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Abstract—In this paper, we study the scanning activities clues about the “intentions” of the scanners. In partigular
towards a large campus network using a month-long netflow we are interested in answering the following question: are
traffic trace. Based on the novel notion of “gray” IP space ,psarved scanning activities likely mere remnants of some
(namely, collection of IP addresses within our campus netw& u s, . .
that are not assigned to any “active’ host during a certain glo_bal background radiation,” or reflections of mahcmu_;
period of time), we identify and extract potential outside sanners ~actions that include our own network as part of more specific
and their associated activities. We then apply data mining ad targets?
machine learning techniques to analyze the scanning pattes of To address this question, we propose a novel technique,
these scanners and classify them into a few groups (e.g., fsed IP gray space analysisbased on the notion of “gray” IP

hitters, random address scanners, and blockwise scannersjhe dd Intuitivel P add th withi
goal is to infer the scanning strategies of the scanners so asdddresses. Intuitively, gray addresses are those In

to provide some assessment of the potential harmfulness of (Campus/enterprise) network that are not assigned to any
these scanning activities — for example, whether the obsezd live host for the entire duration of a given time period,
scanning activities are simply part of background radiatin of say, a particular day, the collection of which is referred to
global random scanning or more focqsed scqnnlng targeted at as the IPgray spaceof the network. By definition, any
our campus network. This is an on-going work; we report some . - h . )
preliminary, yet promising results obtained so far. incoming trafflc_ towards gray IP addresses is “unwanted]’ an
thereby potentially “suspicious.” Because gray IP addigss
|. INTRODUCTION are in general randomly distributed within a network, it is
Cyber attackers often resort to scanning for reconnaigsa@xtremely hard for an outside scanner to predict and thus
— looking for certain services or hosts with certain vulreravoid them. We use this key observation to develop several
bilities to attack or compromise — and for spreading malwaleuristics (see Section II) for identifying outside scamsne
such as worms, viruses or spams. From the perspective dhat engage in “sustained” scanning activities. We then ap-
campusor enterprise networkwhile many scanning activities ply data mining/machine learning techniques to study their
observed on such a network may simply reflect the “backeanning behaviors. In Section Il we classify scanners int
ground radiation” [1]-[3] of various Internet-scale ramdo three categoriesfocused hitters random address scanners
scanning activities, remnants of past worm/virus outhbsealand blockwise scannerdy analyzing their address selection
or other malware activities on thglobal Internet at large, strategies. In Section IV we explore several features tihéur
some could be results of moitargeted reconnaissance orinvestigate the observed scanning patterns (or “footgijruf
stealthy attack activities aimed specifically at the saith-ca scanners, and attempt to infer whether the observed s@annin
pus/enterprise network. The latter is particularly wame activities are merely part of global “background radiation
and warrants closer scrutiny. In either case, monitoring areflections of actions that likely target more specificaliyar
analyzing scanning activities is a crucial componentinvogk own network. The ultimate (and perhaps unattainable) goal
intrusion and prevention, both to protect individual netikgo is to infer the plausible “intentions” of scanners and asses
against malicious outside attacks and to mitigate and st potential harmfulness of their actions. As part of oirgo
global outbreaks of worms, viruses and other malware i theesearch towards this goal, we report some preliminary, yet
early stages. An important goal of the analysis of scannipgomising results.
.aCt'V't.'eS is to infer and uncover the scanning s_trategrm; 4 11, IDENTIFYING SCANNERS VIA GRAY SPACE ANALYSIS
intentions of cyber attacks, the knowledge of which can guid ] ) o ]
us devise more effective monitoring, detection and defensen this section, we first introduce the novel notiongray
mechanisms against cyber attacks. This, clearly, is a dnynt'P addresses, and present a simple heuristic to extractigray
task, given the very limited information we have regarding t 2ddresses — collectively referred to as the gfy space(of a
observed scanning activities. given network) — from our month-long netflpw traces cz?\ptured
This paper constitutes a modest step towards this chfpm our campus network. Then, we describe an algorithm for
lenging goal. We apply data mining and machine |eammaentlfy|ng potential scanning traffic by analyzing theieities
techniques to identify and classify various scanning v O the IP gray space.
observed on our campus network, and explore a numtr Extracting the IP Gray Space
of features to characterize and infer scanning patterns andVe first present a formal definition of gray IP address.
strategies of outside scanners that might reveal some luséfet I denote the collection of all IP addresses of a network
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Fig. 1. IP gray space properties.

under consideratior, the starting time of a time period of address sub-block) varies across the address sub-bloitks, w
interest, and’ the length of the period. We say that an (insideg few having a gray percentage below 10%.
IP addresg; € I is agray (or inactive) address over the time Although the size of the IP gray space constitutes over 70%
period [to, to + T if and only if no traffic originating from of the total IP address space of the campus network, the IP
g is observed durindt, — 7,to + T + 7] for some fixedrl. gray space does vary from day to day: some gray IP addresses
We useG to denote the collection of all gray IP addressdsecome active from one day to another, while others change
within the time period, i.e., the 1Bray spaceof the network from active to gray. About 57% of the IP addresses stayed
during the time periodto,to + T]. The complementary set, gray in the entire one month of Feb. 2006. Furthermore, we
A =1-G, is referred to as thactive spaceln other words, observe that despite the fact that gray IP addresses do not
for anya € A, there is traffic originating frona at some time generate any traffic to an outside host throughout an entire
during [to — 7,t0 + T + 7]; thusa is likely assigned to an day, they invariably receive traffic from outside hosts. datf
active host during the time period. In this study, we Feto we observe that typically within a few hours from the start
be 24 hoursty the zeroth hour of a day, andone hour. (zeroth hour) of a day, all gray IP addresses are “touched”
We apply the heuristic above to the netflow data collectdry at least one outside host! Fig. 1(c) shows the percentage
at the border router of the University of Minnesota campus gray IP addresses touched by at least one outside host as
network during Feb. 2006. The data set includes all bifme goes by on Feb. 06, 2006 — in less than four hours all
directional traffic flows between inside hosts and outsidghogray IP addresses are touched by an outside host. Moreover,
during the entire month. on 2/6/2006, nearly 360K outside hosts touch at least one gra
Our campus network owns three class B (/16) IP addréésaddress inside our campus network!
blocks, with a totaB x 216 = 196608 IP addresses. We found
that each day in Feb. 2006, over 70% of the addresses Breldentifying Scanners and their Scanning Activities

gray (“inactive”) over the entire day. Fig. 1(a) depicts the Gjven the extracted IP gray space, we applywe-step
percentage of gray IP addresses each day for the entire mi;%’bess to identify potential scanners and their assatiate
of Feb. 2006. To illustrate how the gray IP addresses are dj anning activities. The ideas behind this two-step pces
tributed among the IP address blocks of the campus netwogke as follows. Intuitively, without any knowledge of the IP
Fig. 1(b) illustrates the distribution of gray IP addresisethe gray space of a network, an outside scanner that generates
256 “class C" (/24) address sub-blocks within one of thesclagyficient scanning traffic would inevitably touch one or mor
B (/16) address blocks. The x-axis represents each clasb-C Stay IP addresses. Hence we consider any incoming flow that
block, while y-axis represents each host in a correspondigg,ches any gray IP address (referred to agray flow) as
sub-block. A point on the graph stands for an active hogbtentially suspicious and the outside host generating suc
on 2/6/2006. All the blank space belongs to IP gray spacgay flow as a potential scanner. Among them, we narrow
(The gray IP address distribution looks similar also for th§own to those withsustained suspicious activitiethose that
other two class B address blocks of our campus ”etworﬁénerate enough traffic towards our campus network, of which
We observe that the gray IP addresses spread over the erfifgnsiderable portion touching the IP gray space—and look f
class B address block, and they are unevenly distributeth@m@ynether certain ports (either destination or source pats)
different /24 address sub-blocks: although quite a numbggedrepeatedlyin those suspicious activities from an outside
of /24 address sub-blocks are entirely gray, overalldh®y host. These ports, referred to @®minant scanning ports
percentagg(i.e., the percentage of gray IP addresses in a /Z4sps), represent the likely services or exploits (i.entpo
with vulnerabilities) that the outside host is interestedand

'1I_n th_is definition, to be _conservative, we require tha_t th'erazls_,o no t_raffic is thus Scanning for. Using these DSPs, we can then separate

originating fromg for a period ofr before and after the time period of |nterestthe scanning activities of the said outside host from otffer (

to provide additional assurance thats indeed unlikely to be assigned to any ) s ’
host over the said time period. any) traffic from the same host: this is done by excluding any



incoming flow from the outside host that does not use any $026, 1434 as well as a few popular service ports such as 25,
the DSPs as the corresponding source/destination pores. B0, 443.
details of the two-step process are given below. - — - -
In this study, we regard outside hosts that generate at Ieélgonthm 1 Identifying dominant scanning ports
100 incoming flows over a day, 10% of which are gray: paamacecmam .2 5.
flows as those with sustained suspicious actitiese use 2; compute pro. digtlg}t ane :leéJ(prt) from GF (h);
the notationO, to denote the collection of these hosts. (Fok. " g p;fj o 'highést)llpzi;; 0o
example, for the day of 2/6/200@);| = 7468.) For each 6@  DSP:=DSPUprt; _
outside host € O,, let GF(h) denote the collection of gray 4 :223:@;5‘::3 ?rf)s,ﬁcgi‘;'v'wti from GF(h):
flows generated by.. The destination portsigtPrtin short) 9:  computed = RU(prt) from GF(h);
used by gray flows it F'(h) induce an empirical distribution: 224 whie
for eachdstPrt i, p; := m;/m where m; is the number
of gray flows in GF(h) with dstPrt ¢, andm is the total

number of gray flows irGF(h), m = |GF(h)|. We apply an

Given the source or destination DSP’s identified using the
gray flows of an outside host, in the second step, we use

: . ; . , ; them to separate incoming flows touching the active space
information theoretical metridRelative UncertaintfRU) [4], (i.e., incoming active flows) from the same host that are

whlch.prc_)wd.esameasure pfvanety, unl_formltypr randpsme“kely involved in the same scanning activities from other
of a distribution, to determine and identify dominant saagn incoming active flows of the host. The intuition here is that

(destmatmn)_por_ts (if they exist). Using the above notas) since an outside attacker does not know which IP addresses
RU (dstPrt) is given by of a network are gray or active, the scanning flows he or
- Y pilogp; sheT generates using the DSP’s may als_o touch p.ortionlof the
icdstPrt € [0,1] 1) active space. For e_achl € O, we co_nS|der any incoming
logm B active flow fromh with any of the dominant scanning source
or destination ports as part of the scanning activities ef th
. . ) : outside scanner. Fat € O, we useSF(h) to denote the
dominate in the gray fl(_)ws_ .Of an out5|de_ ha'st Wh'l_e set of the scanning flows df, which include both thective
RU(dstPrt) close to 1 signifies that there is no dom'nanéndgray flows of 7, that use the ports in its DSP's. We use
dstPrts. Similarly, we can define the relat.ive_ un_certaintyOF(h) to denote the remainingctive (only!) flows of A —
RU(srcPrt), for the source portsfcPrf distribution of referred to aother flowsof h. We define the scanning flow
GE(h). ratio of h as v, — |SF(h)|/(|SF(h)| + |OF(h)[), which
To illustrate how RU(srcPrt) and RU(dstPrt) can beé jngicates how dominant the scanning flows are in the outside
used to determine the existence of DSP's in the gray floWsqys interaction with the network in question. Fig.2(d)te
of an outside host, we use the flow data of 2/6/2006. Flg.Z(@e cumulative distribution ofy, for all 7468 hosts inO,
shows a 3-D plot withiU (srcPrt) and RU (dst Prt) in the x- using the flow data of 2/6/2006. For nearly 80% host®)in
y pl_ane, and th.e z-axis showing the number of host3,jmvith s = 1, suggesting that these hosts have no other meaningful
a given RU pair(z, y). We see that nearly 99% of all hosts inneaction with hosts inside our campus netwestcept for
O, have either dominant scannigigstinationor sourceports generating scanning traffic touching both the gray and activ

(with eitherRU (dstPrt) or RU (srcPrt) < 0.3). AIQOMithm 2 b5 gresses of the networkhe remaining 1166 hosts have
presents_ a heurlsnc procedure for _extr_actlng DSP's frafreei varying mixture of scanning flows and other flows.
the destination or source port distributié,, of hosth € O,.

The algorithm starts with an emptpSP set. It iteratively [1l. CLASSIFYING SCANNERS

finds the port with the current highest probability, adds the with the heuristic in the previous section, we extract tgtal

port into DSP and removes all the flows associated with 111,179 distinct scanners in one month (around 7000 every-

from GF'(h). The algorithm terminates until either the numbegay). In this section, we investigate their scanning bedravi

of the remaining=F(h) is less than 10 oRU (prt) in GF(h)  in detail. Based on different address selection strategies

is greater than3, (we chooses, = 0.7). In other words, classify the outside scanners infocused hitters random

the algorithm stops when there are not enough flows leftidress scannerandblockwise scanneras described below.

or the ports in the rest of the flows are nearly uniformly )

distributed. Fig.2(b)(c) show the top 20 DSP source ports Focused Hitters vs. Random Scanners

and destination ports extracted using this algorithm aedt th An outside scanner could be scanning hosts inside our

frequency, which include ICMP scanning (port 0) and welleampus network randomly, searching for certain services or

known exploit (UDP/TCP) ports such as 137, 139, 445, 1028yInerabilities; or he/she could be interested in a group of

specific hosts (e.g., web or email servers) that were oldaine

2Clearly these numbers are somewhat arbitrary. Our anafsisvs that through other information (e.g., DNS, URLSs), and probe them

a small portion of outside hosts generate a large p(_)rtionrav flows. For  for their aliveness or open ports. To distinguish these two
example, on 2/6/2006, although only 2% of the outside hoste@te more

than 100 flows, of which 10% touching the IP gray space, theyriute to types of _scan_nin_g activities, we look at the diStribgtionm_
98% of the total gray flows. targets (i.e., inside hosts) touched by the scanning traffic

RU (dstPrt) :=

where RU (dstPrt) close to 0 suggests one or a felstPris
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SF(h) for each outside scannér For this, we measure theexist a number of “outliers”, suggesting that in addition to
relative uncertainty(RU) of the dstIPs of flows in SF(h), purely random address selection, some other address selec-
RU (dstIP), defined analogously using Eq.(1). tion strategies are also used. As will be shown below, we
Fig. 3 shows the distribution oRU (dst/P) in SF(h), can separate random scanners primarily into two categories
where we see that a large majority of outside scanners hamedom addresscanners who select addresses randomly from
RU(dstIP) >= 0.8 (6650 out of 7468), namely, they ran-a target address space (e.g., a class B address space of the
domly touch each target once or a few times. We refer to thddMN network as is used in this paper), apldckwisescanners
asrandom scannersFor the remaining hosts (818), we findwho first select sub-blocks or subnets (say, between /32 and
that most of these scanners repeatedly probe a small numidé) within a target address space, and then either randomly
(typically fewer than 20) of inside hosts, seemingly to testr sequentially access addresses in each sub-block. In the
whether they are alive. We call these scanriecsised hitters followings we present a formal method for separating these
From the DNS records, we find that many of tgeay IP types of random scanners. The basic idea is that if a random
addresses touched by these focused hitters have hostnasgesner chooses addresses randomly from the entire target
indicating that they were email servers, web servers, bttt., space, then these addresses must also appear randomigdelec
for whatever reasons, were out of service on 2/6/2006. Mdirem any subspacef the target space. We apply this idea to
in-depth investigation of these focused hitters (e.g., thia separate blockwise scanners from random address scanners.
reverse DNS lookup and public spammer database queriestonsider a target address space (say, a /16 class B address
reveals that most of these scanners are email spammers pwathin the UMN network) withNV addresses. For a fixed block
ing for email servers, while others are web crawlers and p2ge s, where16 < s < 32, let M, denote the number of
hosts. A detailed study of the focused hitters can be found /s address blocks (ofs subnets) of the target space (given

[5]. a class B target space and= 24, there areM, = 256
sub-blocks of /24). Denote an observed scanning sequence
B. Random Address Scanners vs. Blockwise Scanners  of a scanner asi,as,--,a,. Fori = 1,...,n — 1, define

For the remainder of this paper, we focus our attentiof@i>@i+1) = 0 if a; anda; 1, belong to the samgs block, 1
on random scanners, analyzing their scanning strategids Qerwise. Then thebserved average E"f’le differenge.r.t.
attempting to infer their intentions, in particular, wheth s) of the scanning sequence i3, = = % Note
observed scanning activities are merely reflections of kbacthat if a random scanner selects addrégées randomly from the
ground radiation,” or something more sinister that targeten : y
specifically at our campus network. As a first step, in thi ntire target address space, then for aml6 < s < 32,

subsection, we analyze tlagldress selection strategiesing the probaplhty that two consecutive addresseainda; n
“ e . the scanning sequence belong to the sgmaddress block is
the “footprints” of the random scanners. In particular, w

: . . : ? M. Hence theexpectedverage block difference sandom
are interested in determining how an outside scanner sele

addresses inside our network for scanning. Ia-liednr((:a(;5 S?c?ra ;girjofggéizs:c;n;;r/%s a:rd(li/é; ;flt)r{(ygl.ock
We define thegray ratio of a network (e.g., the UMN X » 'eg

. .. sizes, the difference betweeP; (the observed average block
network) as the total number of its gray addresses dIVId% .
. : . - ditference) andE[D%*¢] should likely be small. Therefore
by the total number of its active addresses (over a given time ' 5. o7
. . o we define theblock difference deviatio{BD D) as follows
period, say, a day). Given the random distribution of theygra . .
2 ) ; and use it to separate random address scanners and blockwise
IP addresses within our campus network, if an outside scange_ ..
randomly chooses addresses to scan, ekgected observed '
gray ratio of the addresses appearing in the scanning sequence
(or “footprints”) is likely to be approximately the gray rat
of the entire UMN network, which is 2.83 on 2/6/2006. s=16
Fig. 4 shows the total number of active hosts vs. gray Fig. 5 shows the distribution of BDD’s of random scanners
hosts touched by each scanner on 2/6/2006. We see that white?/6/2006, which is stronglgi-modaland clearly separates

most of the points are close to the line= 2.83x, there the random address scanners and blockwise scanners. From

3

2
(Ds — E[Dgee])?
BDD = —_ .
2 6

4
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TABLE 1l

the figure, we can classify random scanners WD <
NO. OF /16 NETWORKS ACCESSED BY DIFFERENT TYPES OF SCANNERS

0.7 as random address scanners, and those BithD > 0.7
as blockwise scanners. Replotting the gray ratio (humbkrs o

H H Total | #B=1 | #B=2 | #B=3
actl_ve vs. gray hosts) for the random address scanners again Singlephase scanneis 1367 | 1364 3 -
as in Fig. 4 shows that we have an almost perfect fit with the Multi-phase scanners| 3305 | 2669 | 489 | 147
line y = 2.83x, with nearly all outliers removed. Due to space
limitation, the figure is not shown here. interarrival time for random address scanners and bloekwis

IV. | NFERRING “H ARMFULNESS' OF SCANNERS scanners. Almost all the random address scanners have an
average interarrival time greater than 1 second, wherelys on

I_n _th|s_ se_‘ctlon, we try to mferwhetr‘\‘er an observed §ca,nn|%% of the blockwise scanners have an average interarrival
activity is likely a mere reflection of “background radiatio

@aps between them. For this, we model (each phase of) a
scanning sequence as a Poisson process with its intetarriva
time represented by an exponential random variablevhere

TABLE | P(X > t) = e ™, and \ represents the scanning speed.
NO. OF /16 NETWORKS ACCESSED BY DIFFERENT TYPES OF scanners 10 determine and separate the phases, we do a hypothesis
test on the interarrvial timeX by choosing a threshold

of the scanning activities. This is still on-going researuére
we report some preliminary yet promising results.

Total | #B=1 | #B=2 | #B=3 -
Random address scanngr 1378 518 30 830 S.t. P(X > T) < (_l' where o __0'01‘ I_f X _> T_' then
Blockwise scanner | 4672 | 4033 | 492 | 147 the chance ofX being a normal interarrival time is below

1%. In other words, there is a statistically large gap betwee

Since the UMN campus network consists of theeparate two consecutive scans, and thus we regard them as separation
class B address blocks (128.101/16, 134.84/16, 160.94/1@)two distinct scanning phases. (To eliminate possiblsefal
we treat them as if they were three separate “telescopes”pmsitives, we also ensure that those two scans belong to
vantage points for monitoring the global Internet actasti two different address sub-blocks.) Table 1l shows the total
Intuitively, if a scanner performs sustained scanningvées number of class B subnets toucheddiggle-phasers. multi-
targeting the global Internet (instead of the UMN networkphaseblockwise scanners. Almost all the scanners who access
we are more likely to observe them at more than one vantagere than one class B networks are multi-phase scanners.
point. Furthermore, for the random address scanners iaggetExamining the distribution of the average time lapse betwee
the global Internet, the time lapse (i.e., interarrival @m phases of multi-phase scanners (Fig. 6), we see that nyajorit
between two consecutive observed scans (from the saaighem have an averageter-phase time lapsef more than
scanner) would in general be relatively large, reflecting tHl second, consistent with that of random address scanners.
speed of scanners. For blockwise scanners that target th€ombining the above observations, we find that observed
global Internet, the time lapse between two consecutivigsvisscanning activities of random address scanners are likely
of different address sub-blocks would be relatively larpe. reflections of background radiation. This conclusion isoals
other words, the scanning sequence of a blockwise scanner barne out by the port information: nearly all ports used
be separated into distingthases each touching one addressare known exploit ports such as slammer (UDP port 1434)
sub-block, with relatively large time gaps between them. or Dabber worm (TCP port 9898). Among the blockwise

Table | shows the number of class B subnets touched byanners, the multi-phase blockwise scanners are aldyg like
different types of scanners on 2/6/2006. We see that a preflections of background radiation, and again a large ntgjor
dominant majority of blockwise scanners touch only onesclasf the ports used contain known exploits. On the other hand,
B subnet, while more than half of random address scannsisgle-phase blockwise scanners almost always touch oy o
touch all 3 of them. Fig. 6 shows the distribution of the agera class B subnet, and are plausibly targeting only our network



TABLE Il
FEATURE DISTRIBUTIONS OF SCANNERS ON NOABLOCKED PORTS

Total Responses| Other Flows | Overlapping Targets| Re-visits (2/7/2006)| Re-visits (2/8/2006)
Random address scanners 239 35 (14.6%) | 92 (38.5%) 41 (17.2%) 126 (52.7%) 102 (42.7%)
Single-phase blockwise scannefs 10 6 (60%) 7 (70%) 6 (60%) 1 (10%) 0 (0%)
Multi-phase blockwise scanners 96 46 (47.9%) | 58 (60.4%) 50 (52.1%) 32 (33.3%) 32 (33.3%)

To further assess the plausible intentions and potentiatha or different ports, possibly due to the fact that these sicann
fulness of outside scanners, we consider several additiohasts are infected with malware or part of botnets that perfo
features that go beyond the analysis of the “footprints” a&peated global scanning activities. Only one single-phas
the scanners. These features include i) the existenceaf likblockwise scanner was observed again on 2/7/2006 scanning
responselicited by scanning flows, ii) (potentiatpllow-up different port, and none on 2/8/2006.
activities as measured by both the existenceotifier flows
(to active IP addresses) in addition to the scanning flows ) ) _ L
from an outside scanner and the existenceowérlapping In this paper we studied _the scanning activities towards
targets between the scanning flows and other flows of th%_Iarge campus network using a month_—long n?FﬂOW data,
scanner, and iiijje-visitsof outside scanners in other days. Fopith the goal to infer the scanning strat?gles and mtﬂemi’io .
these features, we consider only observed scanning eivi®f Scanners and thereby assess the “harmfulness” of their
on ports that are not blockedby our campus network. Our actions. Towards this goal, we mtroduced_ the notion of IP
campus network blocks 74 ports that solely correspondi®y SPace, and developed a novel technique—IP gray space
to reported worms and other exploits, which in fact includ@_nalys's_to_ identify pqtenUaI scanners and Stu_dY the_amsc
a majority of scanning activities observed. In other word&!n9 pehawors. In particular, we applied data mining/niaeh
scanning activities on these blocked ports will not eliaiy a Iearm_ng to aqalyze the scanning patterns of_scanners and
response from any inside (live) host, and nor will any foHovxFlaSS'fy them into three categ(_)rles: focused hitters, oand
up activity ensue as a result. There are totally 345 randcﬁﬂdress scanners, and bloc_:kW|S(=T scanners. We also_ explored
scanners with sustained scanning activities on non-bibckEeVeral featu“res to_fur,'fher investigate the observed smgnn
ports that are observed on 2/6/2006. We hence attemptpf’i')tterns (or “footprints”) of scanners, _a_md attempted ferin
infer and assess the potential harmfulness of these scganﬁ?ﬁ‘ethe“r the observed scanning activities are mere!y part of
activities. To measure the responses, we define a respons8/@h@l “background radiation” or are reflections of actioimat
a TCP scan as an outgoing flow (from an active inside e _Ilkgly targeted more specifically at our own network_. Our
address) that matches the TCP scan, and contains at leaBfeiminary (yet promising) results suggest that 1) arialys
packets with the average packet size greater than 48 (we wahobserved scanning behaviors can potentially reveal the

to filter pure RST responses); while we define a responsePgusible “intentions” of scanners; 2) scanning actieitiar-
a UDP scan as an outgoing flow matching the UDP scan. geted perhaps more specifically at our own network are likely

h q blocked more harmful and thus warrant closer scrutiny. As part of our
Among the 345 random scanners on non-blocked ports, 259 4ing research, we are exploring additional featuras an

of them are. random addre_ss scanners, 1Q6 are blockwise s lying more sophisticated machine learning techniqoes t
ners, of which 96 are multi-phase blockwise scanners, and J9.¢0rm cross-feature correlation analyses, developbaked

b]?lng single-phase scanr;eri. T?Ible Il tabulates tfheeeg:ioet predictive models (see, e.g. [6]) for classifying scannars!
0 responsfes, existence Od ot :r cf>|vvs, emstegcio ove bgp conduct more in-depth and long-term follow-up investigasi
targets (of scanning and other flows), and the number gf .onning and other related activities.
the scanners observed again (i.e., revisits) on 2/7/20@6 an
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