
PeerMon: A Peer-to-Peer Network

Monitoring System

Tia Newhall, Janis Libeks, Ross Greenwood, Jeff Knerr

Computer Science Department

Swarthmore College

Swarthmore, PA USA

newhall@cs.swarthmore.edu

2
Tia Newhall, 2010

Target: General Purpose NWs

Usually single LAN systems

Each machine’s resources controlled by local OS

• NFS, but little other system-wide resource sharing

No central scheduler of NW-wide resources

• Users tend to statically pick node(s) to use

(ex) write MPI hostfile once, use every time

• Users may not have a choice

(ex) ssh cs.swarthmore.edu: target is chosen from static set

• Often large imbalances in NW-wide resource usage

3
Tia Newhall, 2010

Imbalances Cause Poor Performance

•  Swapping on some while lots of free RAM on others

•  Large variations in CPU loads

•  Variations in contention for NIC, disk, other devices

•  Parallel applications (ex. MPI)
• Usually performance determined by slowest node

• Picking one overloaded node can result in big performance hit

•  Sequential applications
• Low response rate for interactive jobs

• Longer execution times for batch jobs

4
Tia Newhall, 2010

Want to do better load balancing

•  Tool to easily and quickly discover “good” nodes

• low CPU load, enough free RAM, fewest number of

processes, total # CPUs, …

•  use to make better job/process placement

•  get better load balancing

•  avoid problems with load imballances

•  But has to fit with constraints of target system

•  Still General Purpose system where each OS

manages it local node’s resources

• Not implementing a global resource scheduler

5
Tia Newhall, 2010

PeerMon

•  P2P Resource Monitoring System

• Scalable, fault tolerant, low overhead system

• No central authority, so no single bottleneck

nor single point of failure

• Each node runs equal peer that provides system-wide

resource usage data to local users on its node

• Fast local access to system-wide resource usage data

•  Layered Architecture:

• PeerMon does the system-wide data collection part

• Higher-level services use PeerMon data to do load

balancing, job placement, …

6
Tia Newhall, 2010

PeerMon Architecture

Every node runs equal peer that

collects system-wide resource

usage data

Sender and Listener Threads:

communicate over P2P NW

Client Interface Thread:

exports PeerMon data to

higher-level services that use

it (communicate with local

peermon daemon only!)

7
Tia Newhall, 2010

Listener and Sender Threads

Listener Thread:

•  receives resource usage data
 from other peers

• updates its system-wide resource
usage data (stored in hashMap)

Sender Thread:

periodically wakes up & sends its
data about whole system to 3
peers

Both use UDP/IP

• Fast, don’t need reliable delivery

• Single UDP socket vs. one per
connection w/TCP

8
Tia Newhall, 2010

Resource Usage Data

Each PeerMon peer:

• Collects info about its own node

• Sends its full hashMap data to 3 peers

• Cycle through different heuristics to choose 3 to ensure
full conectivity & that new nodes get quickly integrated

• Receives info about other nodes from some of its peers

Constraints on PeerMon Peer’s Data:

• Doesn’t need to be consistent across peers

• With good messaging heuristics it is close to consistent

• If higher-level service requires an absolute authority,
then it can choose 1 PeerMon node to be that authority

• No different from centralized SNMP systems

Why send to 3 peers?

Results for a 500 node system

9
Tia Newhall, 2010

NW Bandwidth Ave. Data Age

 Sending to 3 peers is good trade-off in Data Age

vs. NW overheads

10
Tia Newhall, 2010

Client Thread

•  Local PeerMon daemon provides

all system-wide data to local users

•  currently TCP interface

•  If a higher-level service requires

an absolute authority, then it can

interact with exactly one PeerMon

daemon or implement distributed

consensus w/more than one

•  For services that don’t need

absolute agreement, interact with

local PeerMon daemon

=> purely distributed interaction

11
Tia Newhall, 2010

System start-up
New peermon process gets 3 peer IPs config file

Sender thread sends data to 3 peers to connect to P2P NW

If at least 1 of 3 eventually runs peermon, new node will

enter PeerMon P2P NW

12
Tia Newhall, 2010

Fault Tolerance and Recovery

When a node fails or becomes unreachable,

its data ages out of the system

•  Users of PeerMon data at other nodes will not

choose failed node as one of the “good” nodes

Recovery:

• No different from start-up

• No global state that needs to be reconstructed, new

peerMon deamon will enter P2P NW and begin

receiving system-wide resource usage data

13
Tia Newhall, 2010

Example Uses of PeerMon

•  SmarterSSH:

•  Uses PeerMon data to pick best ssh target

•  autoMPIgen

• Generates MPI hostfile, choosing best nodes based

on PeerMon data

•  Dynamic DNS mapping

• Dynamically binds name to one of current set of

best nodes

• Uses RR in BIND 9 to rotate through set of top N

machines periodically updated by PeerMon

14
Tia Newhall, 2010

SmarterSSH and autoMPIgen

•  Simple Python Programs, use PeerMon client

TCP interface

•  Can order “best” nodes based on CPU load,

amount free RAM, or combination of both

•  Uses a delta value in ordering nodes so small

diffs in load are not significant to ordering

•  smarterSSH randomizes the order of “equally”

good nodes so subsequent quick invocations

distribute ssh load over set of “best” nodes

Example smarterSSH commands

15
Tia Newhall, 2010

16
Tia Newhall, 2010

How much does PeerMon help?
•  Three benchmark programs:

1.  Memory Intensive sequential program

2.  CPU intensive OpenMP program (single node)

3.  RAM&CPU intensive parallel MPI program

(ran on 8 of 50 nodes)

•  Experiments comparing:

• Runs on randomly selected node(s): no PeerMon

• Nodes chosen using PeerMon data with:

• Ordered by CPU only

• Ordered by available RAM only

• Ordered using both CPU load and available RAM

17
Tia Newhall, 2010

Speed-up of PeerMon vs Random

+ Using PeerMon significantly improves performance

 random only does better when PeerMon ordering

criterion is bad match for application

+ Combination of CPU&RAM best ordering criterion

Node

Ranking

Sequential

(RAM

Intensive)

OpenMP

(CPU

Intensive)

8 node MPI

(Both)

CPU only 0.87 1.63 1.27

RAM only 4.62 2.19 1.78

CPU & RAM 4.62 2.29 1.83

Scalability of PeerMon
•  Tested PeerMon NWs of 2-2,200 nodes

•  Collected traces of MRTG data for CPU, RAM,

NW bandwidth

Results:

• Per node CPU and RAM Usage remains constant

• Per node NW bandwidth grows slightly with size of

P2P NW, but still very small

•  Up to .16 Mbit/s for 2,200 node system

•  Each node sends information about every node in

NW, so as PeerMon NW grows, so does amt data

18
Tia Newhall, 2010

19
Tia Newhall, 2010

Conclusions

•  PeerMon: P2P, low overhead, scalable, fault-

tolerant resource monitoring system for

general purpose LANs

•  It provides system-wide resource usage data

and an interface to export data to higher-level

tools and services

•  Our example tools that use PeerMon data

provide some load balancing in general

purpose NW systems and result in significant

improvements in performance

20
Tia Newhall, 2010

Future Work
•  Release beta version under GPL

 we hope before end of summer

 www.cs.swarthmore.edu/~newhall/peermon

•  Further investigate security & scalability issues

• PeerMon that spans multiple LANs?

•  Implement easier to use client interface

•  Add extensibility interface to change set of

system resource monitored and how

•  Implement more tools that use PeerMon

