USENIX LISA'10

RC2: A Living Lab for Cloud Computing

Kyung Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, Stefan Berger, Dilma M Da Silva, Jim Doran, Frank Franco, Alexei Karve, Herb Lee, James A Lindeman, Ajay Mohindra, Bob Oesterlin, Giovanni Pacifici, Dimitrios Pendarakis, Darrell Reimer, Mariusz Sabath

IBM T.J Watson Research Center

Research Compute Cloud for IBM Research Worldwide

- 9 research centers distributed around world
- A variety of IT experiment labs on each site
- Lots of lab machines used for experiments and getting dusted
- Extensive cloud computing research and experiments

Objectives and Challenges

Mission (Maybe Not) Impossible:

"Chase two rabbits and catch both"

- Commercial-grade IaaS for Semi-public Cloud
 - Serve worldwide IBM research community (and beyond)
- Playground for quick Cloud technology experiments and transfer
 - IBM's cloud computing initiatives and businesses

Yet, Another Challenge:

- Support various types of systems and virtualization mechanisms
 - xSeries (x86): virtual machines through xen, kvm, etc
 - pSeries (Power): LPARs through phyp
 - zSeries (mainframe): VMs through native virtualization

RC2 Architecture

Extensible and Pluggable

Smart Cloud Dispatcher

Make RC2 Operating Infrastructure More Scalable and Reliable.

- Handle impedance mismatch between user requests and back-end component managers and avoid overload and crash
- Respond quickly to light-weight requests
- Provide a request delivery mechanism that allows component manager to scale-out
- Extensible to scale dispatcher itself

Smart Cloud Dispatcher

Request Queues for Dispatcher and Component Managers

Dispatch Queue

Cloud REST Gate Keeping for early and simple Admission Control Servlet •Admit into Queue with Request(TR) ID Put request and blocks for result for sync. **Dispatch Queues** requests Sync. Request Q (SRQ) •Reject Async. Requests Q (ARQ) if queue is full or component is down get request * time-to-live setting for request expiration * **priority** setting for internal requests * cancel waiting requests in queue Cloud Manager Threadpool

© 2009 IBM Corporation

Dispatcher

Container

Servlet

Dispatch Queue (cont.)

End-to-End Pacemaking (Ongoing)

Throttling model based on constraints-status-policy:

- Constraints: maximum 256 concurrent checkoutImage requests allowed
 - **Status:**number of active and outstanding (queued) checkoutImage requests are monitored
 - Policy:
 dispatch if number of
 active/outstanding checkinImage
 requests < 256 25 (10% safety
 buffering)

Image Management

- Catalogs, accesses, and maintains VM images
 - ListImages
 - DescribeImage imageId
 - AddImage directoryURL imageName
 - *CheckoutImage imageId directoryURL
 - *CheckinImage directoryURL imageName
 - DeprecateImage imageId
 - PublishImage imageId
 - UnpublishImage imageId
- Metadata and Provenance
 - Name, description, owner, ACL, parent ID

Mirage Image Library

Conventional image library

Disk granularity store

- Disk based representation
- No image relationships
- Hypervisor-dependent
- Merely a storage system for image disks

Mirage image library

Content addressable, file granularity store

- File based representation
- Image relationships (think CVS)
- Hypervisor-agnostic
- A sophisticated store with APIs to directly manipulate images without deploying them as instances or fully assembling their disks
- Conventional disk is reconstituted when an image is checked out

Instance Management

Provisioning Steps to create Instance

- Reserve resources Placement Advisor
 - 1) Select HostPlatform Match capabilities with requirements of image
 - 2) Reserve guest IP address and resources for Instance
- 1. Register instance parameters with TPM for tracking the instance
- 2. Request Image Manager to checkout/clone the image to the HostPlatform
- 3. Fixup the image before boot Copy ssh keys
- 4. Setup the Activation Engine parameters on Activation Device (floppy/cdrom). These parameters are for fixup during boot
- 5. Register the VM with Hypervisor
- 6. Start the VM This will complete the fixup
- 7. Wait for VM to start (ping/ssh)
- 8. Notifications
 - 1) Notify User with Email
 - 2) Message for Compliance Tracking

VEGA provisioning abstraction layer

Security Management

- Goals of the Security Manager
 - Realization of Trusted Virtual Domain (TVD)
 - Isolation between different cloud users' workloads
 - Grouping of VMs of the same or different users (security domains)
 - Enable controlled collaboration between users
- Layered approach
 - Xen daemon extended for applying filtering rules for layer 2 to layer 4 traffic
 - Based on Linux filtering : ebtables and iptables
 - Prevent MAC, IP and ARP spoofing
 - Filtering of traffic with other VMs inside the cloud
 - Filtering of traffic with IP addresses outside the cloud
 - Security Manager implements VM grouping support
 - Calculates per-VM filtering policies
 - Pushes policies to Xen daemons

Trusted Virtual Domains

Security Domain A
Owner: User A

Filter: Allow traffic to SSH and VNC ports from outside

the cloud

Security Domain B Owner: User B

Filter: Sec. Domain A may reach TCP port 80

Chargeback: No free lunch!

Chargeback Impact

Money talks!!!

Challenge Case 1: Heterogeneous Cloud

Provision pSeries (Power) System Instance (LPAR/Phyp)

Challenge Case 2: Strategic Hypervisor Switch

Strategic move from Xen to KVM

- Migrate existing Xen VM images to KVM compatible images
- Xen images contain paravirtualized Linux OSes

Requirements

- Zero Downtime
 - RC2 production system was continuously running with all functionalities enabled and no noticeable performance slowdown.
- Efficiency (both in storage and in time)
 - Consumed another 293 GB storage (cf. 9.5TB with flat file approach)
 - Took only 20 seconds to convert an image (cf 4 minutes in native way)
- Transparency to end users
 - End users did not notice any change of their images until the "conversion" day

RC2 Value: Usage Growth

In 1 year of RC2 production operation

- -631 users from 34 countries
- Fast grow of VM images and instances
- Matching capacity grow required

Conclusions and Ongoing Work

RC2

- Delivers high-quality cloud computing for IBM research community (and beyond)
- Provides effective framework for quick integration of novel ideas in to real cloud platform

Ongoing

- Extending to include at least two other RC2 zones in two different continents
- Adding many research PaaS (Web App Platform, Elasticity Service) and SaaS (dev/test service cloud) technologies

