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One serious problem of current SSDs is it’s low
reliability originating from it’s primary component,
flash-memory, which has high error rates and lim-
ited erase count. In particular, the reliability is-
sue is becoming more important as SSDs employing
multi-level cell (MLC) flash memory become more
prevalent. A solution in enhancing reliability is to
provide RAID-5 configuration with the chips com-
prising the SSD device. The focus of this research
is in proposing a mechanism to provide RAID-5
reliability for SSDs that is efficient in terms of per-
formance and lifetime.

Let us start by reviewing how RAID is sup-
ported in current SSDs with an example shown
in Fig. 1. Fig. 1(a) shows the internal structure
of an SSD and how the data would be dispersed
among the chips within the SSD. In a typical SSD,
there are NC flash memory chips, and in each chip
there are multiple blocks. In each block, there are
pages, each associated with a physical page number
(PPN). A stripe consists ofNC pages, each of which
belong to each individual chip. Typical SSDs to-
day employ a large NC value typically 10∼16 chips,
and more in some SSDs, though in Fig 1 we use an
example with only 5 chips. Dx and Px denote user
data and parity of the x-th stripe, respectively. The
management that we describe below is done at the
SSD & RAID controller component in Fig. 1(a).

Take the initial situation in Fig. 1(a) where
D0∼D7 are user data and there is a parity per
stripe. Stripe 0 consists of pages D0∼D3 and P0,
while Stripe 1 consists of pages D4∼D7 and P1.
The Stripe map table in the controller holds in-
formation regarding each stripe where the num-
ber pairs represent the chip number and the PPN
within the chip.

Assume data pages D1 through D4 are updated.
Note that unlike disk-based RAID-5 where each
old strip would be overwritten, this cannot hap-
pen with flash memory based SSDs. Instead of
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Figure 1: Write sequence of RAID-5 Architecture
overwriting, new data must be written to a new lo-
cation, and to employ every chip as a RAID com-
ponent, the new data must be written on the same
chip of the original data. Then using either read-
modify-write (as for Stripe 1) or reconstruct-write
(as for Stripe 0), existing data must be read to cal-
culate the new parity, so that the new data and
parity can be written to the chips. The Stripe
map table is then updated to reflect the changes
as shown in Fig. 1(b).

There are limitations to this approach. First,
whether read-modify-write or reconstruct-write is
employed, reading of existing data must precede
new parity calculations. This is also true will tra-
ditional disk-based RAID-5 systems. Second, when
new data is written, the data cannot be written un-
til the stripe becomes full, leaving open a window
of vulnerability. For example, if new data D8 and
D9 arrive, in our example above, a parity page can-
not be calculated for these pages alone, and thus
these pages cannot be written until another two
new pages arrive. Third, once a data and parity
page is allocated to a particular chip, this relation
is fixed. Hence, if a particular page is written with
higher frequency, then that particular chip will be
written to more frequently. Also, the chip in which
the parity page resides is more prone to wear out as
it must be written to more frequently. These fixed
relations eventually lead to higher cleaning costs
and decreased lifetime of the SSD.
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Figure 2: Write sequence of DS-RAID Architecture

Methods such as PPC [1] and Lifespan-aware
scheme [2] have been proposed to resolve these lim-
itations. However, these solutions require costly
non-volatile RAM and still suffer from the draw-
backs of frequent small writes.

Dynamic Striping-RAID
We propose Dynamic Striping-RAID (DS-

RAID) that fundamentally solves the problems
mentioned above. DS-RAID has the following two
features. First, every strip that comprises a stripe
always has the same PPN number. Hence, there is
no need for a Stripe map table. Second, DS-RAID
employs the sub-stripe parity scheme, which calcu-
lates and writes a sub-stripe parity for data write
request smaller than the stripe size (minus 1 for
parity).

Let us go through an example starting from the
same Fig. 1(a) with valid user data, D0-D7. With
DS-RAID, all pages of PPN value 0 and 1 com-
prise Stripe 0 and 1, respectively. As D1∼D4 are
modified, the controller simply calculates the new
parity for these pages, writes them on the pages
with PPN 2 along with the parity value as shown
in Fig. 2(a). After writing, the controller simply
marks the old pages as obsolete. There is no need
to read the old pages. Furthermore, all chips are
written to evenly even if particular pages are more
frequently written to, including the parity page.

Now consider the case when only part of the
stripe is written. Assume again that D8 and D9
are being newly written. With DS-RAID, we do
not wait for more data to arrive but calculate the
parity of these data (sub-stripe parity, SP) and al-
locate them right away to PPN 3 of chips 0 and
1, gaining instant RAID-5 reliability as shown in
Fig. 2(b). As more data arrive, say D10, then a full
parity is calculated with D8 and D9 that are still
in the controller cache. Finally, D10 and the full
parity are stored accordingly. This method does
waste some space for storing sub-stripe parity, but
these will be reclaimed during garbage collection.

Evaluation Platform and Results
We implement the DS-RAID scheme by modify-

ing the Disksim SSD extension [3]. The SSD con-
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Figure 3: Results normalized to RAID-5

sists of 8 flash memory chips with 8 planes. Each
plane has 2048 blocks and a stripe consists of 8
pages (32KB) that have the same PPN number in
each of the flash memory chips.

Fig. 3 shows the I/O performance and the write
counts of DS-RAID relative to that of RAID-5 for
the Postmark and random write benchmarks. The
Postmark is a file system benchmark with signifi-
cant sequential I/O with an average write request
size of 1.6MB, while the random write benchmark
is a synthetic workload that makes 250K write re-
quests with an average size of 12KB. As the Post-
mark benchmark requests are large and sequential,
the effect of DS-RAID should be minimal, while
the random workload should benefit the most. In
terms of response time, we see that performance
improves roughly 20% for Postmark despite its
workload characteristics. Response is reduced to
half for the random workload.

In terms of lifetime, we divide the number of
writes into two of which the first is the writes that
occur because of the requests themselves. Nat-
urally, for both workloads, they should be same
for both types of RAID. The other writes, which
include parity writes, writes incurred by garbage
collection, and, in the case of DS-RAID, the sub-
parity writes, are the ones that need to be con-
trolled to the minimum to lengthen the lifetime of
an SSD. The “Extra Writes” column, which repre-
sents these writes, shows that writes for Postmark
are reduced by roughly 10%, while there is a 60%
reduction for random writes.
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