Topology Switching for Data Center Networks

Kevin Webb, Alex Snoeren, Ken Yocum UC San Diego Computer Science

> March 29, 2011 Hot-ICE 2011

Data Center Networks

Hosting myriad of applications:

- Big data: MapReduce
- Web services
- HPC: MPI
- DB, Storage
- Many others!

Data Center Networks

DC engineers adding links

Applications need other important characteristics!

Inter-application Interference

Experiment

- All to all MPI and Hadoop data processing
- Openflow ECMP network
- Interference > 20% latency increase

Topology Switching Overview

- Applications request specific characteristics
 - Bandwidth, Redundancy, Latency, Isolation, others...

- Idea: Create routes based on applications' needs
 - Per application instance
 - Per application phase: Hadoop shuffle vs. HDFS writes

UCSDCSE Computer Science and Engineering

UCSDCSE Computer Science and Engineering

Scientific Network Exclusive Free from interference

Map Reduce Network Multiple paths - high capacity

Challenges

Reconfigurable network infrastructure

- Frequent allocations
- Flexible routing rules
- Openflow

Allocation algorithms

- Throughput, Reliability, Isolation, etc.
- Evaluation metrics

Cooperative online allocation of network resources

- Limit conflict between allocations
- Can't take too long

Abstraction

Applications submit *routing tasks*:

- Set of communicating end hosts
- Logical topology: mesh, ring, tree, custom

Abstraction

Routing tasks utilize an *allocator*:

- Quantifiable metric
 - Guides allocation, indicates success
- Allocation algorithm
 - Chooses physical paths
- Graph annotation & filtering
 - Record allocation results to reduce conflict

Tasks
Routes

Architecture С А Task hosts: A, B, C, D В D Logical topology: Mesh Allocator (Filtered) Logical to physical network view path mapping CD В Α Topology Server Install task Global routes & rules network view Data Center Network

Three Allocators

Bandwidth

Finds least loaded paths to maximize capacity

Resiliency

Allocates N disjoint paths between every host pair

K-Isolation

- Chooses paths with at most k other tasks
- Reduces inter-task interference, more consistent

K-Isolation

• Goal: Don't share links with more than *K* other tasks

K-Isolation

Goal: Don't share links with any other tasks

Resiliency

• Goal: Find *N* disjoint routes between end host pairs

Resiliency

Goal: Find 2 disjoint routes between end host pairs

Resiliency

Repeat for remaining source/destination pairs...

Bandwidth

Goal: Maximize bisection bandwidth between hosts

Bandwidth

Build max spanning tree over remaining capacity

Simulations

- Does it work?
- Comparison against state of the art:
 - "Optimal" equal-cost paths for Resiliency/Bandwidth tasks
 - Spanning tree VLAN for isolation tasks
- Two distinct workloads:
 - Balanced 6 tasks: 2 isolation, 2 resilience, 2 bandwidth
 - Stressed 16 tasks: 7 isolation, 5 resilience, 4 bandwidth

Results

Current Status

- Simulations promising!
- Ongoing work:
 - Quantifying interference
 - Refining allocation strategies
- Building architecture
 - Openflow-enabled switches
 - Routing rule instantiation
 - Limited TCAM size / speed

Thanks!

Questions?

