
Matthew Sacks
GlassCode Inc.

Datacenter in a Wiki
By automating and better leveraging documentation, you improve your infrastructure,
process, and code.

The primary concept of the solution for this problem marrying the engineering systems
and the simplicity of human expression as a way to build and maintain systems.

Problem(s)
We were producing many server farms for many different projects with different
configurations, and keeping track of the different documents, or Infrastructure Design
Documents, which outline how a given Web stack would be built (itʼs server assets,
network configuration, and applications installed on the server). These documents
would vary in how they were stored and formatted amongst groups; if you were in the
network team you stored all of the information in a spreadsheet, if you were on the
applications team, you stored in in an unformatted Wiki page.

The melange of information passed through many different hands of many different
teams in different formats, and many errors were introduced.

Much time was wasted in the building of a server farm for a given software product, in
this case a Web application stack, and people simply didnʼt have time to continue to
update documentation, even if it is introducing errors into daily operations as a result of
misinformation. By leveraging automation and standardizing common documents, the
process of improving infrastructure and code becomes more effective, and process is
improved as a result. In this presentation, I use the specific example of building many
server farms using documentation processes as an example, but the principles can be
used to address many other similar problems.

Other Similar Problems
Stale Documentation Problem:

Copyright 2010 Matthew Sacks GlassCode Inc.

Aside from the lack of automation and standardization in our documentation processes
as they relate to operations, many operations groups experience problems with
documentation becoming unmaintainable or getting out of date quickly.

Stale Documentation Solution:

One way of managing stale documentation is to add a timer to every document
produced. If a document gets beyond a certain age, then it should alert a document
administrator or technical writer that the page needs to be updated, or deleted if it is too
old.

No time to update documentation problem:

Many engineers in operations and development alike claim that they simply do not have
time to update documentation. Updating documentation is just as important as updating
code, because through expressing your application and process designs in a written or
verbal way, brings to light new improvements or issues that need to be addressed that
otherwise would not be able to be rationalized or analyzed by just looking or thinking
about the code or process.

Not documenting code, applications or process contributes to making legacy systems,
and legacy systems can be a huge business liability if no one knows how to manage
them.

No time to update documentation solution:

Make it a necessary part of the software development life cycle, for operations employ
templates to automate the documentation of process and infrastructure designs by
integrating documentation systems with configuration management and provisioning
systems, so that documentation now becomes functional rather than just words on a
page.

Also, by providing feedback mechanisms such as rating or comment systems and
actually using them, the need to update a particular document becomes more apparent.
Not all documentation needs to be updated, so by soliciting the users of a
Documentation system or Wiki, one can become aware of what needs to be updated
most.

Standard Template Solution

To address this problem, a template was created in Confluence to consolidate all of the
information required to build out a particular server farm including all of the applications,
dependencies, hostnames, IP addresses and networks to run an entire Web site, for
example.

Copyright 2010 Matthew Sacks GlassCode Inc.

Creating a standardized Infrastructure Design Document helped reduce the number of
errors and confusion around how these server farms should be built, but they were not
fool proof, and a human still had to translate the documentation and manually input it
into a configuration management and provisioning engine to provision and configure the
servers, applications, and configurations.

An early example of an Infrastructure Design Document

The Current Solution
There still a great deal of human error introduced in the process because of the lack of
validation. The Wiki did not have the ability to validate a given document against a pre-
defined structure, such as an XML Schema Document, for example, so we built a utility
in Python to validate an XML document against an XSD to ensure that the Infrastructure
Design Document was inputted properly into the Configuration Management engine.

The shortcoming of this was that we did not have any integration between this XML file
and the original Wiki page which was being consumed by all of the groups, so we lost a
great degree of automation in that and the XML document had to be translated based
off of a Wiki page.

Copyright 2010 Matthew Sacks GlassCode Inc.

One of the great problems was that there were many different groups, again, who prefer
their own format and their own way of doing things, which made it difficult to get
everyone on the same page. In order to do this we had to integrate bit by bit within each
team using a common format using a standardized template within the Confluence wiki.

Document Automation

http://wiki.tld

Server Farm Design Template

Servers

Network con!gs

Applications

SysAdmin

0.2

Validation

Copyright 2010 Matthew Sacks GlassCode Inc.

Standardizing the Infrastructure Design Document using a template and Validation

Future Solutions
1.0

Although it is still in development, there are still many errors in the current design.
Manual intervention by a system administrator is still needed to perform the translation
of a Infrastructure Design Document into XML, and then the XML must be manually
validated. In future solutions, an application will read the Infrastructure Design
Document via SOAP or XMLRPC into a handling engine, which generates the XML and
validates and automatically feeds it into the provisioning system. This will still require a
system administrator to approve the buildout, because there still needs to be a human
being moderating build requests, otherwise things could get out of hand very quickly.

2.0

Taking this design a step further, a translation engine can be added which takes design
arguments in plain English, similar to the Cucumber project [1] which then gathers
assets from a configuration management database (CMDB) which has a pre-defined
pool of assets (virtual servers, VIPs, network addresses).

In this design, a person may simply say expressively in a Infrastructure Design
Document they would like “5 application servers in network range 10.10.1.0/24 with a
VIP name of app1.mydomain.tld”, for example. The advantage is that the system
administrator no longer has to keep track of assets to be provisioned, anyone can
request a new server farm (pending final approval from the system administrator), and
all of the components and actions necessary to build a server farm are now managed
through an expressive, standard Document.

Copyright 2010 Matthew Sacks GlassCode Inc.

Document Automation (Vision)

http://wiki.tld

Server Farm Design Template

I want !ve database Servers
The IP range is 10.10.1.0/24

I want !ve app servers with
MyApp1 Installed in IP range
10.10.1.0/24

The database vip is dbvip1
The app vip is appvip1
The Web vip is webvip1

SysAdmin

 2.0

SOAP/XMLRPC

General Provisioning Con!g
Validate Con!g
Make con!g available for provisioning

Handling Engine (Daemon)

Interpret Human Language Input
Gather assets from CMDB
Pass result to Handling engine

Inventory + Translation Engine

Approve (y/n)?

Version 2.0 of the Infrastructure Design Template Provisioning Workflow

Copyright 2010 Matthew Sacks GlassCode Inc.

Conclusions

By automating and standardizing documents in a Wiki or other documentation system,
and integrating it with other automation tools such as configuration management and
provisioning systems, one can create a central point for creating complex server farms
and keeping inventory of their relevance using such systems. By using an expressive
format for creating infrastructure such as a Document Template, anyone can create
server farms or application environments and mitigate the confusion introduced by the
collaboration of multiple cross-functional operations and development teams in building
a complex Web or application stack.

By employing similar methods to the creation of infrastructure by Documentation
standardization and automation, such as adding timers to documents, and standardizing
the template of a given application or process, one gains the features and benefits of
keeping code and process updated, and finding design flaws or improvements which
can be made in an IT organization by using an expressive process like documenting.

Giving automation and standardized template facilities to the end-user, and integrating it
into common operational workflows, one can take the reluctance to create and maintain
documentation, which ultimately benefits all aspects of an IT organization or group.

Copyright 2010 Matthew Sacks GlassCode Inc.

