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Target: General Purpose NWs 

Usually single LAN systems 

Each machine’s resources controlled by local OS 

• NFS, but little other system-wide resource sharing 

No central scheduler of NW-wide resources 

• Users tend to statically pick node(s) to use 

(ex) write MPI hostfile once, use every time  

• Users may not have a choice 

(ex) ssh cs.swarthmore.edu: target is chosen from static set 

• Often large imbalances in NW-wide resource usage  
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Imbalances Cause Poor Performance 

•  Swapping on some while lots of free RAM on others 

•  Large variations in CPU loads  

•  Variations in contention for NIC, disk, other devices 

•  Parallel applications (ex. MPI) 
• Usually performance determined by slowest node 

• Picking one overloaded node can result in big performance hit 

•  Sequential applications 
• Low response rate for interactive jobs 

• Longer execution times for batch jobs 
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Want to do better load balancing 

•  Tool to easily and quickly discover “good” nodes  

• low CPU load, enough free RAM, fewest number of 

processes, total # CPUs, … 

•  use to make better job/process placement 

•  get better load balancing 

•  avoid problems with load imballances 

•  But has to fit with constraints of target system  

•  Still General Purpose system where each OS 

manages it local node’s resources 

• Not implementing a global resource scheduler 
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PeerMon 

•  P2P Resource Monitoring System 

• Scalable, fault tolerant, low overhead system 

• No central authority, so no single bottleneck  

nor single point of failure 

• Each node runs equal peer that provides system-wide 

resource usage data to local users on its node 

• Fast local access to system-wide resource usage data 

•  Layered Architecture: 

• PeerMon does the system-wide data collection part 

• Higher-level services use PeerMon data to do load 

balancing, job placement, … 
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PeerMon Architecture 

Every node runs equal peer that 

collects system-wide resource 

usage data 

Sender and Listener Threads: 

communicate over P2P NW 

Client Interface Thread: 

exports PeerMon data to 

higher-level services that use 

it  (communicate with local 

peermon daemon only!)  
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Listener and Sender Threads 

Listener Thread: 

•  receives resource usage data  
 from other peers 

• updates its system-wide resource 
usage data (stored in hashMap)  

Sender Thread: 

periodically wakes up & sends its 
data about whole system to 3 
peers 

Both use UDP/IP 

• Fast, don’t need reliable delivery 

• Single UDP socket vs. one per 
connection w/TCP 
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Resource Usage Data 

Each PeerMon peer: 

• Collects info about its own node 

• Sends its full hashMap data to 3 peers 

• Cycle through different heuristics to choose 3 to ensure 
full conectivity & that new nodes get quickly integrated 

• Receives info about other nodes from some of its peers 

Constraints on PeerMon Peer’s Data: 

• Doesn’t need to be consistent across peers 

• With good messaging heuristics it is close to consistent 

• If higher-level service requires an absolute authority,  
then it can choose 1 PeerMon node to be that authority 

• No different from centralized SNMP systems   



Why send to 3 peers? 

Results for a 500 node system 
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NW Bandwidth Ave. Data Age  

 Sending to 3 peers is good trade-off in Data Age 

vs. NW overheads 
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Client Thread 

•  Local PeerMon daemon provides 

all system-wide data to local users 

•  currently TCP interface 

•  If a higher-level service requires 

an absolute authority, then it can 

interact with exactly one PeerMon 

daemon or implement distributed 

consensus w/more than one 

•  For services that don’t need 

absolute agreement, interact with 

local PeerMon daemon  

=> purely distributed interaction 
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System start-up 
New peermon process gets 3 peer IPs config file 

Sender thread sends data to 3 peers to connect to P2P NW 

If at least 1 of 3 eventually runs peermon, new node will 

enter PeerMon P2P NW 
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Fault Tolerance and Recovery 

When  a node fails or becomes unreachable, 

its data ages out of the system 

•  Users of PeerMon data at other nodes will not 

choose failed node as one of the “good” nodes 

Recovery: 

• No different from start-up 

• No global state that needs to be reconstructed, new 

peerMon deamon will enter P2P NW and begin 

receiving system-wide resource usage data 
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Example Uses of PeerMon 

•  SmarterSSH: 

•  Uses PeerMon data to pick best ssh target 

•  autoMPIgen 

• Generates MPI hostfile, choosing best nodes based 

on PeerMon data 

•  Dynamic DNS mapping 

• Dynamically binds name to one of current set of 

best nodes 

• Uses RR in BIND 9 to rotate through set of  top N 

machines periodically updated by PeerMon 
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SmarterSSH and autoMPIgen 

•  Simple Python Programs, use PeerMon client 

TCP interface 

•  Can order “best” nodes based on CPU load, 

amount free RAM, or combination of both 

•  Uses a delta value in ordering nodes so small 

diffs in load are not significant to ordering 

•  smarterSSH randomizes the order of “equally” 

good nodes so subsequent quick invocations 

distribute ssh load over set of “best” nodes  



Example smarterSSH commands 
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How much does PeerMon help? 
•  Three benchmark programs: 

1.  Memory Intensive sequential program 

2.  CPU intensive OpenMP program (single node) 

3.  RAM&CPU intensive parallel MPI program 

(ran on 8 of 50 nodes) 

•  Experiments comparing: 

• Runs on randomly selected node(s): no PeerMon 

• Nodes chosen using PeerMon data with: 

• Ordered by CPU only 

• Ordered by available RAM only 

• Ordered using both CPU load and available RAM 
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Speed-up of PeerMon vs Random 

+ Using PeerMon significantly improves performance 

 random only does better when PeerMon ordering 

criterion is bad match for application 

+ Combination of CPU&RAM best ordering criterion  

Node 

Ranking 

Sequential 

(RAM 

Intensive) 

OpenMP 

(CPU 

Intensive)  

8 node MPI 

(Both) 

CPU only 0.87 1.63 1.27 

RAM only 4.62 2.19 1.78 

CPU & RAM 4.62 2.29 1.83 



Scalability of PeerMon 
•  Tested PeerMon NWs of 2-2,200 nodes 

•  Collected traces of MRTG data for CPU, RAM, 

NW bandwidth 

Results: 

• Per node CPU and RAM Usage remains constant  

• Per node NW bandwidth grows slightly with size of 

P2P NW, but still very small 

•  Up to .16 Mbit/s for 2,200 node system 

•  Each node sends information about every node in  

NW, so as PeerMon NW grows, so does amt data 
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Conclusions 

•  PeerMon: P2P, low overhead, scalable, fault-

tolerant resource monitoring system for 

general purpose LANs 

•  It provides system-wide resource usage data 

and an interface to export data to higher-level 

tools and services 

•  Our example tools that use PeerMon data 

provide some load balancing in general 

purpose NW systems and result in significant 

improvements in performance 
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Future Work 
•  Release beta version under GPL 

   we hope before end of summer 

    www.cs.swarthmore.edu/~newhall/peermon   

•  Further investigate security & scalability issues 

• PeerMon that spans multiple LANs? 

•  Implement easier to use client interface 

•  Add extensibility interface to change set of 

system resource monitored and how  

•  Implement more tools that use PeerMon  


