
The Phantom Tollbooth: Privacy-Preserving Toll
Collection in the Presence of Driver Collusion

Sarah Meiklejohn (UC San Diego)
Keaton Mowery (UC San Diego)
Stephen Checkoway (UC San Diego)
Hovav Shacham (UC San Diego)

1

Motivation: how tolling works today

2

Motivation: how tolling works today

2

Motivation: how tolling works today

2

Motivation: how tolling works today

2

This process leaves a lot to be desired in terms of flexibility:

Motivation: how tolling works today

2

This process leaves a lot to be desired in terms of flexibility:

• How do we charge more according to the time of day?

Motivation: how tolling works today

2

This process leaves a lot to be desired in terms of flexibility:

• How do we charge more according to the time of day?

• Or as drivers enter city centers?

Motivation: how tolling works today

3

Motivation: how tolling works today

3

Motivation: how tolling works today

3

Motivation: how tolling works today

3

Core tension between privacy and desire for more flexible toll pricing

Motivation: how tolling works today

3

Core tension between privacy and desire for more flexible toll pricing

• In this talk we’ll see our system, Milo, which allows for fine-grained pricing
policies without sacrificing drivers’ privacy

Motivation: how tolling works today

3

Core tension between privacy and desire for more flexible toll pricing

• In this talk we’ll see our system, Milo, which allows for fine-grained pricing
policies without sacrificing drivers’ privacy

• In the process, we strongly guarantee that drivers remain honest

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

• Fine-grained policy: uses small road segments (where,when)

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

• Fine-grained policy: uses small road segments (where,when)

• Privacy: uses Tor to maintain anonymity while driver uploads segments

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

• Fine-grained policy: uses small road segments (where,when)

• Privacy: uses Tor to maintain anonymity while driver uploads segments

• Honesty: relies on audits wherein driver is asked to verify locations

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

• Fine-grained policy: uses small road segments (where,when)

• Privacy: uses Tor to maintain anonymity while driver uploads segments

• Honesty: relies on audits wherein driver is asked to verify locations

USENIX Security 2010: PrETP [BRTPVG]

• Fine-grained policy: again uses small road segments

• Privacy: drivers commit to segments in a way that eliminates need for Tor

• Honesty: again relies on audits

Previous work [BKS05,BC06,TDKP07,dJJ08,...]

4

USENIX Security 2009: VPriv [PBB]

• Fine-grained policy: uses small road segments (where,when)

• Privacy: uses Tor to maintain anonymity while driver uploads segments

• Honesty: relies on audits wherein driver is asked to verify locations

USENIX Security 2010: PrETP [BRTPVG]

• Fine-grained policy: again uses small road segments

• Privacy: drivers commit to segments in a way that eliminates need for Tor

• Honesty: again relies on audits

A potential problem: keeping colluding drivers honest

5

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

Proof of payment

A potential problem: keeping colluding drivers honest

5

In these audits, we see a challenge/response behavior:

Proof of payment

A potential problem: keeping colluding drivers honest

5

So the authority reveals to the driver the segment in which he was seen! This
information can then be shared to help drivers avoid cameras in the future

In these audits, we see a challenge/response behavior:

Proof of payment

A potential problem: keeping colluding drivers honest

5

So the authority reveals to the driver the segment in which he was seen! This
information can then be shared to help drivers avoid cameras in the future

In these audits, we see a challenge/response behavior:

Proof of payment

A potential problem: keeping colluding drivers honest

5

So the authority reveals to the driver the segment in which he was seen! This
information can then be shared to help drivers avoid cameras in the future

In these audits, we see a challenge/response behavior:

Proof of payment

A potential problem: keeping colluding drivers honest

5

So the authority reveals to the driver the segment in which he was seen! This
information can then be shared to help drivers avoid cameras in the future

In these audits, we see a challenge/response behavior:

Proof of payment
USENIX Security 2011: Milo

• Fine-grained policy: uses same small road segments (where,when)

• Privacy: drivers commit to segments in a way similar to PrETP

• Honesty: audit protocol no longer reveals locations to drivers

Outline

6

Outline

6

Cryptographic background

Outline

6

Cryptographic background Milo

Outline

6

Cryptographic background Milo

Evaluation

Outline

6

Cryptographic background Milo

Evaluation Conclusions

Outline

6

Cryptographic background Milo

Evaluation Conclusions

Cryptographic background
Commitment schemes
Zero-knowledge proofs

Blind identity-based encryption

Commitments [BCC88,P91]

7

Commitments [BCC88,P91]

7

Commitments [BCC88,P91]

7

My favorite
number is 42

Commitments [BCC88,P91]

7

42
My favorite

number is 42

Commitments [BCC88,P91]

7

42
c =

My favorite
number is 42

Commitments [BCC88,P91]

7

42c =

My favorite
number is 42

Commitments [BCC88,P91]

7

42c =

My favorite
number is 42

Commitments [BCC88,P91]

7

42c =

My favorite
number is 42

Commitments [BCC88,P91]

7

42c =

Open(c)

My favorite
number is 42

Commitments [BCC88,P91]

7

42
c =

Open(c)

My favorite
number is 42

Commitments [BCC88,P91]

7

42
c =

There are two important properties of commitments:

Open(c)

My favorite
number is 42

Commitments [BCC88,P91]

7

42
c =

There are two important properties of commitments:

• Hiding: Bob didn’t know the value in c until Alice gave him Open(c)

Open(c)

My favorite
number is 42

Commitments [BCC88,P91]

7

42
c =

There are two important properties of commitments:

• Hiding: Bob didn’t know the value in c until Alice gave him Open(c)

• Binding: Alice couldn’t change the value in c after giving Bob the envelope

Open(c)

My favorite
number is 42

Zero-knowledge proofs [GMR89,BdSMP91]

8

c =

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

Okay, I
believe you!

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

There are two important properties of zero-knowledge proofs:

Okay, I
believe you!

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

There are two important properties of zero-knowledge proofs:

• Soundness: Alice can’t convince Bob of something that isn’t true

Okay, I
believe you!

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

There are two important properties of zero-knowledge proofs:

• Soundness: Alice can’t convince Bob of something that isn’t true

• Zero knowledge: Bob doesn’t learn anything about Alice’s exact number

Okay, I
believe you!

Zero-knowledge proofs [GMR89,BdSMP91]

8

The value in
c is between 0

and 100 c =π

There are two important properties of zero-knowledge proofs:

• Soundness: Alice can’t convince Bob of something that isn’t true

• Zero knowledge: Bob doesn’t learn anything about Alice’s exact number

Zero-knowledge proofs are much more general than this, but this range proof is
the only type we will need

Okay, I
believe you!

Blind identity-based encryption (IBE)

9

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

c = Enc(“Bob”, m)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

c = Enc(“Bob”, m)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

c = Enc(“Bob”, m) “Bob”

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

c = Enc(“Bob”, m) “Bob”

skBob

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

c = Enc(“Bob”, m) “Bob”

skBob

m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

c = Enc(“Bob”, m)

m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

c = Enc(“Bob”, m) req(“Bob”)

m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

c = Enc(“Bob”, m) req(“Bob”)

resp(skBob)

m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

c = Enc(“Bob”, m) req(“Bob”)

resp(skBob)

m = Dec(skBob,c)

1. Extract skBob from resp
2. m = Dec(skBob,c)

Blind identity-based encryption (IBE)

9

Regular [S84,BF01,C01]:

Blind [GH07]:

c = Enc(“Bob”, m) “Bob”

skBob

c = Enc(“Bob”, m) req(“Bob”)

resp(skBob)

m = Dec(skBob,c)

1. Extract skBob from resp
2. m = Dec(skBob,c)

So the authority doesn’t learn which key is being extracted

Outline

10

Cryptographic background

Milo
A generic toll collection system
A look back at (adapted) PrETP

A new Audit protocol

Evaluation Conclusions

How privacy-preserving toll pricing works

11

How privacy-preserving toll pricing works

11

segments

How privacy-preserving toll pricing works

11

segments

A

How privacy-preserving toll pricing works

11

segments

A

How privacy-preserving toll pricing works

11

segments

A
B

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
segments

A
B

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
segments

A
B

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
segments

A
B

C

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
(B-C,13:02-13:03)

segments

A
B

C

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
(B-C,13:02-13:03)

segments

A
B

C

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
(B-C,13:02-13:03)

segments

A
B

C

D

How privacy-preserving toll pricing works

11

(A-B,13:01-13:02)
(B-C,13:02-13:03)
(C-D,13:03-13:04)

segments

A
B

C

D

How privacy-preserving toll pricing works

12

How privacy-preserving toll pricing works

12

OBU

How privacy-preserving toll pricing works

12

OBU
segments

How privacy-preserving toll pricing works

12

OBU

TSP

segments

How privacy-preserving toll pricing works

12

Payment

OBU

TSP

segments

How privacy-preserving toll pricing works

12

Payment

OBU

TSP

segments

How privacy-preserving toll pricing works

12

Check information and
charge driver what they owe

Payment

OBU

TSP

segments

How privacy-preserving toll pricing works

12

Check information and
charge driver what they owe

Payment

OBU

TSP

TC

segments

How privacy-preserving toll pricing works

12

Check information and
charge driver what they owe

Payment

OBU

TSP

TC

segments

How privacy-preserving toll pricing works

12

Check information and
charge driver what they owe

Audit

Payment

OBU

TSP

TC

segments

How privacy-preserving toll pricing works

12

Check information and
charge driver what they owe

Audit

Payment

OBU

TSP

TC

Check outcome of Audit to
ensure driver is being honest

segments

An adapted version of PrETP

13

An adapted version of PrETP

13

{ci,πi}i

An adapted version of PrETP

13

{ci,πi}i

Commitment
to segment

price pi

An adapted version of PrETP

13

{ci,πi}i

NIZK that the value
in ci is in the proper

range

Commitment
to segment

price pi

An adapted version of PrETP

13

{ci,πi}i

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

(where,when)

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

(where,when)

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

(where,when)

Find
commitment cj for

(where,when)

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

(where,when)
cj, Open(cj)

Find
commitment cj for

(where,when)

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

1. cj vs. (where, when)
2. cj vs. Open(cj)

3. Correct segment price pj

(where,when)
cj, Open(cj)

Find
commitment cj for

(where,when)

An adapted version of PrETP

13

{ci,πi}i

1. Verify each NIZK πi
2. Compute total price

1. cj vs. (where, when)
2. cj vs. Open(cj)

3. Correct segment price pj

(where,when)
cj, Open(cj)NIZK zero knowledge and commitment hiding guarantee driver privacy

NIZK soundness guarantees price pi is in the right range (e.g., non-negative)

Commitment binding guarantees cj is the right commitment for (where,when)

Find
commitment cj for

(where,when)

“PrETP with sugar on top”: our new Audit protocol

14

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

Blind IBE of the
opening to ci, using

(where,when) as identity

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)
resp(skwhere,when)

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)
resp(skwhere,when)

1. Extract skwhere, when

2. Trial decrypt each Ci

3. cj vs. Open(cj)
4. Correct segment price pj

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)
resp(skwhere,when)

1. Extract skwhere, when

2. Trial decrypt each Ci

3. cj vs. Open(cj)
4. Correct segment price pj

NIZK zero knowledge and commitment hiding guarantee driver privacy

NIZK soundness guarantees price pi is in the right range (e.g., non-negative)

Commitment binding guarantees cj is the right commitment for (where,when)

“PrETP with sugar on top”: our new Audit protocol

14

{ci,Ci,πi}i

1. Verify each NIZK πi
2. Compute total price

req(where,when)
resp(skwhere,when)

1. Extract skwhere, when

2. Trial decrypt each Ci

3. cj vs. Open(cj)
4. Correct segment price pj

NIZK zero knowledge and commitment hiding guarantee driver privacy

NIZK soundness guarantees price pi is in the right range (e.g., non-negative)

Commitment binding guarantees cj is the right commitment for (where,when)

IBE blindness guarantees that driver doesn’t learn segment (where,when)

Outline

15

Cryptographic background Milo

Evaluation
Implementation details

Milo’s performance
Conclusions

Implementation

16

Implementation

16

Used MIRACL [Scott] for blind IBE, ZKPDL [MEKHL’10] for commitments and
NIZKs

Implementation

16

Used MIRACL [Scott] for blind IBE, ZKPDL [MEKHL’10] for commitments and
NIZKs

Collected timing information on both a MacBook Pro (acting as the TC) and an
ARM v5TE (acting as the OBU)

Implementation

16

Used MIRACL [Scott] for blind IBE, ZKPDL [MEKHL’10] for commitments and
NIZKs

Collected timing information on both a MacBook Pro (acting as the TC) and an
ARM v5TE (acting as the OBU)

When are blind IBE operations happening?

Implementation

16

Used MIRACL [Scott] for blind IBE, ZKPDL [MEKHL’10] for commitments and
NIZKs

Collected timing information on both a MacBook Pro (acting as the TC) and an
ARM v5TE (acting as the OBU)

When are blind IBE operations happening?

• Encryption: during Payment process

• Extraction: during Audit (OBU as authority, TC as user)

• Decryption: during Audit (TC needs to trial decrypt each ciphertext)

Various measurements: time and space

17

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Time for blind IBE

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Time for blind IBE cost for OBU during
Audit is reduced

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Time for blind IBE
Size for messages
cost for OBU during

Audit is reduced

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Time for blind IBE
Size for messages
cost for OBU during

Audit is reduced

NIZK size
dominates
total size

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Time for blind IBE
Size for messages

Time for TC to perform Audit

cost for OBU during
Audit is reduced

NIZK size
dominates
total size

Various measurements: time and space

17

Algorithm 4.3: Audit, run by the TC
Input: payment tuple (m,σm), camera tuples

{(loci, timei)}k
i=1, verification key vktag

if SigVerify(vktag,m,σm) = 0 then1

return ⊥2

parse m as (tag,openfinal,{(c j,Cj,π j)}n
j=1)3

forall 1 ≤ i ≤ k do4

determine segment (wherei,wheni) for5

(loci, timei)
ski = BlindExtract(wherei,wheni)6

match = 07

forall 1 ≤ j ≤ n do8

m j = IBDec(ski;Cj)9

if m j parses as (p j;r j;0λ) then10

match = 111

if Com(m j) �= c j then12

return suspicious13

if p j �= f (wherei,wheni) then14

return suspicious15

break16

if match = 0 then17

return suspicious18

return okay19

cial for maintaining driver honesty, both individually and
in the face of possible collusions. In terms of privacy, if
the OBU and TC sign their messages in the BlindExtract
phase, then we can guarantee that no malicious third party
can alter messages in their interaction in an attempt to
learn the segment in which the driver was caught on cam-
era (or, alternatively, frame the driver by corrupting skid).
As mentioned in Section 2, whereas the cameras do take
away some part of the driver’s privacy, they are necessary
to maintain honesty; we also note that no additional in-
formation is revealed throughout the course of this audit
interaction provided both parties behave honestly. One
potential downside of this protocol, however, is that the
TC is not restricted to querying locations at which it had
cameras; it can essentially query any location it wants
without the driver’s knowledge (although the driver is at
least aware of how many queries are being made). We
believe that our system could be augmented to resist such
misbehavior through an “audit protocol audit protocol”
that requires the TC to demonstrate that it actually has
camera records corresponding to some small fraction of
the spot check it performs, much as its own audit protocol
requires the driver to reveal some small fraction of its
segments driven. This “audit audit” could be performed
on behalf of drivers by an organization such as EFF or
the ACLU; alternatively, in some legal settings an exclu-
sionary rule could be introduced that invalidates evidence
obtained through auditing authority misbehavior.

Time (ms)

Operation Laptop ARM

Creating parameters 75.12 1083.61
Encryption 82.11 1187.82
Blind extraction (user) 13.13 214.06
Blind extraction (authority) 11.21 175.25
Decryption 78.31 1131.58

Table 1: The average time, in milliseconds and over a run
of 10, for the various operations in our blind IBE protocol,
performed on both a MacBook Pro and an ARM v5TE.
The numbers for encryption and decryption represent the
time taken to encrypt/decrypt a pair of 1024-bit numbers
using the curve y2 = x3 + x mod p at the 80-bit security
level, and the numbers for blind extraction represent the
time to complete the computation required for each side
of the interactive protocol.

5 Implementation and Performance
In order to achieve a more effective audit protocol, an
extra computational burden is required for both the OBU
and the TC. In this section, we consider just how great this
additional burden is; in particular, we focus on our blind
identity-based encryption protocol from the full version
of our paper [?], as well as Algorithm 4.3 from Sec-
tion 4.3. The benchmarks presented for these protocols
were collected on two machines: a MacBook Pro running
Mac OS X 10.6 with a 2.53GHz Intel Core 2 Duo proces-
sor and 4GB of RAM, and an ARM v5TE running Linux
2.6.24 with a 520MHz processor and 128MB of RAM.
We believe that the former represents a fairly conserva-
tive estimate for the amount of computational resources
available to the TC, whereas the latter represents a ma-
chine that could potentially be used as an OBU. For the
bilinear groups needed for blind IBE we used the supersin-
gular curve y2 = x3 + x mod p for a large prime p (which
has embedding degree 2) within version 5.4.3 of the MIR-
ACL library [41], and for the NIZKs and commitments we
used ZKPDL (Zero-Knowledge Proof Description Lan-
guage) [35], which itself uses the GNU multi-precision
library [23] for modular arithmetic.

Table 1 shows the time taken for each of the unit oper-
ations performed within the IBE scheme. As mentioned
in Section 4, in the context of our system the creation
of the parameters will be performed when the OBU is
initialized, the encryption will be performed during the
Pay protocol (line 4 of Algorithm 4.1), and both blind
extraction and decryption will be performed in the audit
phase between the TC and the OBU (lines 6 and 9 of
Algorithm 4.3 respectively).

We consider the computational costs for the OBU and
the TC separately, as well as the communication overhead
for the whole system.5

5We do not consider the computational costs for the TSP here, as

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Length Time step Segments Time for TC (s)

1 mile 1 minute 2000 55.68

1 mile 1 hour 1000 33.51

2 miles 1 hour 500 10.45

Table 2: The average time, in seconds and over a run of 10, for the TC to perform a single spot check given segment lengths

and time steps; we consider only the active time spent and not the time waiting for the OBU. Essentially all of the time was

spent iterating over the segments; as such, the time taken grows approximately linearly with the number of segments. To

determine the approximate number of segments given segment lengths and time steps, we assumed that an average user would

drive for 1,000 miles in a 30-day month, or about 33 hours (1 hour each weekday and an extra 11 hours over four weekends).

Object Size (B)

NIZK 5455

Commitment 130

Ciphertext 366

Total Pay segment 5955

Audit message 494

Table 3: Size of each of the components that needs to

be sent between the OBU and the TC, in bytes. Each

segment of the payment consists of a NIZK, commitment,

and ciphertext; all the segments are forwarded to the TC

from the TSP at the start of an audit. In the course of the

Audit protocol the OBU must also send blind IBE keys to

the TC.

each user ends up costing the system between one-third

of a cent and 2 cents each month; this is an amount that

the TSP could easily charge the users if need be (although

the cost would presumably be cheaper if the TC simply

performed the computations itself). We therefore believe

that the amount of computation required to perform the

audits, in addition to being necessary in guaranteeing

fairness and honesty within the system, is reasonably

practical.

Finally, to examine how much Milo would cost if de-

ployed in a real population we consider the county of San

Diego, which consists of 3 million people possessing ap-

proximately 1.8 million vehicles, and almost 2,800 miles

of roads [16, 17, 44]. As we just saw, Milo has a compu-

tational cost of up to 2 cents per user per month, which

means a worst-case expected annual cost of $432,000; in

the best case, wherein users cost only one-third of a cent

per month, the expected annual cost is only $72,000. In

the next section, we can see how these costs compares

to that of the “naïve” solution to collusion protection;

i.e., one in which we attempt to protect against driver

collusion through placement of cameras as opposed to

prevention and protection at the system level.

6 Collusion Resistance
Previously proposed tolling systems did not take collusion

into account, as they allow the auditing authority to trans-

mit camera locations in the clear to drivers. Given these

locations, colluding drivers can then share their audit tran-

scripts each month in order to learn a greater number of

camera locations than they would have learned alone. Fur-

thermore, websites already exist which record locations

of red light cameras [37] and speed cameras [36]; one

can easily imagine websites similar to these that collect

crowd-based reports of audit camera locations. With cam-

eras whose locations are fixed from month to month, the

cost to cheat is therefore essentially zero (just check the

website!) and so we can and should expect enterprising

drivers to take advantage of the system. In contrast, Milo

is specifically designed to prevent these sorts of trivial

collusion attacks.

In addition to learning camera locations through the

course of the audit phase, drivers may also learn camera

locations from simply seeing them on the road. This is

also quite damaging to the system, as drivers can learn

the locations of cameras simply by spotting them. After

pooling together the various locations and times at which

they saw cameras, cheating drivers can fix up their driving

record in time to pass any end-of-month audit protocol.

To prevent such cheating, a system could instead re-

quire the OBU to transmit the tuples corresponding to

segments as they are driven, rather than all together at

the end of the month. Without an anonymizing service

such as Tor (used in VPriv [39]), transmitting data while

driving represents too great a privacy loss, as the TSP

can easily determine when and for how long each driver

is using their car. One possible fix might seem to be to

continually transmit dummy segments while the car is

not in use; transmitting segments in real time over a cel-

lular network, however, leaks coarse-grained real-time

location information to nearby cell towers (for example,

staying connected to a single tower for many hours sug-

gests that you are stationary), thus defeating the main goal

of preserving driver privacy.

Finally, we note that there exists a class of expensive

physical attacks targeting any real-world implementation

of a camera-based audit protocol. For example, against

fixed-location cameras, cheating drivers could disable

their OBU for specific segments each month, revealing in-

formation about those segments. Against mobile cameras,

a driver could follow each audit vehicle and record its

path, sharing with other cheating drivers as they go. One

can imagine defenses against these attacks and even more

Time for blind IBE
Size for messages

Time for TC to perform Audit
time to iterate dominates cost for TC

cost for OBU during
Audit is reduced

NIZK size
dominates
total size

Outline

18

Cryptographic background Milo

Evaluation Conclusions

Conclusions

19

Conclusions

19

We presented Milo, a privacy-preserving electronic toll collection system

Conclusions

19

We presented Milo, a privacy-preserving electronic toll collection system

• Guarantees honesty even in the face of driver collusion

• Did so using blind IBE

• Found that computational overhead was manageable, significantly
cheaper than certain alternatives

Conclusions

19

We presented Milo, a privacy-preserving electronic toll collection system

• Guarantees honesty even in the face of driver collusion

• Did so using blind IBE

• Found that computational overhead was manageable, significantly
cheaper than certain alternatives

Future work:

• Possibly formalizing security definitions

• Find cheaper methods for achieving same security properties

Conclusions

19

We presented Milo, a privacy-preserving electronic toll collection system

• Guarantees honesty even in the face of driver collusion

• Did so using blind IBE

• Found that computational overhead was manageable, significantly
cheaper than certain alternatives

Future work:

• Possibly formalizing security definitions

• Find cheaper methods for achieving same security properties

Thanks!
Any questions?

