
How To Obtain and Assert
Composable Security

Ran Canetti

IBM Research

 Nice
sun...

yeah...

You know, I lost
more than you in
the stock market.

No way. How
much did you
lose?

I won’t tell you…
How much did
you lose?

You tell first!

No,
you tell first!

No,
you tell first!

I lost
 X$

is
X>Y?

I lost
 Y$

I lost
 X$

is
X>Y?

I lost
 Y$

The millionaires problem [Yao82]

Cryptographic tasks

Two or more parties want to perform some
joint computation, while guaranteeing
“security” against “adversarial behavior”.

Some Cryptographic applications

• Secure communication:
– Secure Communication Sessions
– Virtual Private Networks
– Secure Email

• Secure storage:
– Secure Remote Storage
– Secure peer-to-peer systems

• “E-commerce”:
– Auctions, trading and financial markets,
– Shopping

• Database Security:
– Private information retrieval, Database pooling, Privacy

• Electronic voting

• On-line gambling ...

Some basic cryptographic building blocks

• Key Exchange [Diffie-Hellman78]

• Contract Signing/Fair Exchange [Even-Goldreich-Lempel85]

• Coin-tossing [Blum82]

• Zero-Knowledge [Goldwasser-Micali-Rackoff88]

• Commitment [Blum88]

• Oblivious Tranfer [Rabin81]

• Secret Sharing [Shamir79]

• ...

Many cryptographic protocols were developed over the
years:

• Obtaining authenticated and secure communication
[DH78,Needham-Schroeder78,Bird+91,Bellare-Rogaway93, Kerberos,
PGP,SSL/TLS,IPSEC,...]

• General constructions: Can “securely carry out” any
cryptographic task, given authenticated communication
 [Y86,GMW87,BGW88,RB89,...]

• More efficient constructions for specific problems

A plethora of cryptographic protocols

What does “security” mean?

Some concerns:

• Correctness of local outputs:
– As a function of all inputs

– Also distributional and unpredictability guarantees
 [e.g., entity/input authentication, tally correctness, input

independence, unbiased randomness of ouput.]

• Secrecy of local data and inputs

• Privacy

• Fairness

• Accountability

• Availability

However, rigorously capturing the intuitive
notion of security is a tricky business…

Main stumbling points:

• Security can often hold only against computationally
bounded adversaries and only in a probabilistic sense

• Unexpected inter-dependencies between security
requirements

• Unexpected “bad interference” between different
protocol instances in a system

In the rest of this talk:

• Demonstrate the problem

• Describe a paradigm for formulating
definitions of security, in a way that
guarantees security in any execution
environment

• Review some results within this paradigm

Insufficiency of stand-alone security

1st example: Sharing Keying Material

A simple insecure protocol combination

Let be some “really secure” protocol where
the parties use an n-bit secret key k.
Define:

• Protocol 1:
– Parties use a 2n-bit key k=k1k2.

– Publicize k1; run on k2.

• Protocol 2:

– Parties use a 2n-bit key k=k1k2.

– Publicize k2; run on k1.

π

π

π
π

π

A simple insecure protocol combination

Observe:

• When run alone, both 1 and 2 are just as
secure as .

• As soon as 1 and 2 are run together, they
both become completely insecure.

(Similar examples given in [Kelsey,Schneier,Wagner 97])

π π

π π
π

The problem: The two protocols use joint secret
information in an “uncoordinated way”.

Perhaps if we rule out such cases we'll be ok?

Insufficiency of stand-alone security

2nd example: Key-Exchange and secure communication

Authenticated Key Exchange

The goal: Two parties want to generate a common,
random and secret key over an untrusted network.

• The main use is to set up a secure communication session:
Each message is encrypted and authenticated using the
generated key.

A B

The basic security requirements

• Key agreement: If two honest parties locally
generate keys associated with each other
then the keys are identical.

• Key secrecy: The key must be unknown to an
adversary.

Encryption-based protocol
[based on Needham-Schroeder-Lowe,78+95]

A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

If decryption and identity
Checks are ok then Choose
a random k-bit NB and send

(knows B’s public encryption key EB) (knows A’s public encryption key EA)

If nonce check is ok then
Output NB

Choose a random k-bit NA

If identity and nonce
checks are ok then
output NB and send

The protocol satisfies the requirements:

• Key agreement: If A, B locally output a key with
each other, then this key must be NB.
(Follows from the “untamperability” of the encryption.)

• Key secrecy: The adversary only sees
encryptions of the key, thus the key remains
secret. (Follows from the secrecy of the encryption.)

Indeed, the protocol complies with early notions of security
(e.g. [Dolev-Yao83, Bellare-Rogaway93, Datta-Derek-
Mitchell-Warinschi06]).

Using the key for encrypting messages

A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

Assume that the protocol is “composed” with an encryption protocol
that uses the generated key to encrypt messages. Furthermore:
-The encryption protocol is one-time-pad
-The message is either “buy” or “sell”:

NB+M

An attack against the composed protocol:

A B

ENCEB(NA,A, B)

ENCEA(NA, NB,A, B)

ENCEB(NB)

C=NB+M

 ENCEB(C')

E can check whether
C=NB+ “sell”, or C=NB+ “buy”:
Let C'=C+”sell”.

E

Note: If M= ”sell” then C'=(NB+”sell”)+”sell”=NB. Else C' != NB.
Thus, B accepts the exchange if and only if M= “sell”.

The problem: The adversary uses B as an “oracle”
for whether it has the right key.

But the weakness comes to play only in
conjunction with another protocol (which gives the
adversary two possible candidates for the key...)

Consequently, need to explicitly incorporate the
encryption protocol in the analysis of the key
exchange protocol...

Insufficiency of stand-alone security

3rd example: Malleability of commitment

Traditional security properties:

– Binding: The committer can open c to only a single value
(i.e., cannot find c,r,r',x!=x' such that Verify(c,r,x)=Verify(c,r',x')=1)

– Secrecy: c gives the verifier no information on x
(i.e., for any x,x', com(x,r) ~ com(x,r'))

 Commitment [Blum 82]

Committer (x) Verifier

Commit phase:

Reveal phase:

c=com(x,r)

x,r Verify(c,r,x)=0/1

An auction protocol using commitments:

Phase 1:
Each bidder publishes
a commitment to its bid, b.

Phase 2:
Bidders open
their commitments.

B

A

B

A

C=Com(b,r)

c

b,r

Verify(c,b,r)

 An attack on the auction protocol:

Phase 1:
Each bidder publishes
a commitment to its bid.

B2

A

c’(c)

Phase 2:
Bidders open
their commitments.

B2

A

b+1,r'(r)

B1

B1

 Verify(c,r,b)=1 Verify(c',r',b+1)=1

c=Com(b,r)

c

 b,r

The problem: The stand-alone definition does not
guarantee that the committed values in different
instances are independent from each other.

This is a new security concern, that does not exist
in the stand-alone model...

Non-malleable commitments
[Dolev-Dwork-Naor 91]

Guarantee “input independence” for commitments in
the case where two instances of the same
commitment protocol run concurrently.

Non-malleable commitments
[Dolev-Dwork-Naor 91]

Guarantee “input independence” for commitments in
the case where two instances of the same
commitment protocol run concurrently.

What about multiple instances? Different protocols?
Seems hopeless:
• Given a commitment protocol C, define the protocol C':

– To commit to x, run C on x-1.

• Now, all the attacker has to do is to claim it uses C'
and copy the commitment and de-commitment
messages...

Insufficiency of stand-alone security:
Other examples

• Zero-Knowledge protocols:
– The original (stand-alone) notion does not guarantee ZK

for even two concurrent copies [Goldreich-Krawczyk88].

– Obtaining ZK when the number of concurrent copies is
unbounded becomes even harder [C-Kilian-Petrank-Rosen01].

• Byzantine Agreement:

– Obtaining “concurrent BA” is impossible for t>n/3, even
with set-up [Lindell-Lysyanskaya-Rabin02].

• ...

How to guarantee security in complex
protocol environments?

• Traditionally: Keep writing more and more
sophisticated requirements, that capture
more and more scenarios…
– Ever more complex
– No guarantee that “we got it all”.

An alternative approach:
• Prove security of a protocol as stand-alone

(single execution, no other parties).
– Use a general secure composition theorem to

deduce security in arbitrary execution environments.

 Pre-requisites for a viable
“secure composition” approach

Need:
• A general framework for representing security

concerns and requirements from protocols

• A general composition operation that:

– Captures realistic situations in multi-protocol
systems

– Preserves security

Developing a general framework for
representing security of protocols

[Goldwasser-Levin 90], [Micali-Rogaway 91], [Beaver 91],
[Mitchel-Mitchell-Schedrov 98], [Hirt-Maurer 00], [Dodis-Micali 00],
[Backes-Pfitzmann-Waidner 93,00,01,04], [Canetti 92,00,01,05]...

Main issues:
• Expressibility: How to allow expressing realistic situations

and concerns.
• General composability: How to formulate a composition

operation that represents how protocols “compose” in
reality.

• Security preservation: How to prove that such a
composition operation preserves security.

Universally Composable (UC) Security

● A framework that allows expressing any set of
concerns and requirements for any crypto task:

 (e.g. authenticity, secrecy, anonymity, privacy,
correctness,unpredictability, fairness, public verifiability,
coercion-freeness, termination, availability...)

● A composition operation (“universal composition”)
that allows expressing practically any way in
which protocols interact and compose.

● A way to assert security that's preserved under
universal composition.

The basic paradigm
 [Goldreich-Micali-Wigderson87]

‘A protocol is secure for some task if it
“emulates” an “ideal process” where the
parties hand their inputs to a “trusted party”,
who locally computes the desired outputs
and hands them back to the parties.’

Intuitively very attractive.

But, how to formalize?

UC security in a nutshell

Will present in three steps:
• Formalize the process of protocol

execution in presence of an adversary
• Formalize the “ideal process” for

realizing the functionality
• Formalize the notion of “a protocol

emulates the ideal process for realizing
a functionality.”

 UC security:

P1

P3
P4

P2
A

π

E Protocol execution:

 UC security:

P1

P3
P4

P2

F

S

EIdeal protocol:

 UC security:

P1

P3
P4

P2

F

P1

P3
P4

P2

S A

π

E

Protocol realizes functionality F if
running emulates the ideal process for F:
 For any adv. A there exists an adv. S
 Such that no environment E can tell
 whether it’s interacting with:

 - A run of with A
 - An ideal run with F and S

π

π

Ideal protocol: Protocol execution:

π

Correctness: In the ideal process the parties get the “correct”
outputs, based on the inputs of all parties. Consequently, the
same must happen in the protocol execution (or else Z will tell
the difference).

Secrecy: In the ideal process the adversary learns nothing other
than the outputs of bad parties. Consequently, the same must
happen in the protocol execution.

Fairness, Availability, etc.: Argued in a similar way.

Implications of the definition

Example:
The Ideal Millionaires Functionality

1. Receive (x) from party A

2. Receive (y) from party B

3. Set b=x>y. Send (b) to A and B, and halt.

Each party is assured that:
•Its own output is correct, based on the other's input
•The input contribted by the other is independent of its own
•Its own input is secret, except for the function value

Example:
The Ideal Key Exchange Functionality

1. Receive (sid, B) from party A

2. Receive (sid, A) from party B

3. Choose a random key k and output
(sid,A,B,k) to A and B.

The parties are assured that:
• They obtain the same key
• The key is random and known only to them.

(In fact, this is too ideal. Need to address corrupted peers, non-blocking, etc...)

Example:
 The Ideal Commitment Functionality

1. Upon receiving (“commit”,C,V,x) from C,
 record x, and send (C, “receipt”) to V.

2. Upon receiving (“open”) from C,
send (C,x) to V and halt.

Note:
• C is assured that V learns nothing about x prior to opening.
• V is assured that the value x it received in step 2 was fixed in step 1.
 Furthermore, x was chosen based only on what's known to V at the time.

The big gain:
Security-preserving protocol composition

Start with
• Protocol that uses ideal calls to functionality F
• Protocol that securely realizes F

Construct the composed protocol :
• Each call to F is replaced with an invocation of .
• Each value returned from is treated as coming

from F.

π

π

π
π

ρ

ρ

The composition operation:

The composition operation
(single call to F)

F

ρ

ρρ

ρ

The composition operation
(single call to F)

F

 π

 π π

 π

ρρρ

ρρ
ρ

ρ

ρ

➔

The composition operation
(multiple calls to F)

F

➔

FF

ρρ

ρρ

ρ ρ

ρρ π
ππ

π ππ πππ

πππ

The universal composition theorem:

 Protocol emulates protocol .
 (That is, for any adversary A there exists an adversary S such that

 no E can tell whether it is interacting with (,A) or with (,S).)

 Corollary:
 If realizes functionality G then so does .

ρρ

ρ ρ

ρρ

π

π

π

The universality of universal composition

Captures all common ways to combine
protocols:

– Subroutine calls

– Sequential, parallel, concurrent, executions

– Executions by same party, by unrelated parties

– Executions on same/related inputs, on unrelated
inputs

– Unbounded number of executions

– Dynamic and adversarial code generation
(“chosen protocol attacks”)

Two benefits of the UC theorem

• Security in complex environments:
– Guarantee security when the protocol is running alongside

other (potentially unknown) protocols.

• Modular design and analysis of systems:
– De-compose a complex system into small protocols.

– Analyze the security of each protocol separately
(as stand-alone).

– Deduce the security of the composite system.

Questions:

• Is UC security achievable?
– Are existing protocols enough?
– Can we design new protocols that suffice?

• Can we relax the definition and still
guarantee both meaningful security and
composability?

Highlights of current answers

• For “secure communication primitives” (authentication,
encryption, digital signatures, key-exchange, etc.):

– Many known protocols are UC-secure
(e.g., IKE/SIGMA, TLS, NSL,...)
[Backes-Pfitzmann-Waidner01,03,04,C-Krawczyk02...]

– Some notions are equivalent to traditional ones
(e.g., digital signatures, CCA-secure encryption)
[C01,04,C-Krawczyk-Nielsen03,Hofheinz-QuadeMuller-Unruh04,....]

Highlights of current answers

• For “secure communication primitives” (authentication,
encryption, digital signatures, key-exchange, etc.):

– Many known protocols are UC-secure
(e.g., IKE/SIGMA, TLS, NSL,...)
[Backes-Pfitzmann-Waidner01,03,04,C-Krawczyk02...]

– Some notions are equivalent to traditional ones
(e.g., digital signatures, CCA-secure encryption)
[C01,04,C-Krawczyk-Nielsen03,Hofheinz-QuadeMuller-Unruh04,....]

• For “general multiparty computation”:

– With honest majority, known protocols are UC-secure.
[BenOr-GoldWasser-Wigderson88,BenOr-Rabin89,C-Feige-Goldreich-
Naor96,C01]

Highlights of current answers

• For general multiparty computation with honest minority:

– Many “traditional” protocols don't work

– Many tasks are impossible to obtain “from scratch”
[C-Fischlin01,C-Kushilevitz-Lindell03, Datta-Derek-Mitchell+06...]

– Can regain general feasibility with set-up assumptions
(e.g. common reference string, enhanced PKI, timing)
[C-Lindell-Ostrovsky-Sahai02, Damgard-Nielsen02,Barak-C-Nielsen-
Pass04,Kalai-Lindell-Prabhakaran05,C-Dodis-Pass-Walfish07,...]

– Can regain feasibility “from scratch” with weaker notions
(but have to give up on either security or composability)
[Prabhakaran-Sahai04,Barak-Sahai05,Malkin-Moriarty-Yakovenko06, Micali-
Pass-Rosen06,...]

 Two applications in more detail:

- Modular design and analysis of key exchange and
secure communication session protocols

- Computationally sound formal and automated
analysis of protocols

A small problem...

• The UC operation/theorem applies only to
instances that dont share any local state.

• In contrast, in reality many protocols often share
the same state (e.g., same PK/SK pair for many
key exchanges).

• We know that sharing secret state is dangerous...

• How to argue about such cases?

Universal composition with joint state (JUC)
[C-Rabin03]

Provides a general design methodology such that:

• Protocols that comply can be composed securely
with joint state

• Known protocols comply

Universal composition with joint state (JUC)
[C-Rabin03]

 π

ρ

 π F
F

F
...

F”If

ρ

ρ

...

ρ

 ...

F F F

then:

ρ
emulates

emulates

ρ

Modular analysis of secure channels
Many components:

• Registration (CA, authentication servers)

• Key exchange

• Data encryption

• Date authentication

• Replay protection

How to analyze?

The general structure of signature-based protocols
(common to IPSEC,SSL/TLS, most others...)

Enc+
auth

KE

KE

KE

...

...

sig

CA

Enc+
auth

Enc+
auth

Step 0: Set the goal

 ISCS

The Ideal Secure Communication Session functionality:

Send(A,B,m) Receive(A,B,m)

Sent(A,B,|m|)

Want to emulate multiple independent instances of ISCS:

ISCS

ISCS

ISCS...

Step 1: From key exchange to secure sessions

 IKE

Recall: the Ideal key exchange funtionality

exchange(sid,A,B) exchange(sid,A,B)

k

Emulating ISCS given IKE:
Encrypt and MAC each message with keys derived from k.
Need to demonstrate:

Enc+
MAC

IKE

ISCS

k

emulates

Step 2: From ideal certification to key exchange

 ICert

Ideal certification functionality

Certify(A,m) Does C certify (A,m)?

Yes/no

Emulating IKE given ICert: Any signature-based key-exchange
 protocol. Need to demonstrate:

KE

ICert

IKE

C

emulates

Step 3: From signatures+PKI to Multi-session ICert

 CA

PKI functionality:

Register(ID,PK) ID

PK

Emulating multi-session ICert given PKI:
1. Register PK of a signature scheme
2. When asked to certify m within session sid, sign (sid,m).
Need to emonstrate:

sig

CA

ICert

ICert

ICert

...

ICert”
emulates

Step 4: Putting things together

Enc+
auth

KE

KE

KE

...

...

sig

CA

Enc+
auth

Enc+
auth

ICert

... ICertICert

Enc+
auth

KE

KE

KE

...

...

Enc+
auth

Enc+
auth

Enc+
auth

IKE

...

...

Enc+
auth

Enc+
auth

IKE IKE

Enc+
auth

IKE

...

...

Enc+
auth

Enc+
auth

IKE IKE

SCS

...SCS SCSemulates

emulates emulates

(JUC)

Reflections

• Analyzed each component separately

• Analysis of protocol only had to deal with a single
session

Still:

• We could assert security for the entire system

• Security guarantees hold within any external context
and for any application.

Using formal methods for security analysis

A popular method for analyzing security of cryptographic
protocols, using formal tools:

 Model the cryptographic operations as symbolic
operations that represent “perfect cryptography”.

A quintessential example: The [Dolev-Yao83] modeling of
public-key encryption and signatures. A large body of
work follows this approach.

 Pros and cons of “Dolev-Yao style”
symbolic modeling

Main advantage:

 Analysis is much simpler. Absolute assertions, no error
probabilities, no computational limitations, no asymptotics.
Consequently, it is amenable to automation.

Main drawbacks:

– Lack of soundness. There is no security guarantee
once the symbolic operations are replaced with real
cryptographic algorithms.

– No composability. Have to analyze directly an entire
system. This greatly limits automation (in fact, general
undecidability results exist).

 Using UC security to improve symbolic modeling

Can have symbolic modeling that is:

– Sound even when the symbolic operations are replaced
by real algorithms.

– Avoids undecidability: Can analyze single instance
protocols and deduce security of the composite system

– Automated

Main idea: Show correspondence between protocols that use
symbolic crypto and protocols that use ideal functionalities
 in the UC framework. This allows using the universal
composition theorem to obtain soundness and
composability.

[Pfitzmann-Waidner00,C01,Backes-P-W-04+,C-Herzog04,Patil05]

Analysis strategy
[Abadi-Rogaway00]

Concrete
protocol

UC security

Symbolic
protocol

Symbolic
property

Analysis strategy (expanded)
[C-Herzog04]

Concrete
protocol

UC concrete
security

Symbolic single-
instance protocol

Symbolic
property

Single-instance
Setting

Security using
concrete encryption

Security for
multiple instances

Ideal
cryptography

UC
theorem

S
im

pl
if

y

UC w/
joint
state

Further Research

Make security analysis of protocols ubiquitous
– Mechanize and automate the analysis

– Analyze real-life protocols and systems

Find better protocols that guarantee UC security
– Alternative constructions

– Alternative set-up assumptions

– Alternative ideal functionalities

Apply compositional analysis to other settings, e.g:
– Program obfuscation

– Cryptographic protocols with game-theoretic modeling
(rationality, equilibria)

