down-

load a signal from all active nodes, even those that did not

detect the event.

Figure 8 shows a CDF of the event yield for all

229 events recorded during the deployment. As the fig-

ure shows, the median event yield was 68.5% and the 90th

percentile was 94%. The yield can be affected by several

factors. First, the protocol will abort a transfer from a node

after re-requesting the same block more than 20 times, or

if the transfer from a single node exceeds 10 minutes. Sec-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 387



0

10

20

30

40

50

60

70

80

90

100

251214213208250210209204205212203202200207201206

N
od
e
yi
el
d
(%
)

Node ID

Figure 9: Node yield. This graph shows the node yield for each
of the 16 nodes over the entire deployment, defined as the proba-
bility that an event was successfully downloaded from a node, as
long as that node is active during the corresponding event detec-
tion.

ond, because sampling is disabled while performing a data

transfer, if two back-to-back events occur a node may not

end up storing data for the second event.

Next, we look at the node yield which we define as

the probability that an event was successfully downloaded

from a given node. Like the event yield, the calculation

only considers those nodes that were active at the time of

each event detection. Node yield can be affected by several

factors. The depth and radio link quality of a node’s routing

path to the base station affect packet loss rate and thereby

the likelihood of a Fetch timeout. Additionally, two nodes

outfitted with triaxial seismometers (nodes 250 and 251)

sample and store twice as much data as the others, increas-

ing the probability of a timeout. Finally, a bug in our con-

trol application caused node 250 to sample data continu-

ously, even during a Fetch operation. As a result, this node

was more likely to overwrite an event stored in flash before

it could be downloaded.

Figure 9 shows the node yield for each of the nodes. We

can see how the factors mentioned above affected perfor-

mance. First, the nodes with the highest yield (above 80%)

tend to be within two hops from the root (see Figure 2).

However, despite being within two or three hops, node 209

had a fairly low yield. This is explained by the fact that

node 209 had a poor link to its closest parent, node 200.

In fact, although most nodes had a stable parent throughout

the deployment, node 209 used node 200 as its parent only

33% of the time and nodes 206 and 207 the remaining 66%

of the time. Node 213 also switched parents between nodes

204 and 208, but unlike node 209 it was always three hops

away. Node 214 was the farthest node in terms of hop-

count and as a result had one of the lowest yields. The

larger amount of data was also a factor for the four-channel

nodes, 250 and 251. In addition, node 251 was five radio

hops from the gateway.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

Pr
ob
[X

≤
x]

Fetch download time (sec)

Node 200 (1 hop)
Node 214 (6 hops)

Figure 10: Distribution of Fetch latency for two nodes. The
latency for a Fetch download depends on the depth of the node in
the routing tree, which affects both command propagation latency
and reliability of the routing path. Node 200 is located 1 hop from
the sink and node 214 is located 6 hops away.

6.2 Fetch latency

Transfer latency directly impacts data yield. Because we

disabled sampling on each node (apart from node 250) dur-

ing a Fetch download cycle, the duration of the data transfer

also affects a node’s ability to record back-to-back events.

The median latency for Fetch operations (downloading

60 sec worth of data from a single node) was 186 sec and

the 90th percentile was 444 sec. Unsurprisingly, latency

varies with the depth of the node in the routing tree. Fig-

ure 10 compares Fetch latency for nodes 200 and 214,

located 1 and 6 hops away from the sink, respectively.

Node 200 had a median Fetch latency of 94 sec, while node

214 had a median latency of 409 sec, about 63 sec per hop.

This is due to both increased delay for propagating Fetch

command messages, as well as increasing packet loss and

retransmission overheads as the data flows over multiple

hops to the base.

Fetch was initially designed to support reliable down-

loads of infrequent events and we did not anticipate the

need to capture back-to-back signals. Unfortunately, these

were common at Reventador, and may necessitate a re-

design. For example, it may be possible to reduce latency

by streaming multiple blocks in one request and recon-

structing partial blocks after a burst. Caching recently-

received blocks on intermediate nodes could reduce latency

for repair requests [14]. However, such changes would

greatly increase the complexity of the protocol. For this

deployment we opted to prioritize simplicity and stability

over performance.

7 Time Rectification and Accuracy

When analyzing seismoacoustic data acquired at volca-

noes, accurate timing of recorded signals is paramount.

Studying volcanic source processes necessitates precisely

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association388



identifying the arrival time of P- and S-waves at each sen-

sor. Also, correlating signals across the sensor array re-

quires accurately timestamping each sample. Ideally, tim-

ing should be accurate to within one sample interval, or

10 ms when sampling at 100 Hz. As described earlier, we

opted to use a single GPS receiver and employ a multihop

time-synchronization protocol to establish a global time-

base. The protocol worked well in laboratory experiments.

However, it experienced significant failures in the field, re-

quiring extensive postprocessing of the data to recover ac-

curate timing for each signal.

In this section, we provide an overview of the time syn-

chronization errors observed in the field. We then present a

novel time rectification technique that allows us to recover

accurate timing despite protocol failures. We evaluate our

approach through lab experiments with a known, ground-

truth timebase, and by comparing our signals with signals

recorded by the colocated data loggers. This paper is the

first to our knowledge to evaluate the stability of a multi-

hop time synchronization protocol during a lengthy sensor

network field deployment.

7.1 Time synchronization architecture

We chose to use the Flooding Time Synchronization Pro-

tocol (FTSP) [11], an existing protocol developed for wire-

less sensor nodes. In the original FTSP work [11], timing

errors of less than 67 µsec were reported for an 11-hop net-

work of Mica2 nodes. We verified in our testbed that FTSP

provided a 90th-percentile time error of under 2.1 ms in a

5-hop linear network of TMote Sky nodes.

A single MicaZ sensor node was used as the root of

the FTSP synchronization tree. It interfaced to a Garmin

GPS receiver and received a 1 Hz interrupt synchronized to

within 1 µsec of the GPS “pulse per second” signal. When

the interrupt is raised, the node records the GPS time and

corresponding FTSP global time and sends a short message

containing this information to the base station. Each sen-

sor node runs the FTSP protocol which maintains a global

timebase. Every 10 sec, each node records its local time

and the corresponding FTSP global time, sending this in-

formation in its status message to the base station. Finally,

as each node records data, the first sample of each block is

marked with the node’s local time. After downloading data

from each node following an event, this local time can be

used to recover the time for each sample in the block.

Therefore, we have three relevant timebases: the local

time at each node; the global time established by the FTSP

protocol; and the GPS time recorded by the FTSP root. The

information in the nodes’ status messages can be used to

map local time to global time, and the information in the

GPS node’s status messages can be used to map global time

to GPS-based GMT.

80000

90000

100000

110000

120000

130000

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

N
et
w
or
k
G
lo
ba
lT
im
e
(s
ec
)

Time (UTC) 08/12/2005

Node 212

GPS Node

Node 250

Figure 11: Example of FTSP instability observed during field

deployment: The global time value reported by sensor nodes and

the GPS node is plotted against the time that the base station re-

ceived the corresponding status messages. All nodes are initially

synchronized, but starting at 1230 GMT, nodes 212 and 250 re-

port incorrect global times for the next 4.5 hours. When the nodes

eventually resynchronize, the global timestamps of other nodes

initially experience some instability.

7.2 FTSP failures in the field

In the absence of failures, this mapping would be a straight-

forward process. However, in the field, we noticed that

nodes would occasionally lose synchronization with the

rest of the network and report FTSP global times with sig-

nificant errors, sometimes exceeding several hours. We

suspect that the sparse deployment conditions at the vol-

cano might have led to different behavior in the time syn-

chronization protocol than in the lab. For example, occa-

sional message loss or failure of a neighbor could cause

the node’s global time to drift from the rest of the network.

However, in lab tests that constrained the network topology

we did not observe these instabilities.

Figure 11 shows an example of the FTSP instability ob-

served in the field. The global time reported by two nodes

suddenly jumps off by several hours, and the nodes do not

resynchronize until rebooted 4.5 hours later. It turns out

that two bugs conflated to cause this problem. First, it was

discovered that the TinyOS clock driver would occasion-

ally return bogus local timestamps. This bug was fixed in

February 2006, several months after our deployment. Sec-

ond, FTSP does not check the validity of synchronization

messages, so a node reading an incorrect value for its lo-

cal clock can corrupt the state of other nodes, throwing off

the global time calculation. To our knowledge, few if any

sensor network deployments have attempted to use network

time synchronization protocols for extended periods. In ad-

dition, ours may have been the first deployment of FTSP on

the TMote Sky platform where the clock driver bug mani-

fested itself.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 389



������ ��	
�

�����
�����

	��
�� 	
��

����
����

���
�

�����
	
�����
�

���
� ��
��

���� ������
���� ����	

�����
�����

������� ��	
�

�����
�����

�����
�����

���
�
����
�

�
��
�����	

������
�
����
�
����
����	

�
�� ����	

Figure 12: Time rectification process overview.

The failures of the time synchronization protocol make

establishing the correct GPS-based timestamp for each data

sample extremely challenging. Our time rectification ap-

proach filters and remaps recorded timestamps to accu-

rately recover timing despite these failures. The time recti-

fication process is illustrated in Figure 12. The first step is

to filter the global timestamps recorded by each node, dis-

carding bogus data. Second, we build a model mapping the

local time on each node to FTSP-based global time. Third,

we use the GPS timestamp information to build a second

model mapping FTSP time to GMT. Finally, both models

are applied to the timestamps recorded in each data block

producing a GMT time for each sample.

7.3 Timestamp filtering

We begin by filtering out status messages appearing to con-

tain incorrect global timestamps. To do this, we correlate

global timestamps from each node against a common ref-

erence timebase and reject those that differ by more than

some threshold. For this, we use the base station laptop’s

local time, which is only used for filtering FTSP times-

tamps, not for establishing the correct timing. The filtering

process in is many ways similar to prior work [17, 18] on

detecting adjustments in network-synchronized clocks.

We use the following abbreviations: LT is the local time

of a node; GT is the FTSP global time; BT is the base sta-

tion’s local time; and GMT is the true GMT from the GPS

signal. Each GPS status message logged by the base station

consists of the triple (GT, GMT, BT). We use linear regres-

sion on this data to produce a reference timebase mapping

BT to GT.1 For each node status message logged by the lap-

top (LT, GT, BT), we map BT to the expected GT ref using

the reference timebase. If | GT ref − GT |> δ, we dis-

card the status message from further consideration. We use

a threshold of δ = 1 sec. Although radio message propa-

gation and delays on the base station can affect the BT for

each status message, a small rejection threshold δ makes it

1We assume that the global time reported by the GPS node is always

correct; indeed, the definition of “global time” is the FTSP time reported

by the GPS node. We verified that the FTSP instability affecting the sensor

nodes did not occur on the GPS node, most likely because the MicaZ uses

a different processor that is unaffected by the clock driver bug.

50000

60000

70000

80000

90000

100000

29500 29600 29700 29800 29900

N
od
e
5
gl
ob
al
tim
e
(s
ec
)

Node 5 localtime (sec)

Rectified globaltime
Reported FTSP globaltime

Figure 13: Time rectification example. The raw (LT, GT)
pairs collected from the node show that it experiences a period
of FTSP instability. The time rectification process removes the er-
rant timestamps creating an accurate mapping between LT and
GT created using a linear regression on the remaining times-
tamps.

unlikely that any truly incorrect FTSP timestamps pass the

filter. Indeed, of the 7.8% of timestamps filtered out, the

median GT error was 8.1 hours.

7.4 Timestamp rectification

The goal of time rectification is to assign a GMT times-

tamp to each sample in the recorded data. In order to

do so, we build two models: one mapping a node’s local

time to global time, and another mapping global time to

GMT. From those status messages that pass the filter, we

build a piecewise linear model mapping LT to GT using

a series of linear regressions. Models are constructed for

each node separately, since local times vary significantly

between nodes. Each regression spans up to 5 minutes of

data and we initiate a new regression if the gap between

subsequent (LT, GT) pairs exceeds 5 minutes. Each interval

must contain at least two valid status messages to construct

the model. We take the LT value stored in each data block

and use this model to recover the corresponding GT value.

The next step is to map global time to GMT. Each of

the GPS node’s status messages contain a (GT, GMT) pair.

As above, we build a piecewise linear model mapping GT

to GMT, and apply this model to the GT values for each

data block. Finally, we assign a GMT value to each sample

contained in the block, using linear interpolation between

the GMT values assigned to the first sample in each block.

This process makes no assumptions about sampling rate,

which varies slightly from node to node due to clock drift.

7.5 Evaluation

Evaluating this time rectification process has proved dif-

ficult, primarily because we have no ground truth for the

timing of the signals recorded in the field. However, by re-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association390



Raw error Rectified error
1 hop, 50th percentile 1.52 ms 1.42 ms
1 hop, 90th percentile 9.86 ms 6.77 ms
6 hops, 50th percentile 2.63 ms 2.18 ms
6 hops, 90th percentile 13.5 ms 6.8 ms

Figure 14: Timestamp errors in a 6-hop lab testbed: This
table shows the 50th and 90th-percentile timing errors on both
the raw FTSP timestamps, and rectified timestamps.

producing the deployment conditions in the lab, we have

been able to measure the accuracy of the recovered tim-

ing in a controlled setting. In addition, as described earlier,

two GPS-synchronized data loggers were colocated with

our sensor network, providing us the opportunity to directly

compare our time-rectified signals with those recorded by

conventional instrumentation.

Our first validation took place in the lab. Feeding the

output of a signal generator to both a miniature version of

our sensor network and to a Reftek 130 data logger allowed

us to directly compare the data between both systems. The

miniature network consisted of a single sensor node, rout-

ing gateway, and GPS receiver node. The same software

was used as in the field deployment. The Reftek 130 logs

data to a flash memory card and timestamps each sample

using its own GPS receiver.

The results showed a consistent 15 ms offset between

the time-rectified signals recorded by the sensor node and

the Reftek data logger. We discovered that this offset was

due to delays introduced by the digital filtering performed

by the ADC on our sensor board (see Section 3.1). Adjust-

ing for this delay resulted in an indiscernible offset between

the sensor node and Reftek signals. While this experiment

does not reproduce the full complexity of our deployed net-

work, it does serve as a baseline for validation.

In the second lab experiment, we set up a network of

7 sensor nodes in a 6-hop linear topology. The topology is

enforced by software, but all nodes are within radio range

of each other, making it possible to stimulate all nodes si-

multaneously with a radio message. Each node samples

data and sends status messages using the same software

as the field deployment. The FTSP root node periodically

transmits a beacon message. On reception of the beacon,

each node records the FTSP global timestamp of the mes-

sage reception time (note that reception of the beacon mes-

sage is not limited by the software-induced topology). Be-

cause we expect all nodes to receive this message at the

same instant, modulo interrupt latency jitter, we expect the

FTSP time recorded by each node to be nearly identical.

The FTSP root also records the time that the beacon was

transmitted, accounting for MAC delay. The experiment

ran for 34 hours, during which time FTSP experienced in-

stabilities similar to those seen during our deployment.

This allows us to compare the true global time of each

beacon message transmission and the apparent global time

on each receiving node, both before and after subjecting

0 0.5 1 1.5 2 2.5 3 3.5 4

Ve
rti
ca
lG
ro
un
d
D
is
pl
ac
em
en
t(
Sa
m
pl
e
Va
lu
e)

Time (sec)

Node 213 shifted 29 ms later
RVEN wired seismic station

Figure 15: Comparison of RVEN and node 213 signals. This
figure shows two seismic waves recorded by sensor node 213 and
a broadband seismometer located 56 m away. After time rectifi-
cation, a 29 ms time shift produces an excellent match.

the data to our time rectification process. We call the dif-

ference between the true and apparent times the timestamp

error. Figure 14 shows the results for nodes one and six

hops away from the FTSP root. After rectification, 99.9%

of the errors for the one-hop node and 93.1% of the errors

for the six-hop node fall within our 10 ms error envelope.

7.6 Comparison with broadband station

Although time rectification works well in the laboratory,

it is also necessary to evaluate its accuracy on the data

collected during the field deployment. For this purpose,

we made use of one of the broadband seismometer sta-

tions colocated with our sensor network. The RVEN (for

“Reventador vent”) station was located 56 m from sensor

node 213. Given their proximity, we would expect the seis-

mic waveforms captured by both RVEN and node 213 to be

well correlated. Some time shift between the two signals

would be expected: a seismic wave passing each station

could be as slow as 1.5 km/sec, so the time lag between the

signals could be as high as 37 ms. However, due to differ-

ences in the seismometers and the placement and ground

coupling of the sensors, we would not expect perfectly cor-

related signals in every case.

We identified 28 events recorded by both RVEN and

node 213. The data for node 213 was time rectified as de-

scribed earlier, and the RVEN data was timestamped by

the Reftek’s internal GPS receiver. We applied a bandpass

filter of 6–8 Hz to each signal to reduce sensor-specific ar-

tifacts. The cross-correlation between the signals produces

a set of of lag times indicating possible time shifts between

the two signals. Due to the periodic nature of the signals,

this results in several lag times at multiples of the dominant

signal period. For each lag time, we visually inspected how

well the time-shifted signals overlapped and picked the best

match by hand.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 391



08/13/05 03:38:08
06:16:46
08:17:51
15:24:58

08/15/05 04:48:27
07:07:52
09:11:28
16:04:37
19:29:08

08/16/05 04:04:56
09:45:14

08/17/05 00:22:39
02:09:47
05:07:31
14:00:43
16:48:26

08/18/05 00:52:31
03:43:05
04:54:30
06:26:50
13:28:54
14:23:06
15:31:06
17:59:49
21:33:01

08/19/05 00:16:22
01:52:09
02:33:30

47-47 0

Ev
en
tT
im
e
(G
M
T)

Time Lag (ms)

Figure 16: Lag times between Node 213 and RVEN. The best
lag time between the two stations is shown for 28 events. best
time lag between the two stations is shown. Most time shifts into
the +/- 47 ms window that we would expect given the distance
between the two stations and up to 10 ms of timing error.

Figure 15 shows an example of this process that

demonstrates excellent correlation between the RVEN and

node 213 signals with a 29 ms time shift. Figure 16 shows a

scatterplot of the best lag times for all 28 events. Of these,

only 5 events fall outside of a +/− 47 ms window defined

by the distance between the stations (+/− 37 ms) and our

acceptable sampling error (10 ms). We have high confi-

dence that our time rectification process was able to recover

accurate timing despite failures of the FTSP protocol.

8 Data Fidelity

The final and most important measure of our network is its

ability to provide scientifically-meaningful data on the vol-

cano’s activity. In this section, we perform an initial analy-

sis of the seismic and acoustic signals from a seismological

perspective, with the goal of validating the accuracy of the

signal quality and timing.

8.1 Acoustic wave propagation

The infrasonic (low-frequency acoustic) waves generated

by the volcano are primarily the result of explosive events.

We start by measuring the velocity of infrasonic waves

recorded by our network, which is more straightforward

than seismic analysis for several reasons. First, infrasonic

waves generate a clear impulse in the microphone signal,

making it easy to determine the time of the wave arrival at

each sensor. In addition, acoustic waves propagate about

an order of magnitude slower than seismic waves (roughly

340 m/s versus 1500-4000 m/s). We also expect an infra-

sonic wave to originate at the vent of the volcano, simpli-

fying the wave velocity calculation.

We identified four events in our data set with a clear

infrasonic component. For each event, we hand-picked

�

�
�

�
�

�

�
�

�
�

����	�
� �
��

� �

�
�
� �

�

�
�
� �

�

�
�
��

�

Figure 17: Computing acoustic wave velocity. The velocity
of the acoustic wave is calculated based on the distance of each
station from the vent, di, and the arrival time of the wave at each
station, ti.

6
4
2
0

6
4
2
0

6
4
2
0

6
4
2
0

1500 2000 2500 3000 3500 4000

Ar
riv
al
tim
e
(s
ec
on
ds
)

Distance from vent (meters)

08/12/05 02:15:18
velocity: 342 m/s
R2: 0.9999

08/13/05 01:27:46
velocity: 346 m/s
R2: 0.9995

08/15/05 19:29:08
velocity: 339 m/s
R2: 0.9998

08/16/05 09:45:14
velocity: 331 m/s
R2: 0.9988

Figure 18: Acoustic wave arrival times and velocity. This fig-
ure shows the acoustic wave arrival time vs. distance from the
vent for 4 separate events. Also shown is the resulting acoustic

wave velocity and the R
2 coefficient of determination.

the arrival time of the wave at each node using the time-

rectified signal. Figure 18 plots the wave arrival time ver-

sus the distance of each node from the vent. As shown in

Figure 17, the velocity of the wave can be calculated by

performing a linear regression on this dataset.

The result of this calculation is also shown in Figure 18.

The velocity of sound in air is temperature-dependent; for

temperatures between 10–20 ◦C the velocity range is 337–

343 m/s. The calculated wave velocities are mostly in this

range, with a mean of 339.5 m/s. The coefficients of de-

termination R2 are very high, between 0.9988 and 0.9999,

showing that the timing and quality of the acoustic data

closely matches our expectation of the infrasonic waves

produced by the volcano.

8.2 Seismic wave propagation

Analyzing the seismic waves captured by our network is

significantly more challenging. This is primarily because

the source locations of seismic waves are unknown. Seis-

mic events may originate at the vent (in the case of an ex-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association392



251

250

214

213

212

210

209

208

207

206

205

204

203
202

201
200

-1 -0.5 0 0.5 1

N
od
e
ID
(b
y
di
st
an
ce
fro
m
no
de
20
7)

Time of arrival, relative to node 207 (seconds)

Figure 19: Time of arrival of each node over multiple events.
This graph shows the spread of arrival times for each node. The
arrival time and distance is relative to node 207. The arrival time
for each node is fairly consistent over multiple events, with the
exception of node 214. The shaded area indicates a move-out
velocity of less than 1,500 m/s.

plosion) or deep within the edifice, producing very different

patterns of P- and S-wave arrivals at each node. A full seis-

mological analysis of our data is beyond the scope of this

paper. However, we present a high-level measure of the

consistency of the signals captured by our network: that is,

we evaluate whether the seismic wave arrivals are consis-

tent with expected volcanic activity.

The most natural measure of data consistency is whether

the time of the seismic P-wave arrival at each sensor falls

within an expected envelope based on the minimum speed

at which seismic waves are believed to propagate at Reven-

tador, which we estimate as 1500 m/s. We took 15 seismic

events with clear P-wave arrivals and used an automatic al-

gorithm [22] to determine the wave arrival time.2

Figure 19 shows a scatterplot of the arrival times with

respect to node 207, which was chosen as an arbitrary refer-

ence point since data for this node appeared in all 15 events.

The y-axis represents the distance of each node from 207.

Depending on the seismic source location, we expect waves

to arrive both before and after node 207. However, the

slowest wave speed (1500 m/s) dictates the maximum dif-

ference in the wave arrival between each station.3 The

shaded area in Figure 19 covers the “exclusion envelope”

of arrival times at each station. As the figure shows, only

2 out of 124 arrivals fall outside of this envelope.

Finally, we take a closer look at two seismic events

recorded by our array. Figures 20 and 21 show seismo-

grams from each of the sensor nodes after time rectifica-

tion. The y-axis corresponds to the distance of each node

2Unlike acoustic waves, determining seismic wave arrival times is no-

toriously difficult. The seismograms in Figures 20 and Figure 21 should

give the reader some appreciation for this.
3Note that there is no lower bound on arrival times, since a wave em-

anating from a deep source could arrive at all stations nearly simultane-

ously.

−5 0 5 10 15 20 25
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

201

202

203

204

205

206

207

208

209

210

212

213

sl
an
td
is
ta
nc
e
fro
m
ve
nt
(m
)

time (s)

2005−08−16 09.45.14

Figure 20: Explosion earthquake event at 08/16/2005
09:45:14 GMT. P-wave arrivals have been identified manually
and a second-order polynomial (solid line) is fit to the arrivals.
The arrival time move-outs are consistent with a shallow near-
vent source.

from the vent. For each event, the P-wave arrivals have

been determined by hand and a second-order polynomial

has been fit to the arrival times at each node for clarity.

These two events show a very different pattern of wave

arrival times. Figure 20 shows the seismic wave arriving

first at stations near the vent (nodes 204 and 213). This is

consistent with a shallow near-vent source corresponding

to an explosion. This is confirmed by the corresponding

acoustic data (shown in Figure 18) attributed to explosive

expansion of gas.

In contrast, Figure 21 shows an event with the earliest

arrivals in the middle of the sensor array and the endpoints

relatively delayed; many such events were recorded by our

network. This distribution implies a deeper source. At the

same time, seismic velocity in the uppermost cone, which

is comprised of unconsolidated volcanic deposits, is pre-

sumed to be slower. Such volcano-tectonic events are likely

generated by the fracturing of solid media typically induced

by pressurization within the edifice. This preliminary study

demonstrates the value of our wireless sensor network for

collecting accurate signals that can be subjected to seismo-

logical analysis.

9 Related Work

While the number of sensor network deployments de-

scribed in the literature has been increasing, little prior

work has focused on evaluating sensor networks from a

scientific perspective. In addition, the high data rates and

stringent timing accuracy requirements of volcano moni-

toring represent a departure from many of the previously-

studied applications for sensor networks.

Low-data-rate monitoring: The first generation of

sensor network deployments focused on distributed mon-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 393



−5 0 5 10 15 20 25
−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

200

201

202

203

204

205

206

207

208

209

210

212

213

214

sl
an
td
is
ta
nc
e
fro
m
ve
nt
(m
)

time (s)

2005−08−15 16.04.37

Figure 21: Tectonic earthquake event at 08/15/2005 16:04:37
GMT. In this event, seismic waves are first recorded near the mid-
dle of the sensor array. This is due either to a source closer to the
center of the array, variations in velocity structure, or most likely
both.

itoring of environmental conditions. Representative

projects include the Great Duck Island [24, 19, 10], Berke-

ley Redwood Forest [25], and James Reserve [2] deploy-

ments. These systems are characterized by low data rates

(sampling intervals on the order of minutes) and very low-

duty-cycle operation to conserve power. Research in this

area has made valuable contributions in establishing sensor

networks as a viable platform for scientific monitoring and

developing essential components used in our work.

This previous work has not yet focused on the efficacy

of a sensor network as a scientific instrument. The best

example is the Berkeley Redwood Forest deployment [25],

which involved 33 nodes monitoring the microclimate of

a redwood tree for 44 days. Their study focuses on novel

ways of visualizing and presenting the data captured by the

sensor network, as well as on the data yield of the system.

The authors show that the microclimactic measurements

are consistent with existing models; however, no ground

truth of the data is established. This paper highlights many

of the challenges involved in using wireless sensors to aug-

ment or replace existing scientific instrumentation.

High-data-rate monitoring: A second class of sen-

sor network applications involves relatively high data rates

and precise timing of the captured signals. The two dom-

inant applications in this area are structural health moni-

toring and condition-based maintenance. In each case, ar-

rays of sensors are used to capture vibration or accelerom-

eter waveforms that must be appropriately timestamped for

later analysis.

NetSHM [15, 14, 30] is a wireless sensor network for

structural health monitoring, which involves studying the

response of buildings, bridges, and other structures to local-

ize structural damage, e.g., following an earthquake. This

system shares many of the challenges of geophysical moni-

toring; indeed, the data rates involved (500 Hz per channel)

are higher than are typically used in volcano studies.

NetSHM implements reliable data collection using both

hop-by-hop caching and end-to-end retransmissions. Their

work explores the use of local computations on sensors to

reduce bandwidth requirements. Rather than a global time-

synchronization protocol, the base station timestamps each

sample upon reception. The residence time of each sample

as it flows from sensor to base is calculated based on mea-

surements at each transmission hop and used to deduce the

original sample time.

Several factors distinguish our work. First, NetSHM is

designed to collect signals following controlled excitations

of a structure, which simplifies scheduling. In our case,

volcanic activity is bursty and highly variable, requiring

more sophisticated approaches to event detection and data

transfer. Second, NetSHM has been deployed in relatively

dense networks, making data collection and time synchro-

nization more robust. Third, to date the NetSHM eval-

uations have focused more on network performance and

less on the fidelity of the extracted data. Other systems

for wireless SHM include one developed by the Stanford

Earthquake Engineering Center [9, 26] and earlier work by

Berkeley on monitoring the Golden Gate Bridge [16].

Condition-based maintenance is another emerging area

for wireless sensor networks. The typical approach is to

collect vibration waveforms from equipment (e.g., chillers,

pumps, etc.) and perform time- and frequency-domain

analysis to determine when the equipment requires servic-

ing. Intel Research has explored this area through two de-

ployments at a fabrication plant and an oil tanker in the

North Sea [8]. Although this application involves high

sampling rates, it does not necessarily require time syn-

chronization as signals from multiple sensors need not be

correlated. The initial evaluation of these deployments only

considers the network performance and does not address

data fidelity issues.

10 Lessons Learned

Sensor network deployments, particularly in remote areas,

involve significant cost in terms of time and equipment.

Failures of hardware and software can have a negative im-

pact on the uptake of this technology by domain science ex-

perts. Our experiences at Reventador have yielded a num-

ber of valuable lessons for future sensor network deploy-

ments.

1. Ground truth and self-validation mechanisms are

critical: We did not initially consider colocating several of

our wireless sensors with existing data loggers in order to

establish ground truth. This would have clearly aided our

analysis, though we were fortunate to locate one of our sen-

sors near (but not immediately adjacent to) the RVEN sta-

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association394



tion. In addition, self-validation mechanisms are needed to

provide detailed information on the health and accuracy of

the data recorded by the network. The periodic “heartbeat”

messages that we built into our system proved essential to

remotely tracking system operation.

2. Coping with infrastructure and protocol failures:

As discussed previously, the sensor nodes themselves were

the most reliable components of the system. Even without

classifying the 3-day network outage as an infrastructure

failure, this downtime was far exceeded by outages caused

by power failures at the base station. We did not devote

enough attention to assuring the reliability of the base sta-

tion and radio modem infrastructure, assuming it would be

a trivial matter of plugging into wall power. This single

point of failure was more fragile than expected.

Additionally, several pieces deployed software, includ-

ing Deluge and FTSP, exhibited failures in the field than

we not had expected given our laboratory experiments.

These failures both speak for and show the limitations of

careful, pre-deployment testing. We were fortunate to be

able to correct protocol errors in the field and during post-

processing, but the risk of uncorrectable problems will lead

us towards more rigorous testing and analysis in the future.

3. Building confidence inside cross-domain scientific

collaborations: It is important when working with do-

main scientists to understand their expectations and plan

carefully to meet them. There is a clear tension between

the desire of CS researchers to develop more interesting

and sophisticated systems, and the needs of domain sci-

ence, which relies upon thoroughly validated instrumenta-

tion. Pushing more complexity into the sensor network can

improve lifetime and performance, but the resulting system

must be carefully validated before deployment to ensure

that the resulting data is scientifically accurate.

Good communication between CS and domain scientists

is also critical. During the deployment, the seismologists

were eager to see the collected signals, which were initially

in an unprocessed format with timing errors as described

earlier. From the CS perspective, the early data provided

evidence of successful data collection, but from the geo-

physics perspective it highlighted failures in the time syn-

chronization protocol. It took a great deal of effort after the

deployment to build confidence in the validity of our data.

11 Conclusions and Future Work

As sensor networks continue to evolve for scientific mon-

itoring, taking a domain science-centric view of their ca-

pabilities is essential. In this paper, we have attempted to

understand how well a wireless sensor network can serve

as a scientific instrument for volcano monitoring. We have

presented an evaluation of the data fidelity and yield of a

real sensor network deployment, subjecting the system to

the rigorous standards expected for geophysical instrumen-

tation.

We find that wireless sensors have great potential for

rapid and dense instrumentation of active volcanoes, al-

though challenges remain including improving reliability

and validating the timing accuracy of captured signals. The

network was able to detect and retrieve data for a large

number of seismic events, although our event detection pa-

rameters require tuning to capture more signals. In terms of

reliability, base station outages affected the network about

27% of the time during our deployment, with a single soft-

ware failure causing a 3-day outage. However, nodes ap-

peared to exhibit an uptime of 96%, which is very encour-

aging. Clearly, work is needed to improve the robustness

of the base station and system software infrastructure.

Our most difficult challenge was correcting the tim-

ing in the captured signals and validating timing accuracy.

A comparative analysis against a GPS-synchronized stan-

dalone data logger shows very good correlation: 23 out

of 28 events correlated against the Reftek broadband sta-

tion exhibited lag times within the expected 47 ms window.

Across the sensor array, only 2 out of 124 P-wave arrivals

fall outside of an expected velocity envelope, suggesting

that our timing rectification is very consistent. This is fur-

ther reinforced by linear regression of acoustic wave arrival

times with R
2 values of greater than 0.99. Finally, prelim-

inary analysis of the recorded seismic signals is consistent

with expected volcanic activity, exhibiting differences be-

tween explosion-related activity and deep-source events.

Future directions: Our group is continuing to develop

sensor networks for volcano monitoring and we expect to

conduct future deployments. Our eventual goal is to design

a large (50 to 100 node) sensor array capable of operating

autonomously for an entire field season of three months.

A primary concern for future work is reducing power

consumption to extend network lifetimes. Although we did

not experience power-related failures of sensor nodes, we

were fortunate that the deployment logistics permitted us to

change batteries as needed. The highest power draw on our

platform is the sampling board, which cannot be powered

down since we must sample continuously. One approach

is to perform more extensive signal analysis on the sensor

nodes to reduce the amount of data that must be transmit-

ted following an event. However, geophysicists are accus-

tomed to obtaining complete signals, so we must balance

network lifetime with signal fidelity.

In addition, we are interested in exploring novel ap-

proaches to programming large sensor arrays to perform

collaborative signal processing. Domain scientists should

not have to concern themselves with the details of sensor

node programming. We plan to develop a high-level pro-

gramming interface to facilitate more rapid adoption of this

technology.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and ImplementationUSENIX Association 395



Acknowledgments

The authors wish to thank Thaddeus Fulford-Jones and Jim

MacArthur for their assistance with hardware design; Omar

Marcillo and Mario Ruiz for assistance with the field de-

ployment; and the staff of the Instituto Geofı́sico, IGEPN,

Ecuador, for logistical and hardware development support.

Finally, many thanks to our shepherd, Chandu Thekkath,

whose suggestions greatly improved the paper. This project

is supported by the National Science Foundation under

grant numbers CNS-0519675 and CNS-0531631.

References

[1] R. Cardell-Oliver. Rope: A reactive, opportunistic protocol for
environment monitoring sensor network. In Proc. The Second
IEEE Workshop on Embedded Networked Sensors (EmNetS-II),
May 2005.

[2] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communications
technology. In Proc. the Workshop on Data Communications in
Latin America and the Caribbean, Apr. 2001.

[3] Crossbow Technology Inc. http://www.xbow.com.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained network time syn-
chronization using reference broadcasts. In Fifth Symposium on Op-
erating Systems Design and Implementation, December 2002.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Proc. the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 93–104,
Boston, MA, USA, Nov. 2000.

[6] J. W. Hui and D. Culler. The dynamic behavior of a data dissemina-
tion protocol for network programming at scale. In Proc. 2nd ACM
Conference on Embedded Networked Sensor Systems (SenSys’04),
November 2004.

[7] J. Johnson, R. Aster, and P. Kyle. Volcanic erup-
tions observed with infrasound. Geophys. Res. Lett.,
31(L14604):doi:10.1029/2004GL020020, 2004.

[8] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flani-
gan, N. Kushalnagar, L. Nachman, and M. Yarvis. Design and de-
ployment of industrial sensor networks: experiences from a semi-
conductor plant and the north sea. In SenSys ’05: Proceedings of the
3rd international conference on Embedded networked sensor sys-
tems, pages 64–75, New York, NY, USA, 2005. ACM Press.

[9] J. P. Lynch, Y. Wang, K.-C. Lu, T.-C. Hou, and C.-H. Loh. Post-
seismic damage assessment of steel structures instrumented with
self-interrogating wireless sensors. In Proceedings of the 8th Na-
tional Conference on Earthquake Engineering, 2006.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In ACM Inter-
national Workshop on Wireless Sensor Networks and Applications
(WSNA’02), Atlanta, GA, USA, Sept. 2002.

[11] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In Second ACM Conference on Embedded
Networked Sensor Systems, November 2004.

[12] S. McNutt. Seismic monitoring and eruption forecasting of volca-
noes: A review of the state of the art and case histories. In Scarpa
and Tilling, editors, Monitoring and Mitigation of Volcano Hazards,
pages 99–146. Springer-Verlag Berlin Heidelberg, 1996.

[13] Moteiv, Inc. http://www.moteiv.com.

[14] J. Paek, K. Chintalapudi, J. Caffrey, R. Govindan, and S. Masri.
A wireless sensor network for structural health monitoring: Perfor-
mance and experience. In Proc. The Second IEEE Workshop on
Embedded Networked Sensors (EmNetS-II), May 2005.

[15] J. Paek, N. Kothari, K. Chintalapudi, S. Rangwala, N. Xu, J. Caffrey,
R. Govindan, S. Masri, J. Wallace, and D. Whang. The performance
of a wireless sensor network for structural health monitoring.

[16] S. N. Pakzad, S. Kim, G. L. Fenves, S. D. Glaser, D. E. Culler,
and J. W. Demmel. Multi-purpose wireless accelerometers for
civil infrastructure monitoring. In Proc. 5th International Work-
shop on Structural Health Monitoring (IWSHM 2005), Stanford,
CA, September 2005.

[17] V. Paxson. On calibrating measurements of packet transit times.
In Measurement and Modeling of Computer Systems, pages 11–21,
1998.

[18] V. Paxson. Strategies for sound internet measurement. In IMC
’04: Proceedings of the 4th ACM SIGCOMM conference on Inter-
net measurement, pages 263–271, New York, NY, USA, 2004. ACM
Press.

[19] J. Polastre. Design and implementation of wireless sensor networks
for habitat monitoring. Master’s thesis, University of California at
Berkeley, 2003.

[20] Refraction Technology Inc. http://www.reftek.com.

[21] R. Scarpa and R. Tilling. Monitoring and Mitigation of Volcano
Hazards. Springer-Verlag, Berlin, 1996.

[22] R. Sleeman and T. van Eck. Robust automatic p-phase picking:
an on-line implementation in the analysis of broadband seismogram
recordings. Phys. Earth Planet. Int, 1999, 113, 1-4, 265-275.

[23] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analy-
sis of a large scale habitat monitoring application. In Proc. Second
ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys), 2004.

[24] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons
from a sensor network expedition. In Proceedings of the First Euro-
pean Workshop on Sensor Networks (EWSN), January 2004.

[25] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
macroscope in the redwoods. In Proc. the Third ACM Conference
on Embedded Networked Sensor Systems (SenSys 2005), November
2005.

[26] Y. Wang, J. P. Lynch, and K. H. Law. A wireless structural health
monitoring system with multithreaded sensing devices: Design and
validation. In Structure and Infrastructure Engineering, 2005.

[27] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh.
Monitoring volcanic eruptions with a wireless sensor network. In
Proc. Second European Workshop on Wireless Sensor Networks
(EWSN’05), January 2005.

[28] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson,
J. Lees, and M. Welsh. Deploying a wireless sensor network on an
active volcano. IEEE Internet Computing, Special Issue on Data-
Driven Applications in Sensor Networks, March/April 2006.

[29] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In Proc. the First
ACM Conference on Embedded Networked Sensor Systems (SenSys
2003), November 2003.

[30] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for struc-
tural monitoring. In Proc. ACM SenSys ’04, November 2004.

OSDI ’06: 7th USENIX Symposium on Operating Systems Design and Implementation USENIX Association396




