A DETER Federation Architecture

Ted Faber
John Wroclawski
Kevin Lahey

USCI/ISI
1 June 2007

1. Introduction

DETER testbeds[1] are a class of Emulab-
based[2] testbed that provide a secure experimental
environment through configuration and management.
The DETER project[3] at ISI runs a DETER testbed
with segments located at USC/ISI and the University
of California at Berkeley consisting of more than 250
nodes. In addition to the original Emulab[4], there are
several other testbeds based on the same software
scattered throughout the US, e.g., Wisconsin’s
WAIL[5], with different research focus and varying
degrees of public access.

Given that each of these testbeds have similar
underlying resource and allocation models, but are
tuned and managed for specific objectives, it is natural
to want to interconnect them. A given experiment
may need more resources than a single testbed can
offer and interconnecting them can provide more. A
testboed may contain hardware useful to an experi-
menter but lack other resources needed for the experi-
ment; connecting two or more testbeds is a natural
solution. An experiment may itself naturally combine
the environments provided of two or more testbeds.
An experiment that consists of a secure set of nodes
and a set of nodes outside the secure area may be best
implemented as the connection of a DETER secure
testbed and another testbed, rather than simulating the
two regimes inside one testbed.

We call the process of deploying an experiment
across multiple testbeds federation. The DETER
project has been able to distribute experiments across
multiple sites (ISI & Berkeley) and to temporarily
incorporate resources outside the testbed for experi-
menters. These experiments have convinced us that
being able to combine DETER experiments with
remote resources temporarily include outside
resources is useful. To date, these successes have
been very labor-intensive. An automated system for

creating federated experiments is called for.

Some of the challenges of federation are well-
understood distributed systems issues such as a estab-
lishing shared naming, authentication, and access con-
trol authorities that the various testbeds understand.
In this case, a well understood system is not a trivial
one, but there is considerable related work in these
areas.

Other aspects of the problem are thornier
because the resources of testbeds are not simply
pooled, but are managed by the owners of the various
testbeds in different ways. The management and use
policies are not simply matters of convenience to the
owners that can be negotiated away; the critical prop-
erties of the testbeds can depend on these policies.
Aspects of DETER’s containment and security guar-
antees are based on the administration of the testbed
nodes and the configuration of its physical networks.
Finding and using resources subject to the use con-
straints of the component testbeds complicates
resource discovery and allocation for federation.

Any useful federation system must be supported
by a significant set of the Emulab-model testbeds, and
furthermore, resources being scarce as always, the
federation system will be developed in parallel by
designers of those testbeds. Enabling this shared use
and development requires that the players agree in a
shared architecture and set of interfaces. The archi-
tecture will provide a shared vocabulary for discus-
sion and design and partition function into compo-
nents that can be orthogonally developed. In addition,
testbeds supporting different controllers or maintain-
ing different invariants may implement components in
frameworks geared to their environment or using algo-
rithms appropriate to their goals. Fixed interfaces
allow testbeds to continue to share resources even as
underlying software is changing.

This paper lays out a draft straw man architec-
ture as a starting point for consensus. It is by its
nature not complete and should be taken as a draft and

a starting point. Disagreements remain on the straw
man even among the authors of this document. This
document introduces the framework, but space pro-
hibits a detailed interface description.

This document addresses the key name spaces
and components used for creating, manipulating, and
tearing down experiments. Though we touch on the
need for resource discovery systems and recognize
places where trust must be established, specifications
of those aspects of the system are out of scope for this
paper.

The discussion proceeds as follows. Section 2
lays out the ways in which the resource and allocation
model of these testbeds affects the specification of the
system, Section 3 lays out the straw man. Section 4
concludes.

2. Distributing the DETER/Emulab M odel

Because the testbeds share an underlying
model, inherited from Emulab[2], an natural way to
proceed is to extend the elements of that model into a
more distributed world. This section discusses the
significant features of that model and shows how they
will fit into the architecture in Section 3.

2.1. Access Control

Testbeds enforce use policies on their resources
to maintain the guarantees of the installation. In a dis-
tributed environment, testbeds represent the borders of
an area of policy adherence and property enforcement.

In the single-testbed model a testbed authorizes
projects to make use of its resources after the testbed
managers Vet the attributes of the work to be done and
the identity of the proposers. Associated with projects
are experimenters who can request resources to be
allocated and configured into experiments. Once cre-
ated, any user configured by a project may use the
resources of the experiment. The documentation of
Emulab and DETER refers to both users and experi-
menters as “users,” but in discussing federation the
distinction between the entities that can request
resources, experimenters, and the principals that
manipulate them, users, is material.

The relation between experimenters and
projects is a little more complex. Each experimenter
is in one of three classes of privilege in a project, with
the classes forming a strict containment. The least
privileged experimenters in a project can make use of
experiments created by others in the project, the next
class can create experiments as well, and the most
privileged experimenters can admit new experi-
menters to the project and change experimenters’

privilege levels.

The project and experimenter together embody
the access control. An experimenter can only request
an experiment as a member of a project, and the
access permitted to the experimenter depends on the
experimenter’s standing in the project. An experi-
menter may be unable to allocate any resources on
behalf of one project, but capable of managing
resources on behalf of another. In principle, if rarely
in practice, projects can be given limits to the
resources they can access as an aggregate.

Because access rights are granted to projects in
single testbeds, it is natural to make projects visible to
other testbeds and use them as a basis for access con-
trol.

While vesting projects with access control
rights provides a mechanism for testbeds to authorize
access, more needs to be done to ensure that the test-
bed granting resources understands the guarantees that
the testbed requesting access is making about the
project. This negotiation will be a bilateral one, and
requires agreements between the owners of testbeds.
While the architecture allows such negotiations to be
carried on pairwise, scaling to many testbeds may
require a more scalable trust model.

2.2. Federation Objectsand Scope

Within a local DETER testbed, there are two
name and object scopes, testbed and experiment.
Projects and experimenters have a testbed scope —
they exist independently of a given experiment. When
an experiment is created, per-experiment objects are
created, e.g., loghole directories and local DNS
names. As multiple testbeds begin to name and use
each others resources, it is important to clearly lay out
the scope of each kind of name and object. Table 1
summarizes DETER elements and their naming
scope.

Object Scope
Projects Testbed
Experimenters Testbed
Experiment Nodes Experiment
Inter-Testbed Connection Points Testbed
Classes (node & image) Testbed
File space Experiment
Experiments Testbed

Table 1: Objectsand Scope

In the federation architecture, the two scopes
remain but experiment scope can now span multiple

! Projects can be further divided into groups, but that
is not a fundamental feature.

testbeds. That is, all the nodes allocated to a given
experiment see a shared, unqualified name space;
resource names do not reflect the testbed providing
the resource. One aspect of federating an experiment
is constructing an experiment name space that maps
objects from multiple testbed name spaces into one
experiment name space.

Each testbed has a unique identifier that is used
to disambiguate names in its name space from names
in other testbeds’ name spaces. The prefix identifies
the testbed that has named the object and owns it. If
there are a few testbeds that can federate, the DNS
name of the testbed’s local controller may be the pre-
fix. If more testbeds are envisioned or testbeds appear
and disappear commonly, a unique prefix that can be
created without coordination is a better choice, e.g., a
Universally Unique Identifier (UUID)[6].

An individual testbed may only be able to
resolve names scoped by a testbed it trusts. Once two
testbeds have communicated, they can exchange pre-
fixes and therefore know how to disambiguate each
other’s names. Testbed/name space discovery is
beyond the scope of this document. Experimenters
may acquire the disambiguation prefixes out of band,
should they need to specify particular nodes in their
configurations.

Experimenters will specify most experiments in
terms of classes of nodes and classes of system
images, described below. In cases where specific
nodes are required, explicit testbed name space disam-
biguation of the node name can be used. An experi-
ment that requires specific nodes is more difficult to
instantiate and less portable than one referring to
nodes by class.

When an experiment is instantiated on a single
testbed, a local DNS name space is constructed that
allows the experimenters to refer to allocated nodes
by names picked by the experimenter in the specifica-
tion. Generalizing this process to map strings to net-
work addresses in the federated experiment is fairly
straightforward. These per-experiment names are the
primary way experimenters interact with the nodes.

Experimenters associated with the project are
granted access to the federated resources, using the
same access control mechanism that the federating
testbed uses. In cases where that access control
method violated use agreements, an alternative system
may be negotiated as well. All experimenters associ-
ated with a project are granted access to the shared
resources, so the identity of the requesting experi-
menter is not part of the access control decision.

The earlier discussion has mainly dealt with
how much of the object space is visible to

experimenters in specifying and configuring experi-
ments. Also at issue is how much of the internal
name space and topology testbeds expose to one
another during experiment creation. This is addressed
below, but testbeds will need to name at least the
nodes used to interconnect them.

2.3. Classesand Images

Other system identifiers of note in the local test-
bed are the classes of nodes and system images.
Experimenters can request resources by name or class
and can request node configurations by image name,
though additional configuration parameters are dis-
cussed below. The assignments of class and name are
local matters, but conventionally nodes are assigned
names sequentially (nodel, node2, ...) and classes are
assigned based on the common needs of the experi-
menters. For example, if processing power is impor-
tant, nodes may be grouped into classes by processor
clock speed; if communication access is important,
they may be grouped by number of interfaces. Node
class is a single string, and often multiple attributes
are encoded in it. Similarly, images are named to
reflect the operating system and application software
included on them.

Though nodes are commonly accessed by node
or class name, there is a set of attributes common to
Emulab testbeds that describe each node. A similar
set of attributes describes each image, though less
completely. Currently these attributes are a global
convention, but the management of the attribute space
is addressed below.

Unlike group names, class and image names
need not be global, and are primarily a notational con-
venience. A class is expressed as a named set of crite-
ria; nodes or images meeting

federating
.
federated
local

Testbed A

V q
federated federated
/
local local
Testbed B Testbed C

Figure 1: Federation Architecture

the criteria are in the class or excluded. Though class
names are part of atestbed’s name space, any node or
image can be tested for inclusion.

Experimenters will generally refer to resources
in their experiments by class names, reducing the
amount of inter-testbed detail that needs to be passed
around. This does depend on testbed designers agree-
ing on a set of attributes that describe nodes. In the
current simple model where DETER testbeds consist
mostly of general purpose computing nodes special-
ized in software, a consensusisfairly easy to forge. If
resources become more complex, class descriptions
may need to carry information about the ontology in
which rules are expressed and other generalizations.

2.4. Resource Allocation

In each testbed, resource allocation is central-
ized at a single local controller called a boss. The
local controller takes requests from experimenters
associated with projects and alocates and confi gures
experiments. The requests are usually expressed in
terms of the classes described above. Confi guration
consists largely of loading system images onto nodes
and establishing proper interconnections on the local
network.

Generalizing this process will require decentral-
izing some of the resource allocation processing, with
interfaces to make local resources visible to other
testbeds and to allow the remote testbeds to request
alocations to projects in the shared name space.
Local resource allocation and confi guration necessar-
ily remains in the control of the local testbed. This
recognizes the reality that local controllers generally
control the access to testbed nodes and that local

testbeds must enforce their local use policies to pro-
tect local experimenters and experiments.

At one end of the spectrum, testbeds may
export detailed information to a central alocator that
calculates the experiment layout. At the other endisa
more decentralized version where testbeds provide
some information about their resources and a central
allocator creates a high-level plan that is refi ned by
each federating testbed. The distributed nature of
administration in federated testbeds argues for a more
decentralized approach, but such approaches are more
complex. On the other hand, centralized systems
require more disclosure.

Though the shape of the resource allocation
system is emerging the naming system above supports
either. For scaling and to respect the privacy and con-
trol of local testbeds, a decentralized system is called
for, but the exact division of labor is yet to be deter-
mined.

The next section takes these broad generaliza-
tions of local testbed operations and connects them to
new federation components to form a federation archi-
tecture.

3. Architecture

Extending DETER to federate with other
testbeds requires the addition of 3 new functional enti-
ties, a federating controller, afederated controller, and
a federation network connector. In practice these may
be collocated, and co-implemented, with other
DETER subsystems.

The federating controller is the central govern-
ment of the federation, responsible for assembling and
confi guring the resources as well as ensuring a

consistent experimental environment. A federating
controller does the deployment and configuration of
the experiment largely through proxy operations actu-
ally executed by the federated controllers — the states
of the federation. Though a federating controller
expects its requests to be carried out, federated con-
trollers remain ultimately in control of their resources.
Federated controllers implement their control by inter-
facing with the existing local controllers.

Once the federated experiment has been estab-
lished, there is little for the controllers to do, but the
network connectors will be busy passing data between
the federated testbeds. At their simplest, the network
connectors are nodes in the federated experiment that
can send traffic between federated testbeds. More
sophisticated connectors may also monitor traffic for
containment breaches, do traffic shaping, or encrypt
traffic between testbeds.

Figure 1 shows an experiment running on
resources federated from three testbeds. Testbed A is
the federating testbed and is using resources from
Testbeds B and C in a federated experiment. The fed-
erating controller is coordinating with three federated
controllers to allocate and configure nodes. The net-
work connectors, shaded within the sub-experiments
on each testbed, are passing experiment traffic
between testbeds.

As always when laying out an architecture, the
boxes indicate functional components; they may be
implemented as extensions to current testbed imple-
mentations or as new standalone components.

The remainder of this section will define the
requirements on each of the three entities.

3.1. TheFederating Controller

The federating controller guides the creation of
a federated experiment. It is responsible for discover-
ing resources available to the project requesting the
experiment; deciding how to compose the experimen-
tal environment, both topology and shared file spaces;
coordinating the allocation and configuration of
resources; monitoring and maintaining the experi-
ment, including terminating it when appropriate; and
collecting measurements or other data after after the
experiment terminates. These tasks may well become
modules in an implementation of a federating con-
troller.

To accomplish these tasks, the federating con-
troller communicates with the experimenter and the
various federating controllers. These interfaces are
fixed, allowing for multiple implementations of the
components or evolution of the implementations.

3.1.1. Discovering Resources

The process of discovering resources is a nego-
tiation between testbeds about what resources are
available and which projects can use them. In the
simplest case, the federating controller contacts the
federated controllers at testbeds that the federating
controller knows. The federating controller asks for
resources available to the project (named in its name
space) under any additional constraints it may
enforce. Each federating testbed would reply with
available resources, named in its testbed name space.
The federating controller would then proceed with
selection.

That approach only scales to a few federations
at a time over a few testbeds — where “few” is imple-
mentation dependent — so it is important to design the
interface here for expansion. A likely more scalable
approach is to include resource brokers that assist in
collection and allocation of resources.

Though the broker model is different, the inter-
face between broker and federating controller is
essentially the same as that between federating con-
troller and federated controller. In either case, a set of
resources meeting a set of constraints is requested and
provided. The broker/federated controller interface is
also similar, whether the federated controller is speak-
ing to a broker or a controller.

Careful design of this interface — and of all the
interfaces in this section — supports evolution of the
system as a whole.

3.1.2. Experiment Composition and Allocating
Resources

This document discussed earlier how the nature
of the resource allocator depends partially on the
amount of information that a testbed releases through
its federated controller during resource discovery.
Using either distributed or centralized allocation, the
federating controller guides the process, identifying
which clusters of resources can be connected and
which parts of the allocation can be made at federated
controllers. As all these actions are taken on the part
of a project creating an experiment, the federating
controller’s trust in the project entity, perhaps com-
bined with knowledge and trust in the testbed origi-
nating it, will be controlling.

Again, it is instructive to think about how the
allocation process changes as the number of federated
experiments and testbeds grows. With only a few
testbeds and a few experiments, the simple resource
discovery model is mirrored by a simple resource
allocation model. The federating controller breaks the
experiment into pieces that can be realized in the few

clusters of federated resources it has found, and asks
the local federated controllers to allocate them. Con-
fi gurations in the network controller connect the allo-
cations.

As more testbeds and requests appear, it
becomes clear that more incremental and deadlock-
resistant algorithms are going to be required. The
possibility of experiments that are composed of small
allocations from many testbeds is a challenge case.

In any case the allocations will be distributed
among testbeds and the federating controller is
responsible for monitoring the experiment creation,
perhaps correcting minor faults, and presenting the
experimenter with the established experiment.

Picking the right scalable resource allocation
algorithm is not the point of this document, but recog-
nizing that the federating/federated controller resource
allocation interface must be both small enough to be
simple and expressive enough to alow multiple
resource allocation implementations is. The interface
will need to support requests to create experiment seg-
ments that a federating controller can string together
into shared experiments. Some form of pre-allocation
or locking of resourcesis also likely to be useful, with
deadlock avoidance help as well. Again, the right
interface will simplify interposing brokers or other
scaling entities.

3.1.3. Configuration of Resources

Discovery, composition, and allocation all
manipulate testbed level objects into a topology speci-
fi ed by the user. Confi guration of the resources con-
structs the experiment-level name space, as well as
actually creating the local and inter-testbed intercon-
nections. The federating controller's role in this is
primarily limited to making the experiment name
space available to the various federated controllers as
well as providing access to the local resources that
will berolled into that name space.

This interface provides the shape of the experi-
ment name space and the initial contents of the shared
fi le space. The shared fi le space may be replicated in
various testbeds for performance or security reasons
and copies of images from this testbed's name space
may need to be transferred or staged as well.

We discuss this process more bel ow.

3.1.4. Experiment Termination

When a federated experiment terminates, the
federating controller must collect any experiment state
left in other testbeds. Such state may include mea
surements, logs for debugging, or checkpoints. State

may come to be on remote nodes directly through
being written to nodes storage resources or being
written to parts of the shared fi le space.

Generally this process is the reverse of the
process of providing confi guration information.
Rather than providing the seed information for node
and testbed confi guration, the federating testbed is
collecting information from those spaces. Each seed-
ing operation discussed above must have a reverse
operation to collect changes from the seeded object.

3.2. Federated Controller

Much of the division of function between the
federating controller and the federated controller has
been addressed above, so this section will focus on the
relationship between the local controller and the fed-
erated controller. Of particular concern is the creation
and management of the experiment name space.

The federated controller interfaces to the feder-
ating controller and to the local controller. It is
responsible for releasing information about available
resources to qualifi ed federating controllers; allocat-
ing local resources, especially inter-testbed connec-
tions; confi guring local resources to create the experi-
ment environment; and determining when an experi-
ment has terminated and cleaning up the local por-
tions of that environment.

3.2.1. Discovery and Allocation

The federated controller acts as a gatekeeper for
information about testbed resources during discovery
and converts inter-testbed allocation requests into
local controller actions during allocation. The feder-
ated controller queries the local controller about avail-
able resources and uses trust information about the
project (and the testbed hosting the project) to deter-
mine how much information to release. This requires
an interface to the local controller to discover this
information, and the previously discussed interface to
communicate with the federating controller.

Allocating resources to an experiment consists
largely of proxying the federating controller’s requests
for sub-topologies into local allocation requests. All
operations that the federating controller can request
must be converted by the federating controller into an
equivalent local request. Potentially, an appropriate
federated controller could interface a non-DETER-
based testbed into a DETER federation if a proper
translation could be found.

3.2.2. Configuration

The most intricate process of the creation of a
federated experiment occurs at this phase, managed

by the federated controller proxied into the local con-
troller. The federating controller provides the parts of
the experiment name space to be managed by this
controller, the parts of the testbed name space to be
imported into the experiment name space, and the
testbed interconnection information to confi gure the
connectors. From this the nodes are confi gured and
the name space created.

There are many entities in the experiment name
space, but node names are intuitive and instructive to
consider. Each testbed will be constructing part of the
name to node mapping that the experimenter will see.
Each testbed will be establishing part of the node
name space in paralel that must fi t seamlessly with
the others. Proper confi gurations of the name space
must be made so that users in one testbed can resolve
names established by another.

While the node name space is created from the
specifi cation, parts of the experiment name space
must be imported from the federating controller’s test-
bed name space. The shared fi le space on the origi-
nating testbed may contain software or confi guration
matter that is used in the experiment. For trans
parency it should be made available to the federated
experiment. A federating controller will import that
file space, for example by staging it localy or by
accessing it from the originating testbed.

Importing the fi le space demonstrates the rela-
tionship between local controller and federating con-
troller clearly. The federating controller decides how
to incorporate the shared space — remote access or
staging — and does the work to mesh that decision
with the local controller’s features. Once the set-up is
accomplished, the local controller effects the connec-
tion. Different local controller features would require
different federated controller implementations.

The federating controller is also responsible for
confi guring the local network connectors to intercon-
nect this sub-experiment to those allocated in other
testbeds. Again, this is done by proxying connector
confi guration into the local controller. The routing
information can contain information from other test-
bed name spaces — the name or address of the other
connector — and there is also experiment functionality
to confi gure.

3.2.3. Clean Up

Local controllers will implement different poli-
cies for reclaiming resources; federated controllers
must mediate between these policies and the expecta
tions of the federating controllers. A federated con-
troller may occasionally confi rm that an apparently
idle resource alocated to a federated experiment

remainsin use, or inform a federating controller of the
loss of resources due to error or intervention.

When a federated experiment is being torn
down, the federated controller assists in returning
experiment data to the federating controller. For
example, if the shared fi le space has been staged and
the local copy written to, those changes may need to
be propagated back. DETER also implements logging
facilities that must have their output returned to the
experimenter. Once local data has been returned, the
federating controller releases the local resourcesto the
local controller.

3.3. Network Connectors

The network connector has the most straightfor-
ward function of the three federation components. It
interacts with the inter-testbed name spaces in that its
routing confi guration may be based on that informa-
tion, but primarily it forwards, protects, and monitors
inter-testbed traffi c on behalf of the federated experi-
ment. Its confi guration is carried out by the local con-
troller based on information proxied through the fed-
erating controller.

In addition to forwarding traffic between
testbeds, connectors may protect the experiment from
eavesdroppers or protect the network from experi-
ments. Experiment protection may take the form of
simple encryption of traffi ¢ or of full traffi c masking.
Network protection can be traffi c policing or more
sophisticated intrusion detection mechanisms.
Because the confi guration of the connector is accom-
plished locally, the range of choicesis broad, but must
be expressible in the higher level interfaces.

3.4. Architecture Summary

To summarize, the components of the architec-
ture and their interconnections are:

Federating Controller

Discovers remote resources from federated con-
trollers and formulates the federated experiment
layout. Requests and confi gures resources in
cooperation with the federating controllers.
Interfaces with federating controllers to request
avallable resources, to recelve possible
resources, to confi gure federated resources and
to tear down experiments.

Federated Controller
Communicates with the local controller to turn
Federating Controller requests into loca
resource alocations and confi gurations. The
key interfaces are defi ned in Section 3.4.

Network Connector
Connects the networks of federated testbeds.
Configured by the local controller in response
to commands from the federated controller.

4, Conclusions

This document has presented a basic draft
architecture on which to hang implementation strate-
gies. While we believe the architecture to be basically
sound, the primary purpose is to put the ideas out in
the open and to get consensus on a vocabulary and a
framework to make forward progress. Specifics of the
architecture need to be hammered out and some
refinement of the parts presented is inevitable. We
argue that defining interfaces that represent consensus
between the various testbeds that intend to federate
and a commitment to keep those interfaces stable is
central to a successful federation effort.

The straw man architecture here provides a set
of components that isolate the basic attributes of
resource discovery, resource allocation, local configu-
ration, testbed interconnection, and coordinated
cleanup. Though these are related, they are isolated
enough from one another that forward progress is pos-
sible.

References

1. Terry Benzel, Robert Braden, Dongho Kim, Clifford neu-
man, Anthony Joseph, Keith Sklower, Ron Ostrenga, and
Stephen Schwab, “Experience with DETER: A Testbed for
Security Research,” Tridentcom, Barcelona, Spain (March
2006). available as ISI-TR-2006-613 from
http://www.isi.edu/deter/documents.html.

2. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb,
and Abhijeet Joglekar, “An Integrated Experimental Envi-
ronment for Distributed Systems and Networks,” Proceed-
ings of the Fifth Symposium on Operating Systems Design
and Implementation, pp. 255-270, USENIX, Boston, MA
(December, 2002).

3. University of Southern California/Information Sciences
Institute, “The Deter Project,” http://www.isi.edu/deter
(2005).

4. University of Utah, “The Emulab Project,” http://www.emu-
lab.net (2002).

5. University of Wisconsin, “The Wisconsin Advanced Inter-

net Laboratory,” http://wail.cs.wisc.edu (2007).

6. ITU-T Rec. X.667: Information Technology - Open Systems
Interconnection - Procedures for the operation of OSI Reg-
istration Authorities: Generation and registration of Univer-
sally Unique Identifiers (UUIDs) and their use as ASN.1
Object Identifier components, International Telecommunica-
tions Union (September 2004).

