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Abstract
Many electronic voting schemes assume the user votes
with some computing device. This raises the question
whether a voter can trust the device he is using. Three
years ago, Chaum, and independently Neff, proposed
what we call bare-handed electronic voting, where vot-
ers do not need any computational power. Their scheme
has a very strong unforgeability guarantee. The price for
that, however, is that they require the voter to tell his vote
to the voting booth.

In this paper we propose a scheme where the voter
votes bare-handedly, and still maintains his privacy even
with respect to the voting booth. We do this by allow-
ing the voter the use of a computer device but only at
a pre-processing stage - the voting itself is done bare-
handedly. This has many advantages. A voter who has to
verify calculations at the booth has to trust the software
he is using, while a voter who verifies pre-processed cal-
culations can do that at his own time, getting help from
whatever parties he trusts.

Achieving private, coercion-resistance, bare-handed
voting with pre-processing is a non-trivial task and we
achieve that only for elections with a bounded number
of candidates. Our solution works by proposing an ex-
tension to known voting schemes. We show that such
extended schemes enjoy the same unforgeability guaran-
tee as that of Chaum and Neff. In addition, our extended
scheme is private, and the voter does not reveal his vote
to the booth.

KEYWORDS: electronic voting, receipt freeness, co-
ercion resistance, universal verifiability.

1 Introduction

There are several basic properties required from an elec-
tronic voting protocol. A voting scheme has to be un-
forgeable, i.e., even a coalition of (computationally un-
bounded) adversaries can not forge the voting results.

Also, it has to be private, meaning that an adversary
can not learn how a specific voter voted. Another more
subtle property is that of coercion-resistance which ba-
sically means that a voter can deny his vote. Finally, we
would like the system to be auditable (also called verifi-
able), meaning that all actions taken during the election
are written down on a public board open for inspection
and verification by everyone.

There are many proposals for electronic voting
schemes. Many of these schemes require that the voter
uses computational power in the booth. The underlying
assumption is that honest voters can control the algo-
rithm they run. However, we can (and should) question
this assumption. Viruses and spy-ware are a common re-
ality today. How can one be sure that the algorithm one
runs is indeed the intended one?

This led David Chaum [5], and independently An-
drew Neff [19], to suggest the notion of what we term
as bare-handed voting. The idea is that the voter comes
to the voting booth without any computational power
and manually verifies that his vote is properly processed
(e.g., using his eyes and visual cryptography in Chaum’s
scheme). A very appealing aspect of this approach is that
the auditors (and anyone can be an auditor) can verify the
validity of the elections in real time. As a result the sys-
tem is truly unforgeable.

One way to view Chaum’s and Neff’s algorithms is
that the voter delegates his computations to the voting
booth, and his only role is to check his vote is correctly
registered. The price of this approach is that the voting
booth knows what each voter voted. Thus, in terms of
privacy, the system is less satisfactory. For example, a
government can easily find out what each citizen voted.

Recent schemes (e.g., [8, 16, 2, 6]) use paper based
voting where the paper ballots can be prepared in ad-
vance by one or more authorities. For example, in [6]
one authority prepares the ballots, in [8] one authority
prepares the ballots, but the ballots are encrypted with a
cascade mixing using the public keys of several parties,



and in [16] the encryption is distributed.
It is important to understand that there is no privacy

towards the party (parties) that prepare the ballots. The
above schemes transfer the point of failure. In [5] we
trust the booth and in the above schemes we have to trust
the party that prepares the ballots. For example, if the
government prepares the ballot then there is no privacy
towards the government.

Moreover, even if we trust the parties who prepare
(and encrypt) the ballots, there is still a severe privacy
problem with existing schemes. Suppose some party
A can watch the encrypted ballots before they are be-
ing used. Then, that party knows the matching between
candidates and encryptions (that appears on the ballots).
After a ballot is used, the published information on the
public board contains the voter name and an encrypted
value, and therefore party A knows exactly what the
voter voted. This problem is the reason why a distributed
encryption does not guarantee privacy against the ballot
creators.

Thus, current schemes we aware of, either require
some computational power from the voter at the booth,
and then in return give the voter full privacy, or do not
require computational power from the voter at the booth,
but as a result the voter loses his privacy against the party
that prepared the ballot. In this paper we show how to
maintain privacy (even against the government) without
requiring the voter to have computational power at the
booth. We do that by letting the voter prepare the ballot
himself. This raises several problems which we discuss
now.

1.1 Bare-handed voting with pre-
processing

In this paper we consider bare-handed voting with pre-
processing. In our model, voters need computational
power but only at a pre-processing stage. They later on
come to the voting booth (with the pre-processed papers)
and vote bare-handedly. The pre-processing stage resem-
bles preparing paper ballots in current manual elections.
Any user can prepare any number of pre-processed bal-
lots in the pre-processing stage. He can also choose to
test the ballots or any (random) subset of them. Subse-
quently, the voter comes equipped with the pre-prepared
ballots to the voting booth and manually votes. In the
booth we require only simple human abilities such as:
reading and the ability to compare strings.

In our scheme the voter prepares the ballots at home.
This has a privacy advantage, but potentially makes the
scheme coercible. Never the less, our protocol supplies a
strong guarantee against coercion. We assume a power-
ful coercer that can give coerced ballots to the voter, and
make sure the voter has no other ballots with him. We

show that if a coercer can coerce a voter, then the coer-
cion is detected with a good probability. This, in partic-
ular, implies that a coercer can not coerce many people
to vote without being detected. We describe how this is
done in Section 4.1.

One might ask why the use of a computer outside the
booth is safer then the use of a computer device inside
the booth (e.g., [3]). However, note that the voter has no
way to check how his device functions inside the booth.
Moreover, he can be coerced to use a malicious device.
In contrast, a voter has a choice how to prepare his pre-
processed ballots: he can download an open-source soft-
ware, program such a software himself or use a public
web-site (or his favorite candidate web site) for that. Fur-
thermore, he can create as many ballots as he wishes, and
therefore he can choose a subset of the created ballots
and check its validity.

We give an intuitive discussion of the problem and our
solution in Section 4.1.

2 The participants, required properties
and the attack model

We have voters, voting booths, trustees and auditors. As
with many other schemes we have a public board which
is a reliable database accessible by everyone. The audi-
tors have access only to this public board and constantly
check its integrity (data is only added to the database,
old data does not change, everyone gets to see the same
picture) and its contents (proofs are correct etc.). Ev-
eryone can be an auditor. One may think of this public
board as an Internet site where all data is accumulated,
and where its reliability stems from the fact that it is un-
der constant public inspection. The assumption that such
a public board can be maintained is made in many previ-
ous works (e.g., [14, 5]).

Some very basic requirements from an electronic vot-
ing scheme (stated in a very informal way) are:

Unforgeability - No one can falsify the result of the vot-
ing.

Eligibility, Unreusability - Respectively requires that
only eligible voters vote and no voter can vote
twice.

Auditability, Universal auditability - The first de-
scribes the ability of any individual voter to deter-
mine whether or not his vote has been correctly
placed. The second corresponds to the ability of any
auditor to determine that the whole protocol was
followed correctly, given that votes had been cor-
rectly placed.

Robustness - Dishonest participants can not disrupt the
voting. In particular cheating players should be de-
tected and it should be possible to prove their mali-
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cious behavior and finish the voting process without
their help.

Privacy - No one can link a voter with his vote.
Receipt-freeness, Coercion resistance - The notion of

receipt freeness was introduced by Benaloh and Tu-
instra [4], and it means that the voter can not prove
to which candidate he voted. This notion can be
generalized in several ways. The strongest one, usu-
ally called coercion resistance, avoids even scenar-
ios where the voter cooperates with the coercer, and
they both try to find a strategy where the voter can
prove that he followed the coercer instructions (e.g.,
they can choose specific private keys and a strategy
such that the voter can prove that he voted a specific
value or a random value). A formal definition was
given in Juels, Catalano and Jakobsson [15].

For unforgeability, auditability and universal au-
ditability, we assume the malicious party includes any
subset of malicious voters, the voting booth and all of the
trustees. We assume the malicious party is computation-
ally unbounded. The requirement is that if the malicious
party changed the vote of t honest voters then it is caught
cheating with probability at least 1− 2−Ω(t).

There are many ways to define privacy, the most ap-
propriate one is probably saying that the information the
adversary holds is computationally close to a distribu-
tion that has very low mutual information with the actual
mapping between voters and votes, and this should hold
even if there is some a-priori knowledge on voting pat-
terns. Such a definition protects not only individuals but
also groups of persons (e.g., it will not leak information
on the way a certain minority group voted). In any case,
we inherit the privacy guarantee that we get from the un-
derlying scheme that we use. For privacy, we restrict
ourselves to computationally bounded adversaries. We
allow the adversary to consist of a coalition of the voters,
the booth and some of the trustees (the exact number of
trustees depends on the underlying scheme).

Finally, for coercion resistance, the adversary is com-
putationally bounded. We allow the coalition of mali-
cious players to include the voters, the coercer and some
trustees (again, depending on the underlying scheme).
We assume the booth does not cooperate with this at-
tack.1 We also need to use what we call a recordable pri-
vate channel between the voter and the booth. A record-
able private channel between two parties A and B is an
untappable channel between A and B that has the fol-
lowing two properties: First, at the request of one of
the players, the channel can be examined by an auditor
(this is the reason we call the channel recordable), and,

1In manual elections there are voting booths that physically isolate
the voter for privacy and coercion resistance. The same is true for elec-
tronic elections as well. All schemes that we are aware of guarantee
privacy and coercion resistance assuming some trust in the system.

second, at the end of the conversation, if the two parties
agree, the recording is erased and lost.

The first property is important for robustness, and the
second for coercion resistance. This assumption requires
some physical implementation, e.g., a printer printing
the transcript between the two parties, where later on
the printout is shredded. Similar definitions appear in
previous works in the area. In Sako and Kilian [22]
the channel is defined to have the second property only
(and indeed no robustness is supplied), in Chaum’s vi-
sual scheme proposal [5] he assumes parts of the tran-
script can be shredded. We discuss this in more detail in
Section 5.

3 Previous work

Unforgeability is usually easy to achieve. Privacy is also
easy, but only against passive adversaries, e.g., in a sce-
nario where dishonest votes are independent of honest
votes. If we allow active adversaries, e.g., if dishonest
players can vote based on what they see so far on the
public board, then privacy is sometimes not guaranteed
[20].

Coercion resistance and even receipt freeness are usu-
ally more difficult to achieve. Benaloh and Tuinstra pro-
posed a receipt free scheme which was later broken [13].
Sako and Kilian [22] proposed a receipt free scheme us-
ing mix-networks and Chameleon blobs but their scheme
requires the voter to know at least one mix which is hon-
est (rather than just knowing that one such mix exists).
[14] proposed a similar but more efficient solution us-
ing threshold encryption, but it has the same drawback.
Moreover, both schemes can be coerced.2 [17] proposed
a solution which uses a tamper resistant smart-card that
produces a random value hidden from the voter, and [3]
proposed a solution which requires an authority used for
randomness (similar to the role of the booth in our solu-
tion).

Bare-handed protocols started with the ground-
breaking work of Chaum and Neff [5, 19]. Many other
schemes followed (e.g., [8, 21, 16], and the more recent
[6, 2, 18]). We mention that in many of these schemes
there is no privacy towards the booth (and the voter sim-
ply tells his vote to the booth), and in many of these
schemes privacy towards a malicious ballot creator is
lost, see the discussion in the introduction.

We use the [10] scheme (using threshold encryption
for tallying) or the [22] scheme (using mix networks for
tallying) as our underlying schemes. One nice feature of
these schemes is that they have two separate phases: one
for casting votes and one for tallying, casting a vote ends

2A coercer can force the voter to vote randomly and verify his be-
havior.
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with a published encrypted vote that can not be opened
by unauthorized parties. Also, both schemes use ElGa-
mal encryption (described in Appendix A). The imme-
diate benefit of using ElGamal is its homomorphic prop-
erty, meaning E(m0, r0) ·E(m1, r1) = E(m0 ·m1, r0 +
r1) where E(m, r) is an encryption of m using a ran-
domness r.

4 A Bare-Handed Extension

4.1 An intuitive discussion

Let us summarize the situation so far. Someone has to
prepare the encrypted vote. If the voter prepares it at
home, then we are susceptible to attacks on receipt free-
ness (because the voter can open his vote) and coercion-
resistance (because the voter can be given the vote by the
coercer). If, on the other hand, we ask the booth to en-
crypt the vote (as in Chaum’s and Neff’s schemes) we
lose privacy.

We could also go a middle way: ask the voter to
prepare the encrypted ballot, and then let the booth re-
encrypt it. However, in such a case, the voter has to check
the booth properly re-encrypts his vote (e.g., to see that
the booth is not multiplying his vote with an encryption
of a value other than one) and we do not want the voter
to do computations at the booth. A simple solution might
be to ask the booth to put the re-encryption and the orig-
inal vote at the public board, and let the auditors check
the calculations, but then we are back to revealing the
original vote, and the coercion problems.

The key idea behind our solution is very simple. We
borrowed it from the way paper-ballot elections are cur-
rently carried out. In paper-ballot elections, privacy and
coercion resistance are obtained by making sure that the
voting booth has paper ballots for each of the candidates.
In a similar way, we ask the voter to prepare ballots with
valid votes for all existing candidates. For reasons we
explain shortly, we ask the voter to prepare two ballots.
We also ask him to give a proof that:

• All the votes he prepared are legal and encode an
existing candidate.

• He prepared two ballots for each of the candidates,
and he knows the correspondence between the votes
and the candidates.3

These proofs can be prepared in advance.
The booth role is to re-encrypt the ballot’s votes (we

call this ballot’s re-encryption), which is necessary for
coercion resistance. This, in turn, forces us to check the

3This is necessary because the coercer might give the voter a set
of valid ballots but without telling him which encrypted ballot corre-
sponds to which candidate. We therefore ask the voter to show a poll-
worker he can match ballots with candidates.

booth. The voter does this by randomly choosing for ev-
ery candidate one of the two ballot’s re-encryptions for
testing the booth. The testing itself is done by the audi-
tors using the data that appears in the public board. The
voter then uses the other re-encryption of his candidate
for the actual voting.

Thus, in the first stage a poll-worker checks the voter
can associate votes with candidates, and in the second
phase the voter checks the booth properly re-encrypts
messages. A coercer may potentially use both stages for
coercion. The way we bypass these problems is by forc-
ing both tests to apply to all candidates. If you prove
you can associate a vote to a candidate you reveal infor-
mation. But if you do that for all candidates you reveal
nothing.

The implementation details are important as (not sur-
prisingly) there are some subtle points hiding. We men-
tion two issues here:

• (Active attacks) The booth may cooperate with an-
other voter A′ to reveal A’s vote by using the active
attack of Pfitzmann [20].

• (A coercion attack) In the above protocol we as-
sumed the voter is free to choose his random coin.
However, a coercer might force the voter, e.g., to
use a random coin which is a hash of B’s re-
encryptions. This, sometimes, enables a coercion
attack. Such an attack also applies to [22] and [14].

Indeed, finding a working scheme requires delicate
balancing. We begin with a formal statement of the pro-
tocol, followed by an (informal) proof of correctness.

4.2 A formal description of the voting pro-
cess

Pre-voting : Here is what a voter V does at home. V
prepares two ballots. Each ballot is printed on both
sides (back and front) and contains records for each
of the candidates. We now describe how V prepares
such a ballot.
Say there are D candidates. For every i = 1, . . . , D,
V picks a random string ri and prepares an en-
crypted vote yi = E(mi; ri) for the i’th candidate
mi (where the specifics of this encoding function
E depends on the underlying scheme) along with a
NIZKP that yi encrypts a legal candidate.4

On the front side, V prints D rows containing the
D values yi in a random order. On the back side,
V prints D rows containing the D tuples (mi, ri)
using the same random order. Also, on both sides,
the voter’s name (and a serial number if needed) ap-
pears in plain-text. See figure 1.5

4Such non-interactive, zero knowledge proofs are described in Ap-
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Figure 1: The ballot is printed on both sides. The back side
contains (in plain-text) the candidates’ names along with the
random strings used for encrypting their corresponding votes.
The front side contains the encrypted votes E(mi; ri) along
with a NIZKP that those encrypted values are valid.

Voting (and verification) : V identifies himself with an
ID. In front of a poll-worker he shows (using a
scanner for instance) the front sides of his two bal-
lots, and this is published together with the voter
name on the public board for universal verification.
The booth B and the auditors check that the non-
interactive, zero knowledge proofs are correct and
all the votes on the front sides of the two ballots are
legal.
A poll-worker picks a random number i ∈ {1, 2}
and publishes i on the public board. The poll-
worker asks the voter to scan the back side of the
i’th ballot, and it is sent to the public board. The
booth and the auditors check that the back side
matches the front side (this guarantees that the voter
knows how to open his ballots). We denote by P the
remaining ballot. The voter now enters the booth.

Casting a vote : Say the voter V wants to vote for
the candidate that appears on the c’th row of P ,
c ∈ {1, .., D}. Then, V sends B the number c over
the recordable private channel. The value c is not
posted on the public board.

Re-encryption (and verification) : Say the front side
of P has the D values {e1, . . . , eD}. B com-
putes two re-encryptions of the front side of P ,
i.e., two sets P (0) =

{
e
(0)
1 , . . . , e

(0)
D

}
and P (1) ={

e
(1)
1 , . . . , e

(1)
D

}
, where e

(0)
i and e

(1)
i are ob-

tained by multiplying ei with a random encryption
E(1; U) of 1. Then the booth picks two random
permutations π0, π1 ∈ SD and publishes π0(P (0))
and π1(P (1)) on the public board, where π(P ) is
the set P with the D rows of P permuted according

pendix B.
5Another subtle point is the following. A coercer might supply the

voter with legal ballots whose back side is covered with a scratch area,
and tell the voter to vote with a non-scratched ballot. The voter is able
to show the back side of the test ballot (by first scratching it) but must
keep the other ballot covered, effectively enforcing a random vote [1].
We solve this problem by testing the voter in front of a poll-worker.

to π. The booth also publishes on the public board
a NIZKP that all rows in π0(P (0)) ∪ π1(P (1)) are
re-encryptions of some vote given in P . Finally, the
booth also tells the voter, over the recordable pri-
vate channel, the values c0 = π0(c) and c1 = π1(c).
The voter publishes a bit b ∈ {0, 1} and the booth
reveals Πb on the public board (and if the booth is
honest then Πb = πb), along with the randomness
used to create the re-encryptions in P (b). The au-
ditors check correctness and the voter checks that
Πb(c) = cb, i.e., that the booth’s permutation is
consistent with the ordering the booth declared to
the voter.

Publishing a vote : The booth publishes cb over the

public board and the vote is taken to be P
(b)
c

b
. The

voter V checks that the published value matches
cb that was sent to him over the recordable private
channel. If everything so far is correct, V and B
shred the channel’s record (and in particular they
shred c) and V leaves the booth.

This completes the voting stage. The tallying stage
is done as in the original, underlying scheme.6 Notice
that the voter can pre-compute the votes (and the non-
interactive proofs) in the ballots, and can come to vote at
the booth bare-handed, carrying only his two ballots of
votes.

4.3 Informal proof of correctness
4.3.1 Coercion resistance

We assume a coercer prepared the voter’s two ballots and
directed him to act in a specific way. We first notice that

Claim 1 If one of the paper ballots the voter prepares is
not legal the voter is caught with probability close to one.
Also, if one of the two ballots the voter prepares does not
contain a vote for each candidate, or, if the voter can not
match the corresponding back and front parts of a ballot,
then the voter is caught with probability close to half.

One can argue that probability one half is not small
enough. However, notice that this means that if a coercer
tries to coerce t people, then with high probability (ex-
cept for probability 2−Ω(t)), about t/2 of them will be
caught, and so with high probability the coercer himself
will be detected.7

If the voter holds a valid vote for each candidate, and
he can associate encryptions with candidates, he can, in

6We mention that if we take the underlying scheme to be [10] (using
threshold encryption) then some of the NIZKP we use already appear
in the original scheme and so they should be combined.

7Another direction one might be tempted to take, is to ask the voter
to come with J + 1 ballots and to use J of them for verification. The
error probability then becomes 1

J+1
, and so goes down only linearly

in the number of ballots.
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particular, vote to any candidate he likes. In the rest of
this subsection we show he can not prove to the coercer
what choice he had made. After the voter leaves the
booth, the private channel transcripts are shredded. An
outsider only sees the published information on the pub-
lic board which contains the voter’s selected bit b, the
published re-encrypted vote and one set of re-encryptions
which is opened in full (and so is independent of the
value c). In fact, the third item can be efficiently sim-
ulated, and so does not add any information. The first
item, the selected bit, can be chosen in any way the co-
ercer directed. The second item, the re-encryption of the
actual vote, is an ElGamal re-encryption of one out of
k votes and using randomness and keys that the coercer
(and the voter) does not have. Thus, this re-encryption is
computationally indistinguishable from re-encryption of
any of the other votes. In particular, the voter can claim
he sent any c and the coercer will accept with the same
probability.

4.3.2 The other requirements

The proof of the other requirements is similar to preced-
ing schemes and we omit it, and we only consider the
bare-handedness property. We look at the voter’s actions
in the booth. The voter gives the front sides of the two
ballots and the back side of the selected ballot. The voter
then picks his vote c by looking at the back side of his re-
maining ballot and choosing the row number of the can-
didate he supports. Then the voter selects a random bit.
Finally, the voter has to compare two integers (each be-
tween 1 and D) for checking the booth. We believe all of
this can be done by humans without the help of a com-
puting device.

One comment is in place. We (and most of the other
works in the area) assume the existence of NIZKP. In-
deed, if OWF exist, and if the parties have access to a
source of shared randomness, every language in NP has
a NIZKP [11]. However, the NIZKP obtained using such
techniques has some large polynomial complexity, and
is impractical. Also, one should question this common
source of randomness. Another way to go is to use the
Fiat-Shamir heuristics [12], but then we can not claim
anything formal about unforgeability against unbounded
adversaries.

5 A practical version using shredding

In our protocol we require two physical devices: a public
board and a recordable private communication channel.
These assumptions are not easy to implement. We further
modify the protocol, simplifying the interaction between
the voter and the booth with the goal of demanding less
from the recordable private channel. Our modification is

similar to ideas used in Prêt à voter scheme [8] and in the
recent Scratch and Vote scheme [2].

The modification is as follows: The protocol begins as
before. The voter prepares two ballots, one is tested, and
the remaining ballot P is used for the actual voting. The
booth then prepares, as before, two re-encryptions P (0)

and P (1) of P . Here we deviate from the previous pro-
tocol. The booth prints a ballot with two columns. The
j’th row of the ballot consists of P

(0)
j in the left column

and P
(1)
j in the right column (along with a NIZKP that

the re-encryption is legal). The order of the rows in the
re-encryptions P (0) and P (1) is the same as the order of
P . Also, the values in each column are signed by the
booth and covered with a scratch surface (see Figure 2).
Next, we do the following:

Figure 2: 1. The two column are covered. 2. The voter selects
a column b, tears his vote and scratches it. 3. The test column
is scratched in front of the poll worker. The vote and the test
column are sent to the public board. All the rest is shredded.

• The voter picks b ∈ {0, 1} at random, scratches off
the row of his candidate from this column (recall,
that this is determined by the row of the candidate
in the back side of P ) and publishes it as his vote.8

• The voter surrenders the other unscratched pieces to
the poll-worker. He shows the poll-worker that only
one piece (that of his candidate) is scratched.9

• The remaining pieces of column b are shredded.
Also, the voter (or the poll-worker) scratches off the
other column. He publishes it and takes it home as
a receipt. The booth reveals the randomness used
to create the re-encryptions in this column, and the
auditors check correctness.

One problem that exists with this protocol is that we
can not settle disputes. Consider for example the sce-
nario where the auditors discover the information in the
scanned column is inconsistent with the data the booth
publishes, and the booth claims the voter did not scan the
information the booth sent him. The protocol supplies no
way of determining whether the voter is honest and the
booth is dishonest or vice versa. This problem implicitly
appears in all previous protocols (and in particular in [8]
and [2]) and is a reflection of the fact that the channel

8If we assume the communication with the poll-worker is public,
then the voter also separates all the rows of his chosen column. He
does that in order to hide his chosen row from outsiders.

9The reason the voter has to show a poll-worker that all other rows
are still covered is to avoid vote-buying. Otherwise, a voter can be
paid for voting with an encrypted value that starts, say, with a specific
sequence, effectively forcing a random vote.
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that we use is not private, recordable channel. There are
several pragmatic suggestions how to solve this problem
(e.g., the booth prints its data on a special paper).

The protocol is similar to the one described in Section
4 but what we gain here is simpler interaction. Other
than the problem discussed above (which is common to
other protocols in the area) the protocol enjoys the same
properties as the one in Section 4. We omit the proof for
lack of space. Thus, our protocol is as practical as the
other protocols in the field, while enjoying true privacy
even with respect to the booth.

We remark that many of our computations require long
random numbers. As in [2], we can reduce the ballot’s
size by replacing the long random numbers with much
shorter random numbers, using these shorter numbers as
seeds of a pseudo random generator. Also, bar-codes can
be used to encode long strings.
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A ElGamal encryption

We use ElGamal encryption over a multiplicative group
of prime order, as suggested by [20, 22]. Specifically, we
first publicly choose two large primes q′ and q such that
q|q′ − 1. Let k be the integer such that q′ = qk + 1.
We also fix a generator g′ of F ∗q′ . The cyclic group G we
work with is the one generated by g = (g′)k and its order
is q′−1

k = q.
The public key then includes (other than q′, q, g) a

value y ∈ G. The private key is x ∈ G such that
y = gx. To encrypt a message m ∈ G (given the public
keys q′, q, g, y), we choose uniformly at random r ∈R

[1..q − 1] and output E(q′, q, g, m, y; r) = (gr, yr ·m).
To decrypt a message (α, β) we compute m = β · α−x.

As we work with global values q′, q, g and y shared
by all participants, we abbreviate E(q′, q, g, m, y; r) to
E(m; r). ElGamal is homomorphic, namely E(m1; r1) ·
E(m2; r2) = E(m1 ·m2; r1 + r2).

B Reviewing some zero-knowledge proofs

B.1 (Non-interactive) Zero knowledge
proofs

Assuming OWF and a shared source of randomness,
every problem in NP has a non-interactive proof sys-
tem. However, these proofs have high (polynomial) com-
plexity [11], and even worse, we do not have a trusted
shared source of randomness. In practice, we take a

7



three round interactive proof and convert it to a non-
interactive proof using the Fiat-Shamir heuristics [12]
(changing the challenge to be the hash of the transcript
preceding the challenge). We use the next three inter-
active proofs: equality of discrete logarithms from [7],
one-out-of-` re-encryption and one-out-of-` message en-
cryption, both from [10, 9]. For completeness, we soon
describe them. We mention that both the interactive and
non-interactive protocols are coercible if the transcripts
are public (we demonstrate this soon).

B.2 Zero-knowledge proof of equality of
discrete logarithms

Let G be a multiplicative group of order q, and let g1, g2

be two (possibly different) generators of G. The input
is v, w ∈ G. The prover knows discrete logarithms of v
and w, i.e., x1 and x2 such that v = g1

x1 , w = g2
x2 , and

claims they are the same, logg1
v = logg2

w.
The following protocol is from [7]:

• The prover chooses z ∈ [2..q] at random and sends
a = gz

1 , b = gz
2 to Bob.

• The verifier chooses a challenge c ∈ [2..q] at ran-
dom and sends it to the prover.

• The prover sends r = (z + cx) (mod q) to Bob.
• The verifier checks that gr

1 = avc and gr
2 = bwc.

The protocol is a honest verifier, perfect, statisti-
cal zero knowledge, with perfect completeness and 1/q
soundness error. It is not known to be zero knowledge
against dishonest verifiers.

It also, three round public coin, so the proof can be
turned non-interactive, by using the Fiat-Shamir heuris-
tic, changing the challenge c with the hash of a, b, v, w.

B.3 A Zero knowledge proof for 1-out-of-`
re-encryption

We use the same notation as before - we let G be the
multiplicative group as before and fix some g, h ∈ G.
Now, the prover wants to prove that for a publicly known
pair (x, y) there is an ElGamal re-encryption10 in the `
encrypted pairs (x1, y1), . . . , (x`, y`). We assume the re-
encrypted pair is (xt, yt) = (x, y)·E(1; r) = (xgr, yhr),
where r is a random secret value known only to the
prover. The protocol is described in Figure 3. It is taken
from [10].

Using the Fiat-Shamir heuristics, the protocol can
be made non-interactive using the challenge c =
H(a, b, x, y, x1 · · ·xL, y1, · · · , yL). The prover pub-
lishes c, d, r and the verifier is the same as before.

10We say a pair (a′, b′) is a re-encryption of (a, b) if (a′, b′) =
(a, b) · E(1; r) for some value r.

Re-encryption is a symmetric property (if (a′, b′) is a
re-encryption of (a, b), then (a, b) is a re-encryption of
(a′, b′) 11). In particular, the above is also a ZKP for the
case where we are given (x, y) and we want to prove it is
a re-encryption of one out of the ` pairs (xi, yi).

B.4 A Zero knowledge proof for 1-out-of-`
message encryption

We now look at the following problem: we are given
` plain-text messages m1, . . . , m` and one encryption
(x, y) and we want to prove it encrypts one of the ` plain-
text messages. The protocol for that is given in [10] and
is based on the 1-out-of-` re-encryption, and we give it
here for completeness.

Given m1, . . . , m` and (x, y) = E(mt; r) (for some
t and r known only to the prover), the prover pub-
lishes (xi, yi) = (x, ym−1

i ). It is easy to check that
(xi, yi) = E(mtm

−1
i ; r). The prover now proves that

one of (xi, yi) is a re-encryption of E(1; 1) using the
ZKP from previous subsection.

B.5 Coercion in zero-knowledge protocols
We mention that both the interactive and non-interactive
protocols are coercible if the transcripts are public. e.g.,
during the interactive protocol of Zero-knowledge proof
of equality of discrete logarithms the prover commits to
z (using gz

1). If the transcripts are public, a coercer can
coerce the prover to reveal z (which can be done in only
one way) and using this he can calculate x = (r − z)/c.
In the non-interactive protocol this coercion is done us-
ing the hash function and z.

11This is because E(1; r)−1 = E(1;−r).
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Prover Verifier

ri, di ∈R [2..q], w = r · dt + rt

ai = (xi
x

)digri , bi = ( yi
y

)dihri < a >, < b >
-

c ∈R G
c¾dt = c−

∑
j 6=t

dj

rt = w − r · dt

< d >, < r > -
Verify -

c =
∑

di

ai = (xi
x

)digri , bi = ( yi
y

)dihri

Figure 3: Re-encryption of 1-out-of-` interactive proof. The input is: G, g, h ∈ G, (x1, y1), . . . , (x`, y`) and (x, y) =
(xt, yt) · E(1; r). a denotes the vector a = (a1, . . . , a`) and similarly b, d, r
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