Log Analysis and Event
Correlation Using Variable

—(fUSIOﬂ)— Temporal Event Correlator
(VTEC)

Background

= Swatch was being used until 2006, didn't scale past a
few thousand systems, lacked sophisticated event
correlation features.

= Project goals:
Scale to 10’s of GB/day of log data
Take advantage of multiple processors
Correlate events in real-time (no batch processing)
Correlation rules must be easy to read, modify, create
= SEC, Splunk evaluated
SEC: rules too difficult to read/learn/modify
Splunk: indexer did not scale (v1.0)
() AMD1

The future is fusion

Architecture

Tail of log file
STDOUT of a process

/ syslog messages

Streamer
f

Syslog-ng

threshold messages

filtered messages

i 1

Variable Action
Server Server

N \f\‘
Rule Rule Rule Rule
Engine Engine Engine Engine

The future is fusion

Rule Engines

= Accept filtered log data from syslog-ng on STDIN

= Interacts with variable server and action server using
Perl object interfaces

Instantiate objects to communicate with the servers
my $vs = new VariableInterface() ;
my S$as new ActionInterface();

Setup thresholds
$vs->set incrementer threshold(“name”, “>=“, 10);

Process log data
while (KSTDIN>) {
my %msg = parse($_);
Event correlation stuff

The future is fusion

Temporal Variables

= Scalar
Stores an arbitrary data value that has a finite lifetime
Returns "0” when timed out
Good for alarms, temporary data storage

Send an e-mail, but don’t send another one for an hour
if (Svs->get scalar(“sent mail”) == 0) {
send mail() ;
name timeout
$vs—>set_scalar(“sent_mail”, “+3600") ;

}

Set an alarm (scalar + threshold); wake us up in 60 seconds
if (Smsg{message} =~ /my important trigger/) ({
$alarm = $vs->set alarm(60, “some event”) ;
}
if (Smsg{message} =~ /TIMEOUT: SCALAR some event/) {
take action() ;

}

The future is fusion

Temporal Variables

= Incrementer
Counts the number of events over a window of time
Used to detect rates of events over time

Timeout period lets you adjust how far into the past
you want to count data

Increment amount is generally set to 1

Detect rate of EXT3 errors on www over 10 second period.
if (Smsg{from host} eq “www” and Smsg{message} =~ /EXT3 Error/i) {
No instantiation, Jjust create as needed at any time.
name increment timeout
$vs—>set_incrementer(“www_ext3”, 1, “+107) ;
if (Svs->get incrementer (“www_ext3”) > 10) {
More than 10 EXT3 errors/1l0 sec => 60/min or 1/sec
notify ops_staff();

The future is fusion

Temporal Variables

= List
Collects incrementers into one structure using keys
Aggregates data across similar incrementers

Detect NFS problems
If (Smsg{message} =~ /NFS server (\w+) not responding/i) {
my $nfs server = $1;
The increment amount in a list is hard-coded to 1
name key to increment timeout
$vs->set list(“nfs”, $nfs_server, “+60") ;
fetch the number of unique keys in the “nfs” list
if (Svs->get list keys(“nfs”) > 50) ({
More than 50 hosts (keys) have reported that $nfs_server
1is down (key has not timed out) in the last 60 seconds.
notify ops_staff();
}
}
You can also query the entire list - this would return the total
number of “not responding” messages in the last 60 sec:
$vs->get list all(“nfs”)

The future is fusion

Variable and Action Servers

= Variable server
Hosts variables in a common namespace
Rule engines can share data
Rule engines do not have to maintain state

Injects messages into log stream when threshold
conditions are met (as defined by the rule engines)

= Action server

Queues jobs that can alert or correct problems
detected by rule engines

Jobs can run at a specific time, or “now+time”

The future is fusion

Some Rule Engines at AMD

Failed hardware

Counts ECC/EXT3 errors and alerts when threshold
exceeded

NFS file server checks

Monitors for "NFS server xxx not responding” and
alerts when a large number of unique hosts are
reporting problems

Interactive load monitor collator

Aggregates periodic load data from interactive servers
and sends out collated reports to users

= Reboot loop detection
Alerts support staff if hosts are stuck in a reboot loop

The future is fusion

Designing for Performance

= Current performance

Handling ~1000 msg/sec (~10GB/day) with 21 rule
engines and four local disk logs on a four-vCPU VM

= Multi-threading

Variable and action servers use Perl threads to
distribute workload

Rule engines, syslog-ng are all in separate processes
= Bottlenecks

Syslog-ng can be a bottleneck if many match() rules
are used (regular expression engine)

Incrementer calculation routine in is O(n); does not
scale well with frequent events (>200 events/sec)

The future is fusion

Challenges

= Variable server performance (due to incrementers)
New O(log n) routine is being tested
= Feedback from actions

Currently mostly “fire and forget”

You can (awkwardly) have actions use things like
logger (1) to inject status data back into the log stream

The future is fusion

Lessons Learned

= Designing for scalability from the ground up is crucial

Take advantage of multi-core with threads and multiple
processes

RAM is cheap - use in-memory data structures instead of
disk-based databases

Watch out for algorithms that are O(n) or worse

= Abstraction is a powerful tool when correlating events
Abstracting rate data into a simple incrementer/list query
Breaking up complex correlations onto multiple engines

= Never underestimate the power of familiarity

For a system that must be “programmed” - stick with a
familiar language, so that your customers/colleagues will
actually use it!

The future is fusion

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names used in this presentation are for identification
purposes only and may be trademarks of their respective owners.

©2009 Advanced Micro Devices, Inc. All rights reserved.

The future is fusion

—(fUSIOﬂ)~ Backup Slides

Animation: Incrementer

1 reported value:

0

The future is fusion

