Outsourcing the Decryption of ABE Ciphertexts

<u>Matthew Green</u> and Susan Hohenberger Johns Hopkins University Brent Waters UT Austin

- A problem
 - Securing records in a data-sharing environment
 - E.g., medical records, sensitive documents, etc.
 - Share with some but not all

Traditional access control

• Relies on a trusted party (reference monitor)

Trusted server

alists

- Non-cryptographic
- Well-known drawbacks: software, insiders, <u>availability</u>

Doctor

Cryptographic access control

- Traditional approach (public-key encryption)
 - Encrypt record to all valid recipients
 - Problem: must know all possible recipient keys

Cryptographic access control

- Traditional approach (public-key encryption)
 - Encrypt record to all valid recipients
 - Problem: must know all possible recipient keys

ABE

- Attribute-Based Encryption [Sahai-Waters '05]
 - Extension of Identity-Based Encryption
 - Encrypt to users with certain attributes

- Ciphertext-policy ABE [BSW07]
 - User secret keys bound to a list of attributes
 - Users obtain keys from an <u>authority</u>

- Ciphertext-policy ABE [BSW07]
 - Encryptors can specify a policy as a boolean formula over attributes

- Ciphertext-policy ABE [BSW07]
 - Formulae can use arbitrary numbers of AND, OR, (m-of-n Threshold) gates

	~	~
-	_	
-		
1-	ue-	da-

- Ciphertext-policy ABE [BSW07]
 - Formulae can use arbitrary numbers of AND, OR, (m-of-n Threshold) gates
 - Using these gates we can build <, >, = operators by representing quantities as binary values

- Ciphertext-policy ABE [BSW07]
 - Formulae can use arbitrary numbers of AND, OR, (m-of-n Threshold) gates
 - Using these gates we can build <, >, = operators by representing quantities as binary values

(("Cardiologist" AND "Johns Hopkins") OR "X-Ray Tech") AND **KeyCreationDate > 1313096813**

This is a 32-element boolean subformula

Wednesday, August 31, 11

- Key-policy ABE [SW05]
 - All of the same ideas, but policy/attributes are reversed
 - Each ciphertext contains a list of attributes, each key a boolean policy formula (LabReport AND Cardiac)

OR XRay

("LabReport", "XRay", "Cardiac")

Γ	~	~	
=	_		-
1-			-
1:			-

So what's the problem?

- We have this ABE stuff
 - It lets us implement *arbitrarily* complex encryption policies
 - Doesn't require an on-line reference monitor
 - Why can't we just use it?

So what's the problem?

- Two small wrinkles:
 - <u>Ciphertext size</u> and <u>decryption time</u> grow with the complexity of the access policy (resp. attribute list)
 128-bit plaintext

Waters09 CP-ABE scheme, 224-bit MNT curve

So what's the problem?

Wednesday, August 31, 11

To the cloud?

Wednesday, August 31, 11

Remote ciphertext location

- Problem:
 - We really need to trust the cloud
 - And every fellow cloud user
 - Timing attacks
 - VM exploits
 - CCA attacks

Other approaches

- Why not generic outsourcing techniques?
 - E.g., Craig Gentry's fully-homomorphic encryption
 - This protects the secret key
 - Far too inefficient [GHII]
- Outsourcing pairings [CmCMNS10]
 - Still costly, high bandwidth

Our Approach

- Change the way that ABE secret keys are generated
 - Authority produces a <u>Transform Key</u> and an Elgamal-style <u>Secret Key</u>

Our Approach

- **TK** can go to anyone (e.g., the cloud)
- Client retains **SK**

Wednesday, August 31, 11

Our Approach

- Change the way that ABE secret keys are generated
 - Also define two new algorithms:

Wednesday, August 31, 11

Outsourcing Security Model

- Traditional CP- (resp. KP-) ABE security def'n:
 - Adversary can query for any secret keys it wants
 - Eventually it asks for a challenge ciphertext on any policy (resp. attr list) not covered by those keys
- New wrinkle:
 - Adversary can query for **TK** on any policy (resp. attr list) with no restrictions at all (i.e., regardless of the challenge)
- This models a fully adversarial outsourcing party

• Original Waters '09 construction (prime-order bilinear):

MPK = $g, e(g,g)^{\alpha}, g^{a}$. ABE-SK = $K' = g^{\alpha}g^{at}$ $L' = g^{t}$ $\forall x \in S$ $K'_{x} = H(x)^{t}$.

• Original Waters '09 construction:

MPK = $g, e(g,g)^{\alpha}, g^{a}$. ABE-SK = $K' = g^{\alpha}g^{at}$ $L' = g^{t}$ $\forall x \in S$ $K'_{x} = H(x)^{t}$. \bigvee Pick random SK = z in Zq

 $\top K \equiv K = K'^{1/z} \quad L = L'^{1/z} \quad \{K_x\}_{x \in S} = \{K'^{1/z}_x\}_{x \in S}$

Wednesday, August 31, 11

• Original Waters '09 construction:

Encryption:

 $C = \mathcal{M} \cdot e(g, g)^{lpha s}, \ C' = g^s, \ (C_1 = g^{a\lambda_1} \cdot F(
ho(1))^{-r_1}, \ D_1 = g^{r_1}), \dots, (C_\ell = g^{a\lambda_\ell} \cdot F(
ho(\ell))^{-r_n}, \ D_\ell = g^{r_\ell})$

Transform:

 $e(C',K)/\left(e(\prod_{i\in I}C_i^{\omega_i},L)\cdot\prod_{i\in I}e(D_i^{\omega_i},K_{\rho(i)})\right) = \\ e(g,g)^{s\alpha/z}e(g,g)^{ast}/\left(\prod_{i\in I}e(g,g)^{ta\lambda_i\omega_i}\right) = e(g,g)^{s\alpha/z}$

• Original Waters '09 construction:

Encryption:

$$C = \mathcal{M} \cdot e(g, g)^{lpha s}, \ C' = g^s, \ (C_1 = g^{a\lambda_1} \cdot F(
ho(1))^{-r_1}, \ D_1 = g^{r_1}), \dots, (C_\ell = g^{a\lambda_\ell} \cdot F(
ho(\ell))^{-r_n}, \ D_\ell = g^{r_\ell})$$

Transform:

 $e(C',K)/\left(e(\prod_{i\in I}C_i^{\omega_i},L)\cdot\prod_{i\in I}e(D_i^{\omega_i},K_{\rho(i)})\right) = \\ e(g,g)^{s\alpha/z}e(g,g)^{ast}/\left(\prod_{i\in I}e(g,g)^{ta\lambda_i\omega_i}\right) = e(g,g)^{s\alpha/z}$

,

Original Waters '09 construction:

Encryption: $C = \mathcal{M} \cdot e(g,g)^{lpha s}, \ C' = g^s, \ (C_1 = g^{a\lambda_1} \cdot F(ho(1))^{-r_1}, \ D_1 = g^{r_1}), \dots, (C_\ell = g^{a\lambda_\ell} \cdot F(ho(\ell))^{-r_n}, \ D_\ell = g^{r_\ell})$ **Transform:** $e(C',K)/\left(e(\prod_{i\in I}C_i^{\omega_i},L)\cdot\prod_{i\in I}e(D_i^{\omega_i},K_{\rho(i)})\right) =$ $e(g,g)^{s\alpha/z}e(g,g)^{ast}/\left(\prod_{i\in I}e(g,g)^{ta\lambda_i\omega_i}\right)=e(g,g)^{s\alpha/z}$ Transformed $e(q,q)^{s\alpha/z}$ $\mathcal{M} \cdot e(q,q)^{\alpha s}$ ciphertext:

Additional Constructions

• In the paper:

- Security proofs
- An additional scheme from the Goyal et al. Key-policy ABE [GPSW06]
- Also: CCA Security for both CP- and KP-ABE (random oracles)

Performance: Waters09

- 3GHz Intel Core Duo, 4GB RAM (one core)
- 412Mhz ARM (iPhone 3G)

Performance: Waters09

- 3GHz Intel Core Duo, 4GB RAM (one core)
- 412Mhz ARM (iPhone 3G)

Wednesday, August 31, 11

Ciphertext Size: Waters09

Elgamal

ABE

An EC2-based System

- We constructed Amazon Machine Image ("Proxy") with:
 - Apache
 - Scripts to accept a Transform Key, load ciphertexts from remote URLs
 - The code for the Transform algorithm
- Users can programmatically spin up one or more instances

An EC2-based System

- Also created a test application
 - Extended the *iHealthEMR* app from JHU (Ayo Akinyele) (Medical records reader, uses CP-ABE)
 - Added code to transparently instantiate Proxy, upload Transform Key at startup
 - I-I.5 min for spinup, during which decryption is local.
 - Afterwards it's outsourced!

An EC2-based System

Operation	local-only	local+web	proxy	proxy+web
	(sec)	(sec/kb)	(sec/kb)	(sec/kb)
New proxy instantiation	•	•	93.4 sec	93.4 sec
Restart existing proxy instance			45 sec	45 sec
Generate & set 70-element transform key			2.9 sec	2.9 sec
Decryption:				
((DOCTOR OR NURSE) AND INSTITUTION)	1.1s	1.2s/1.1k	.2s/1.4k	.2s/0.4k
(DOCTOR AND TIME > 1262325600 AND TIME < 1267423200)	17.3s	17.3s/22.8k	1.2s/23.2k	1.2s/0.4k

Other Applications

- Outsourcing from smartcards
 - Let the computer do the heavy lifting!
 - Simplify the code base on the smart card
- Reducing TCB
 - ABE implementations are complex: parsing code, excess cryptography == vulnerabilities?
 - Let's not trust that all that code:
 - Isolate one trusted piece using e.g., TrustVisor [MLQZDGP10].

Open Problems

- Outsourcing for other cryptosystems (IBE, ABE, NIZKs, Signatures)
- CCA security in the standard model
- A generic cloud-based outsourcing platform
 - Supports many cryptosystems
 - Attacker uploads code of his/her choice at initialization time