
OSLO: Improving the security of Trusted Computing

Bernhard Kauer
Technische Universität Dresden

Department of Computer Science
01062 Dresden, Germany

kauer@os.inf.tu-dresden.de

Abstract

In this paper we describe bugs and ways to attack
trusted computing systems based on a static root of trust
such as Microsoft’s Bitlocker. We propose to use the dy-
namic root of trust feature of newer x86 processors as
this shortens the trust chain, can minimize the Trusted
Computing Base of applications and is less vulnerable
to TPM and BIOS attacks. To support our claim we
implemented the Open Secure LOader (OSLO), the first
publicly available bootloader based on AMDs skinit
instruction.

1 Introduction

An increasing number of Computing Platforms with
a Trusted Platform Module (TPM) [33] are deployed.
Applications using these chips are not widely used yet
[5, 37]. This will change rapidly with the distribution
of Microsoft’s Bitlocker [2], a disk encryption utility
which is part of Windows Vista Ultimate. As the trusted
computing technology behind these applications is quite
new, there is not much experience concerning the secu-
rity of trusted computing systems. In this context we
analyzed the security of TPMs, BIOSes and bootloaders
that consitute the basic building blocks of trusted com-
puting implementations. Furthermore, we propose a de-
sign that can improve the security of such implementa-
tions.

1.1 Trusted Computing

Trusted Computing [9,23,25,33] is a technology that
tries two answer two questions:

• Which software is running on a remote computer?
(Remote Attestation)

• How to ensure that only a particular software stack
can access a stored secret? (Sealed Memory)

Different scenarios can be built on top of trusted com-
puting, for example, multi-factor authentication [37],
hard disk encryption [2,5] or the widely disputed Digital
Rights Management. All of these applications are based
on a small chip: the Trusted Platform Module (TPM).

1.2 Technical Background

As defined by the Trusted Computing Group (TCG),
a TPM is a smartcard-like low performance crypto-
graphic coprocessor. It is soldered1 on various moth-
erboards. In addition to cryptographic operations such
as signing and hashing, a TPM can store hashes of the
boot sequence in a set of Platform Configuration Regis-
ters (PCRs).

A PCR is a 160 bit wide register that can hold an
SHA-1 hash. It cannot be directly written. Instead, it
can only be modified using the extend(x) operation.
This operation calculates the new value of a PCR as an
SHA-1 hash of the concatenation of the old value and x.
The extend operation is used to store a hash of a chain
of loaded software in PCRs. The chain starts with the
BIOS and includes Option ROMs2, Bootloader, OS and
applications.

Using a challenge-response protocol, this trust chain
can attest to a remote entity which software is running
on the platform (remote attestation). Similarly it can be
used to seal some data to a particular, not necessarily the
currently running, software configuration. Unsealing the
data is then only possible when this configuration was
started. Figure 1 shows such a trust chain based on a
Static Root of Trust for Measurement (SRTM), namely
the BIOS.

16th USENIX Security SymposiumUSENIX Association 229

T PM +3 BIOS +3 OptionROMs +3

BootLoader +3 OS +3 Application

Figure 1. Typical trust chain in a TC system

1.3 Chain of Hashes

Three conditions must be met, to make a chain of
hashes trustworthy:

1. The first code running and extending PCRs after
a platform reset (called SRTM) is trustworthy and
cannot be replaced.

2. The PCRs are not resetable, without passing con-
trol to trusted code.

3. The chain is contiguous. There is no code in-
between that is executed but not hashed.

The reasons behind these conditions are the follow-
ing: If the initial code is not trustworthy or can be re-
placed by untrustworthy code, it cannot be guaranteed
that any hash value is correct. This code can in fact mod-
ify any later running software to prevent the undesirable
hashing. The second condition is quite similar and can
be seen as a generalization of the first one. If PCRs are
reset and untrustworthy code is running then any chain
of hashes can be fabricated. The first two points de-
scribe the beginning of the trust chain. The third point
is needed to form a contiguous chain by recursion. It
forces the condition that every program occupying the
machine must be hashed, before it is executed. Other-
wise, the trust chain is interrupted and unmeasured code
can be running. Every program using sealed memory
has to trust the code running before it to not open a hole
in the chain. Similarly, a remote entity needs to find out
during an attestation whether the trust chain presented
by a trusted computing platform contains any hole in
which untrusted code could be run. We will see later
how current implementations do not meet the three con-
ditions.

Organization

This paper is structured as follows. We describe bugs
and ways to attack trusted computing systems based on
SRTM in the next section. After that we present the de-
sign and describe the implementation of OSLO. A sec-
tion evaluating the security achievements follows. The
last section proposes future work and concludes.

2 Security Analysis

2.1 Bootloader Bugs

We look at the three publicly available TPM-enabled
bootloaders and analyze whether they violate the third
condition of a trust chain, executing code that is not
hashed.

The very first publicly available trusted bootloader
was part of the Bear project from Dartmouth College
[19, 20]. They enhanced Linux with a security module
called Enforcer. This module checks for modification
of files and uses the TPM to seal a secret key of an en-
crypted filesystem. To boot the system they used a mod-
ified version of LILO [7]. They extend LILO in two
ways: the Master Boot Record hashes the rest of LILO
and the loaded Linux kernel image is also hashed. Only
the last part of the image, containing the kernel itself, is
hashed here. But the first part of the image, containing
the real-mode setup code, is executed. Hence, this vio-
lates the third condition. A fix for this bug would be to
hash every sector which gets loaded.

A second trusted bootloader is a patched GRUB
v0.97 from IBM Japan [21, 36]. This bootloader is used
in IBMs Integrity Measurement Architecture [28]. It has
the same security flaw as our own experiments with a
TCG enabled GRUB [16]: it loads files twice, first for
extraction and later for hashing into a PCR. A cause for
this bug lies certainly in the structure of GRUB. GRUB
loads and extracts a kernel image at the same time in-
stead of loading them completely into memory and ex-
tracting them afterwards. This leads to the situation
that measuring the file independently from loading is
the easiest way for a programmer to add TCG support
to GRUB. Such an implementation is unfortunately in-
correct. As program code is loaded twice from disk or
from a remote host over the network, an attacker who
has physical access either to the disk or to the network
can send different data at the second time. This violates
again the third condition, as hashed and executed code
may differ.

Another GRUB based trusted bootloader called
TrustedGRUB [35] solves this issue in a recent version
by moving the hash code to a lower level. Hashing is
simply done on each read() call that loads data from
disk or network, before the actual data is returned to the
caller. The hash is then used after loading a kernel to
extend a PCR.

The current version 1.0-rc5 of TrustedGRUB (August
2006) contains at least two other bugs. The hashing of
its own code when starting from hard disk is broken. The
corresponding PCR is never extended and always zero.
Furthermore TrustedGRUB never contained any code to

16th USENIX Security Symposium USENIX Association230

use it securely from a CD. Nevertheless, it is used on a
couple of LiveCDs [6].

All publicly available TPM-enabled bootloaders vio-
late the third assumption, which makes systems booted
by them unable to prove their trustworthiness. To an-
alyze this it was not necessary to look at more sophis-
ticated attack points such as missing range checks or
buffer overflows. Both of these will become more in-
teresting if the aforementioned bugs are fixed.

2.2 TPM Reset

In July 2004 we discovered that setting the reset bit
in a control register of a v1.1 TPM3 resets the chip
without resetting the whole platform. This violates the
second condition. As it results in default PCR values,
this breaks the remote attestation and sealing features of
those chips: Any PCR value can be reproduced without
the opportunity for a remote entity to see the difference
via remote attestation. Unsealing protected secrets of
a security critical program is possible after resetting as
well. The reset feature was added for maintenance rea-
sons but does not have broad security consequences, be-
cause sealing and remote attestation are not used in any
product application with v1.1 chips. Instead the chips
are solely used as smartcard for signing and key man-
agement.

This case demonstrates the security risk of a reset-
table TPM. As other chips have different interfaces and
can therefore not be reset in the same way, we exper-
imented with a simple hardware attack. The Low Pin
Count (LPC) bus was the point of attack. Most TPMs
are connected to the southbridge through it and the bus
has a separate reset line. We used different TPMs on
external daughterboards for this experiment.

By physically connecting the LRESET# pin to
ground we were able to perform a reset of the chip
itself. We separated the pin from the bus as other-
wise the PS/2 keyboard controller received such a re-
set signal, too. We had to reinitialize the chip which
we did by reloading the driver and then sending a
TPMStartup(TPM_CLEAR) to the chip. This pro-
cess gave us an activated and enabled TPM in a state
normally only visible to the BIOS: As expected all PCRs
were in their default state. We presume that this attack
could be mounted against any TPM in a similar way.

The simplicity of the reset makes this hardware at-
tack a threat to trusted computing systems. In particular
in use cases where physical access, for example, through
theft, can not be excluded. This attack also affects an-
other use case of trusted computing, the widely disputed
Digital Rights Management scenario where the owner
of a device is untrusted and can use the system unin-

tendedly.
We have to admit that the TCG does not claim to

protect against hardware attacks. But scenarios using
trusted computing technology have to be aware of these
restrictions.

2.3 BIOS Attack

We have shown that bootloader and TPM implemen-
tations have some weaknesses. Now we look at the en-
tity in-between them: the BIOS.

The BIOS contains the Core Root of Trust for Mea-
surement (CRTM), a piece of code that extends PCR 0
initially. A CRTM has only to be exchanged with vendor
signed code. Currently, the CRTM of many machines is
freely patchable. It is stored in flash and no signature
checking is performed on updates. This violates the first
condition needed by a trust chain.

We used a HP nx6325, a recent business notebook
with a TPM v1.2, for this experiment. The fact that the
BIOS is flashed from a raw image eased an attack. Other
vendors are checking a hash before flashing the image to
avoid transmission errors, a feature that is missing here.
Checking a hash is irrelevant from a security point of
view but it would make the following steps slightly more
complicated, as we would have to recalculate the correct
hash value.

The part of the BIOS we choose to patch is the TPM
driver. This has the advantage that all commands to the
TPM, whether they come from the CRTM or from a
bootloader through the INT 1Ah interface, can be in-
tercepted. Our BIOS has only a memory-present TPM
driver. These drivers need access to main memory for
execution and can therefore only run after the BIOS has
initialized the RAM. The interface of the TPM drivers
are defined in the TCG PC client specification for con-
ventional BIOS [34]. The function that we want to
disable is MPTPMTransmit() which transmits com-
mands to the TPM. We found the TPM driver in the
BIOS binary quite easily. Strings like ’TPM’ and the
magic number of the code block as well as character-
istic mnemonics (e.g., in and out) in the disassembly
point to it.

Figure 2 shows the start of the BIOS TPM driver. It
starts with a magic number and entry point, both as de-
fined in the specification. The code itself starts at ad-
dress 0x28. We now search for an instruction that al-
lows us to disable MPTPMTransmit(). The first in-
structions of the driver are quite uninteresting. They
just save some registers to the stack and calculate the
drivers starting address in register edi in order to make
the code position independent. The first interesting in-
struction is the comparison at address 0x3a. By look-

16th USENIX Security SymposiumUSENIX Association 231

0: aa 55 /* magic number */
4: 28 00 /* entry point */

...
28: 57 push %edi
29: 56 push %esi
2a: 53 push %ebx
2b: 33 ff xor %edi,%edi
2d: e8 00 00 call 0x32

00 00
32: 5f pop %edi
33: 81 ef 33 sub $0x33,%edi

00 00
39: 47 inc %edi
3a: 3c 04 cmp $0x4,%al
3c: 74 23 je 0x61
3e: 3c 01 cmp $0x1,%al
40: 74 0a je 0x4c

...

Figure 2. Start of BIOS TPM driver

ing further into the disassembly we found out that this
instruction is part of the branch where the code distin-
guishes between MPTPMTransmit() (where al=4)
and other functions. By changing this comparision to
cmp $0x14,%al, which just requires to flip a single
bit, we can avoid that the branch at 0x3c is taken and
any command is transmited to the TPM. An error code
is returned to the caller instead.

We now have to flash the BIOS with this modified im-
age. As there is no hash of the BIOS image checked dur-
ing flashing we use the normal BIOS update procedure.
After a reboot we have a TPM in its default power-on
state, without any PCR extensions.

The ability to easily exchange the CRTM violates the
TCG specifications. A result of this bug is that the trust
into these machines can not be brought back anymore
without an expensive certification process.

2.4 Summary

We found weaknesses in bootloaders and the possi-
bility of a simple hardware attack against TPMs. Fur-
thermore by just flipping a single bit we disabled the
CRTM and any PCR extension from the BIOS. These
cases show that current implementations do not meet all
three conditions of a trust chain.

In summary, we conclude that current BIOSes and
bootloaders are not able to start systems in a trusthwor-
thy manner. Moreover, TPMs are not protected against
resets.

T PM +3 OSLO +3 OS +3 Application

Figure 3. Trust chain with a Dynamic Root
of Trust for Measurement (DRTM)

3 Design and Implementation of OSLO

3.1 Using a DRTM

The main idea behind a secure system with a re-
settable TPM, an untrusted BIOS and a buggy boot-
loader, is to use a Dynamic Root of Trust for Masure-
ment (DRTM). A DRTM effectively removes the BIOS,
OptionROMs and Bootloaders from the trust chain (cf.
Figure 3).

With a DRTM, the CPU can reset the PCR 17 at any
time. This is provided through a new instruction that
atomically initializes the CPU, loads a piece of code
called Secure Loader (SL) into its cache, sends the code
to the TPM to extend the reseted PCR 17, and transfers
control to the SL.

A design based on a DRTM is not vulnerable to the
TPM reset attack because of a TPM property that can be
easily missed. A TPM can distinguish between a reset
and a DRTM due to CPU and chipset support. A reset
of the TPM sets all PCRs to default values, which is
“0” for the PCRs 0 - 16 and “-1” for PCR 17. Only a
DRTM, with its special bus cycles, will reset the PCR
17 to “0” and immediately extend it with the hash of
the SL. Therefore, an attacker is unable to reset PCR 17
to “0” and fake other platform configurations. Only by
executing the skinit instruction it is possible to put
the hash of an SL into PCR 17. An attacker can not hash
an SL and directly afterwards executing code outside of
it, since skinit jumps directly to the SL.

An SL is also not affected by the BIOS attack. With
the presence of a DRTM, the BIOS need not be trusted
anymore to protect its CRTM and hash itself into the
TPM. Nevertheless, a statement that claims the BIOS
can be fully untrusted is oversimplified: We still have
to trust the BIOS for providing the System Management
Mode (SMM) code as well as correct ACPI tables. As
both can be security critical, a hash of them should be
incorporated at boot time into a PCR by the operating
system.

3.2 Implementation

AMD provides a DRTM with its skinit instruc-
tion which was introduced with the AMD-V extension
[1]. On Intel CPUs, the Trusted Execution Technol-

16th USENIX Security Symposium USENIX Association232

ogy (TET) includes a DRTM with the senter instruc-
tion [9, 14]. AMD was generous to provide us with an
AMD-V platform nearly one year earlier than we were
able to buy an Intel TET platform.

Our implementation, called OSLO (Open Secure
LOader), is written in C with some small parts in as-
sembler. As OSLO is part of the Trusted Computing
Base (TCB) of all applications, we wanted to minimize
the binary and source code size. Furthermore, we had
to avoid any BIOS call, as otherwise the BIOS would be
part of the TCB again.

OSLO is started as kernel from a multi-boot compli-
ant [22] loader. It initializes the TPM to be able to ex-
tend a PCR with the hashes of further modules. After
that other processors are stopped. This is required be-
fore executing skinit and inhibits potential interfer-
ences during the secure startup procedure. For example,
malicious code running on a second CPU could modify
the instructions of the Secure Loader. The cache consis-
tency protocol would then propagate the changes to the
other processor.

Since the needed platform initialization is done,
OSLO can now switch to the “secure mode” by execut-
ing skinit. Before starting the first module as a new
kernel, OSLO hashes every module that is preloaded
from the parent boot-loader.

We used chainloading via the multiboot specification
to be flexible with respect to the operating system OSLO
loads and who can load OSLO. Normally, this will be
a multiboot-compliant loader started by the BIOS such
as GRUB or SysLinux [31] but loading OSLO from the
Linux kexec environment [17] should also be possible.

As we could not rely on the BIOS for talking to the
TPM, we also implemented our own TPM driver for
v1.2 TPMs. As all of these TPMs should follow the
TPM interface specification (TIS) only a single driver
was needed. Using this memory mapped interface is,
compared to the different interfaces needed to talk to the
v1.1 TPMs, rather simple. Therefore our TPM driver
consists of only 70 lines of code.

Currently two features of OSLO are still unimple-
mented:

• protection against direct memory access (DMA)
from malicious devices, and

• extension of the TPM event log for remote attesta-
tion.

The TPM event log is used to ease remote attesta-
tion. It can store hashes used as input for extend and
optionally a string describing them. The log provides a
breakdown of the PCR value into smaller known pieces.
It is itself not security critical and therefore not protected

by the bootloader or the operating system. An attacker
can only perform Denail of Service attacks by for ex-
ample overwriting the log. It is not possible to compro-
mise the security of a remote attestation by modifying
the log. The TPM event log makes it much easier for
a remote entity to check a reported hash values against
a list of good known values, for example if the order
of the extends is not fixed. OSLO should extend the
event log to support applications relying on it for remote
attestation.

The source code of OSLO is available under the
terms of the GPL [24]. The source includes three addi-
tional tools that can be multi-boot loaded after OSLO:
Beirut to hash command lines, Pamplona to revert
the steps done by skinit for booting OSLO unaware
OSes, and Munich to start Linux from a multiboot en-
vironment.

3.3 Lessons Learned

We have learned two lessons while implementing
OSLO:

• It is hard to write secure initialization code, and

• a secure loader needs to have platform specific
knowledge.

An example of the first lesson is our experience with
the initialization of the Device Exclusion Vector (DEV)
on AMD CPUs. A DEV is a bitvector in physical mem-
ory that consists of one bit per physical 4k-page. A bit
in this vector decides whether device based DMA trans-
fers to or from the corresponding page is allowed. DEVs
could be cached in the chipset for performance reasons.
We found out that the DEV initialization, if it is done in
the naive way, contains a race condition.

DEV initialization is normally done in two steps: En-
able the appropriate bits in the vector to protect itself
and then flushing the chipset internal DEV cache. As
these two operations are not atomic, a malicious device
could change the DEV using DMA just before the vec-
tor is loaded into the DEV cache. An implementation
has to find a workaround for this race. A secure way to
initialize DEV protection is, for example, to use an in-
termediate DEV in the 64k of the secure loader thereby
protecting the initialization of a final DEV.

The second point is a little bit more complicated.
DEVs can only protect against DMA from a device. If
someone puts an operating system he wants to start with
OSLO into device memory it cannot be protected from
a malicious device. The OS is loaded and hashed by
OSLO as if it would reside in RAM, but if it is read the

16th USENIX Security SymposiumUSENIX Association 233

Name size OSLO sha1 sha1sum
kernel 1.2 MB 0.070 sec 0.020 sec
initrd 4.2 MB 0.245 sec 0.064 sec
sum 5.4 MB 0.315 sec 0.084 sec

Figure 4. Performance of hashing a Linux
kernel and Initrd

Name LOC binary in kb gzip in kb
BIOS HP - 1024 491
GRUB v0.97 19600 98 55
OSLO v0.4.2 1534 4.1 2.9

Figure 5. Size of BIOS, GRUB and OSLO

second time, e.g., on ELF decoding or execution, it is re-
quested from the device memory again. Because we do
not trust a device to leave its memory unmodified, we
cannot be sure that the code that is executed is identical
to the hashed one. As a consequence we can only pro-
tect, hash and start modules that are located in RAM. A
secure loader therefore needs a reliable method to detect
the distinction between RAM and device memory.

4 Evaluation

One of our design goals for OSLO was a minimal
TCB size. Reducing the TCB is suitable for security sen-
sitive applications as it increases the understandability
and minimizes the number of possible bugs [30]. Fur-
thermore, the process of formal verification will bene-
fit from it. We achieved a minimal TCB by using two
techniques: reducing functionality and trading size with
performance penalties.

An example for the first is that we do not rely on
external libc code but use functions with limited func-
tionality like out_string() instead of a full featured
printf() implementation.

We also implemented our own SHA-1 code trading
size for performance. This resulted in an SHA-1 imple-
mentation that compiles with gcc-3.4 to less than 512
bytes. This is only a quarter of the size compared with a
performance optimized version such as the one from the
Linux kernel. This, on the other hand, makes the hash
much slower. The Linux version has a throughput which
is three to four times higher, due to, e.g., loop unrolling.

Figure 4 shows that booting linux with our SHA-1
implementation takes 0.315 seconds compared to 0.084
seconds for a heavily optimized sha1sum version. As
booting a system usually takes minutes a performance
penalty of 0.231 seconds is acceptable here.

Figure 5 shows the source and binary sizes for BIOS,

GRUB and OSLO. We also give the size of gzip com-
pressed binaries in this table as this reduces the effect of
empty sections in the images. Unfortunately, the source
code of the HP BIOS is not available. A similar but older
Award BIOS consists of around 150 thousand lines of
assembler code. The numbers given for GRUB do not
include the drivers used to boot from a network. Adding
them would nearly double the given numbers.

OSLO is an order of magnitude smaller than GRUB
and two orders of magnitude smaller than the BIOS we
examined. If we presume the principle more code equals
more bugs and neglect the effect of a code size optimiz-
ing compiler, we can deduce that OSLO has a signifi-
cantly smaller number of bugs due to its size compared
to GRUB or the BIOS.

One could argue that in an ordinary system like Win-
dows or Linux, where the TCB of an application consists
of million lines of code with programs consuming tens
or hundreds of megabytes, the size of GRUB and the
BIOS does not matter. That is perhaps true, but as the
trend in secure systems goes to small kernels and hy-
pervisors [10, 13, 29, 32], architectures like L4/NIZZA
or Xen can very well benefit from the TCB reduction
through OSLO.

In summary, OSLO promises a smaller attack surface
due to its minimal size and since it uses a DRTM miti-
gates the TPM reset and the BIOS attacks as outlined
in Section 3.1.

5 Related Work

Previous research showed the vulnerability of trusted
computing platforms against hardware attacks. Kursawe
et al. [18] eavesdrop on the LPC bus to capture and anal-
yse the communication between the CPU and the TPM.
They only perform a passive attack, but describe that an
active hardware attack on the LPC bus could be used to
fool the TPM about the platform state. Untrusted code
can then pretend to the TPM to be a DRTM.

Limitations of the trusted computing specification
and its implementations are described in the literature
multiple times. Bruschi et al. [4] showed that an au-
thorization protocol of TPMs is vulnerable to replay at-
tacks. Sadeghi et al. [27] reported that many TPM im-
plementations do not meet the TCG specification. Gar-
riss et al. [8] found out that a public computing kiosk that
uses remote attestation to prove which software is run-
ning is vulnerable to boot-between attestation attacks.
They suggest a reboot counter in the TPM to make re-
boots visible to remote parties. Such a counter will not
help against our TPM reset attack as it needs to detect
whether a TPM was switched on later than the whole
platform4, a property a reboot counter cannot achieve.

16th USENIX Security Symposium USENIX Association234

There are more sophisticated BIOS attacks men-
tioned in the literature. Heasman [12], for example,
showed at the Blackhat Federal 2006 that a rootkit can
be hidden in ACPI code which is usually stored in the
BIOS. In a subsequent paper [11], he describes how a
rootkit can persist in a system with a secured BIOS by
using other flash chips. In both cases only TPM-less
systems were considered. By combining our attack to
disable the CRTM with Heasman’s work it seems possi-
ble to hide a rootkit in the BIOS but report correct hash
values to the TPM.

To generally prevent BIOS attacks, Phoenix Tech-
nologies offers a firmware called TrustedCore [26] that
allows only signed updates. Intel Active Management
Technology [15] has also this feature.

Sailer et al. [28] describe an architecture for an in-
tegrity measurement system for Linux using a static root
of trust. As they focus on the enhancements of the
operating system, the architecture is not limited to an
SRTM. There implementation could easily benefit from
the smaller attack surface of a secure loader like OSLO.

6 Future Work and Conclusion

OSLO is not feature complete yet. We plan to finish
the implementation of the DMA protection. Moreover,
we want to add ACPI event-log support. This should
allow the integration of OSLO into larger projects that
use the event-log for remote attestation.

A port of OSLO to use the senter instruction on an
Intel TET platform could demonstrate that the mulitboot
chainloader design is portable or show that senter im-
plies an integrated design as it is proposed for Xen [38].

The search for new attack points of other trusted com-
puting implementations is also part of our future work.

It was not necessary to look at more sophisticated at-
tack points such as buffer overflows or the strength of
cryptographic algorithms to find the bugs and attacks we
presented in this paper. If we compare this to a simi-
lar analysis of another secure system, such as the one
of an RFID chip [3], we have to conclude that current
trusted computing implementations are not resilient to
even simple attacks. Moreover, the current implemen-
tations do not meet the assumptions of a secure design.
Even a small bug in them can compromise the additional
security obtained by a TPM.

We suspect that most of the platforms are vulnera-
ble to the TPM reset and many of them to the BIOS at-
tack. As a consequence the software still based on an
SRTM, such as Microsoft’s Bitlocker, cannot provide
secure TPM-driven encryption and attestation on these
systems.

A switch to a DRTM based OSLO-like approach can
shorten the trust chain, minimize the TCB, and is less
vulnerable to TPM and BIOS attacks.

Acknowledgements

We would like to thank Hermann Härtig, Michael Pe-
ter, Udo Steinberg, Neal Walfield, Carsten Weinhold,
and Björn Döbel for their comments. Additionally we
would like to thank Adrian Perrig, Jonathan McCune
and the reviewers for their suggestions to improve the
paper. Special thanks go to Adam Lackorzynski for pro-
viding the hardware in time.

Notes

1There exist also TPMs on daughterboards. Their security value is
limited as exchanging them is quite easy.

2Firmware on adapter cards
3It would be quite unfair to disclose the vendor name here.
4e.g., by holding the reset line of a TPM while powering the ma-

chine up

References

[1] AMD. Secure Virtual Machine Architecture Ref-
erence Manual, May 2005.

[2] BitLocker Drive Encryption: Technical Overview.
URL: http://technet.microsoft.com/
en-us/windowsvista/aa906017.aspx.

[3] Steve Bono, Matthew Green, Adam Stubblefield,
Ari Juels, Avi Rubin, and Michael Szydlo. Security
analysis of a cryptographically-enabled RFID de-
vice. In USENIX Security Symposium, Baltimore,
Maryland, USA, July 2005. USENIX.

[4] D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga.
Attacking a Trusted Computing Platform - Improv-
ing the Security of the TCG Specification. Tech-
nical Report RT 05-05, Universit‘a degli Studi di
Milano, Milano MI, Italy, May 2005.

[5] eCryptfs: An Enterprise-class Crypto-
graphic Filesystem for Linux. URL:
http://ecryptfs.sourceforge.net.

[6] EMSCB downloads. URL: http:
//www.emscb.com/content/pages/
turaya.downloads.

[7] Enforcer Project. URL: http://enforcer.
sourceforge.net.

16th USENIX Security SymposiumUSENIX Association 235

[8] Scott Garriss, Ramón Cáceres, Stefan Berger,
Reiner Sailer, Leendert van Doorn, and Xiaolan
Zhang. Towards Trustworthy Kiosk Computing.
In "Proceedings of the 8th IEEE Workshop on Mo-
bile Computing Systems & Applications (HotMo-
bile 2007)". IEEE Computer Society Press, Febru-
ary 2007.

[9] David Grawrock. The Intel Safer Computing Ini-
tiative. Intel Press, January 2006.

[10] Hermann Härtig, Michael Hohmuth, Norman
Feske, Christian Helmuth, Adam Lackorzynski,
Frank Mehnert, and Michael Peter. The Nizza
secure-system architecture. In Proceedings of
the 1st International Conference on Collaborative
Computing: Networking, Applications and Work-
sharing (CollaborateCom 2005), December 2005.

[11] John Heasman. Implementing and Detecting a PCI
Rootkit. November 2006.

[12] John Heasman. Implementing and Detecting an
ACPI Rootkit. In BlackHat Federal, January 2006.

[13] Christian Helmuth, Alexander Warg, and Norman
Feske. Mikro-SINA—Hands-on Experiences with
the Nizza Security Architecture. In Proceedings of
the D.A.CH Security 2005, Darmstadt, Germany,
March 2005.

[14] Intel Corporation. LaGrande technology prelim-
inary architecture specification. Intel Publication
no. D52212, May 2006.

[15] Intel Advanced Management Technology. URL:
http://www.intel.com/technology/
manage/iamt.

[16] Bernhard Kauer. Authenticated Booting for L4.
Study thesis, TU Dresden, November 2004.

[17] Kexec Article. URL: http://lwn.net/
Articles/15468.

[18] Klaus Kursawe, Dries Schellekens, and Bart Pre-
neel. Analyzing trusted platform communication.
In ECRYPT Workshop, CRASH - CRyptographic
Advances in Secure Hardware, September 2005.

[19] Rich MacDonald, Sean W. Smith, John March-
esini, and Omen Wild. Bear: An Open-Source Vir-
tual Secure Coprocessor based on TCPA. Tech-
nical Report TR2003-471, Dartmouth College,
Hanover, NH, August 2003.

[20] John Marchesini, Sean W. Smith, Omen Wild, and
Rich MacDonald. Experimenting with tcpa/tcg
hardware, or: How i learned to stop worrying and
love the bear. Technical Report TR2003-476, Dart-
mouth College, Hanover, NH, December 2003.

[21] H. Maruyama, F. Seliger, N. Nagaratnam,
T. Ebringer, S. Munetoh, S. Yoshihama, and
T. Nakamura. Trusted Platform on Demand. Tech-
nical Report RT0564, IBM Corporation, February
2004.

[22] Multiboot Specification. URL: http:
//www.gnu.org/software/grub/
manual/multiboot/multiboot.txt.

[23] Chris J. Mitchell, editor. Trusted Computing. IEE,
London, Nov 2005.

[24] OSLO - Open Secure LOader. URL: http://
os.inf.tu-dresden.de/~kauer/oslo.

[25] Siani Pearson, editor. Trusted Computing Plat-
forms. Prentice Hall International, Aug 2002.

[26] Phoenix Technologies, TrustedCore. URL: http:
//www.phoenix.com/en/Products/
Core+System+Software/TrustedCore.

[27] Ahmad-Reza Sadeghi, Marcel Selhorst, Chris-
tian Stüble, Christian Wachsmann, and Marcel
Winandy. TCG Inside? - A Note on TPM Spec-
ification Compliance. In The First ACM Workshop
on Scalable Trusted Computing (STC’06), Novem-
ber 2006.

[28] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn.
Design and Implementation of a TCG-based In-
tegrity Measurement Architecture. In Proceedings
of the USENIX Security Symposium, August 2004.

[29] Reiner Sailer, Trent Jaeger, Enriquillo Valdez,
Ramón Cáceres, Ronald Perez, Stefan Berger,
John Linwood Griffin, and Leendert van Doorn.
Building a MAC-Based Security Architecture for
the Xen Open-Source Hypervisor. In ACSAC,
pages 276–285, 2005.

[30] Lenin Singaravelu, Calton Pu, Hermann Hartig,
and Christian Helmuth. Reducing tcb complex-
ity for security-sensitive applications: Three case
studies. In EuroSys 2006, April 2006.

[31] SYSLINUX Project. URL: http:
//syslinux.zytor.com.

16th USENIX Security Symposium USENIX Association236

[32] Richard Ta-Min, Lionel Litty, and David Lie.
Splitting Interfaces: Making Trust Between Appli-
cations and Operating Systems Configurable. In
7th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 2006), November
2006.

[33] TCG: Trusted Computing Group. URL: https:
//www.trustedcomputinggroup.org.

[34] TCG PC Client Implementation Specifica-
tion for Conventional BIOS. URL: https:
//www.trustedcomputinggroup.org/
specs/PCClient.

[35] TrustedGRUB. URL: http://www.prosec.
rub.de/trusted_grub.html.

[36] GRUB TCG Patch to support Trusted Boot. URL:
http://trousers.sourceforge.net/
grub.html.

[37] Wave’s Embassy Security Center. URL: http:
//www.wave.com/products/esc.html.

[38] [Xen-devel] Intel(R) LaGrande Technology sup-
port. URL: http://lists.xensource.
com/archives/html/xense-devel/
2006-09/msg00047.html.

16th USENIX Security SymposiumUSENIX Association 237

