©Joyent

Performance
Visualizations

rrrrrrrrrrrr

brendan.gregg@joyent.com

mailto:rod@joyent.com
mailto:rod@joyent.com

©Joyent

G’Day, I’'m Brendan

... also known as “shouting guy”

2

Thursday, November 11, 2010

Al G A © Joyent

WMEIE/\RS PRUEEES
— 1) G http://chinese.engadget.com/2009/01/05/video~-shouting-at-disk~-drive-causes-high-latency-low-r
HEESAN, SEECHABONE.. © | wE e EReemmE © | + |
R/ BIS | BN ERIEE
Flow Yu
XM Saun

EAARMEIREE, MAMARBIEFANE' A Sun Fishworks MR Brendan Gregg, HFREEMERTAT, REAREREAZL
SHMECRNEREII AT XY —p, SRAREESRRT—HEARE, PR BERART &, HHEFAFROMANBESS, RMEw
MEPOETFREMERELIN, FETIRMEEREL.

3

Thursday, November 11, 2010

©Joyent

| do performance analysis

and I’m a DTrace addict

4

Thursday, November 11, 2010

Solaris
Performance
and Tools

DTRACE AND MDB TECHNIQUES FOR
SOLARIS 10 AND OPENSOLARIS

P
soLaris

Richard McDougall, Jim Mauro, and Brendan Gregg
Forrannd by Bryan Cantr

» &

5

©Joyent

Qracle Solaris System Administration Series

DIrace

DYNAMIC TRACING IN ORACLE SOLARIS,
MAC OS X, AND FREEBSD

Brendan Gregqg and Jim Mauro

Thursday, November 11, 2010

Agenda ©Joyent

* Performance

» Workload Analysis and Resource Monitoring

* Understanding available and ideal metrics before plotting
* Visualizations

e Current examples
* Latency
 Utilization

e Future opportunities

* Cloud Computing

6

Thursday, November 11, 2010

Visualizations like these OJogent

* The “rainbow pterodactyl”

Latency

¢

—> Time

* ... which needs quite a bit of explanation

7

Thursday, November 11, 2010

Primary Objectives OJogent

» Consider performance metrics before plotting

» See the value of visualizations

* Remember key examples

8

Thursday, November 11, 2010

Secondary Objectives

» Consider performance metrics before plotting

* Why studying latency is good

... and studying IOPS can be bad

» See the value of visualizations

 Why heat maps are needed

e ... and line graphs can be bad

* Remember key examples

9

* |/O latency, as a heat map

e CPU utilization by CPU, as a heat map

©Joyent

Thursday, November 11, 2010

Content based on ©Joyent

* “Visualizing System Latency”, Communications of the ACM
July 2010, by Brendan Gregg

 and more

10

Thursday, November 11, 2010

Performance OJogent

Understanding the metrics before we
visualize them

11

Thursday, November 11, 2010

Performance Activities +X ogent

* Workload analysis

* |s there anissue? Is an issue real?

* Where is the issue?

* Will the proposed fix work? Did it work?
* Resource monitoring

* How utilized are the environment components?

* |Important activity for capacity planning

12

Thursday, November 11, 2010

Workload Analysis ©Joyent

* Applied during:

» software and hardware development

proof of concept testing

regression testing

benchmarking

monitoring

13

Thursday, November 11, 2010

Workload Performance Issues ©Joyent

* Load

* Architecture

14

Thursday, November 11, 2010

Workload Performance Issues ©Joyent

* Load

* Workload applied
* Too much for the system?
e Poorly constructed?

* Architecture

e System configuration

e Software and hardware bugs

15

Thursday, November 11, 2010

Workload Analysis Steps ©Joyent

* |dentify or confirm if a workload has a performance issue
* Quantify

* Locate issue
e Quantify

* Determine, apply and verify solution

* Quantify

16

Thursday, November 11, 2010

Quantify ©Joyent

* Finding a performance issue isn’t the problem ... it’s finding
the issue that matters

17

Thursday, November 11, 2010

bugs.mysql.com “performance” OJogent

MySQL Bugs: Search

4) M b _c' _) _ﬁ' (http://bugs.mysgl.com/search.php?search_for=performance&status=Active&severity=&|limit=10&order_by=&cmd 17 v G" Q\'

1§ MySQL Bugs: Search © [, Oracle Secure Enterprise Searc... © | @ Sug List o+ -

AN Search_
S
MySQL " Login / Register

‘ Developer Zone Bugs Home ‘ Report a bug Statistics | Advanced search Saved searches | Tags
Showing 1-10 of 113 (Edit, Save, CSV, Feed) Show Next 10 Entries »
ID# Date Type Status Sev Version Target oS Summary Assigned
Performance schema
2010-05-17 ot Verified engine violates the
53696 Performance S3 5.6.99 5.5+ An Marc Alff
13:07 (36 days) y PSEA API by calling k
Schema
my_error()
Make the cluster
2009-08-24 2 regression Jgrgen
46886 Tests: Cluste 397 S3 An
12:44 uster :Ia) Y performance testing Austvik
i more stable
IBMDB2I subselect
2009-11-13 Sk performance
48767 DB2SE for Open S5 Any |
~ 5l IBM i degrades when async
buffering enabled
) MySQL performance
2008-06-27 Server: L AL) with and without Fast
37703 (241 S5 (Source Linux (ELS.1))
23:20 General tove) Distribution) Mutexes using
ye Sysbench Workload
2010-09-25 YSQL Verified :vorkb':m Z"p:]' :ux
57012 Workbench: —— S5 5.2.28 wb53 Linux el =

Done

18

Thursday, November 11, 2010

bugs.opensolaris.org “performance” ©Joyent

el e

Oracle Secure Enterprise Search - performance site:bugs.opensolaris.org

N m——— — N— . Y] \; - (.o e)
',\1 L A g () i (B} [http://search.oracle.com/search/search?group=Sun+Defects&site=bugs.opensolaris.org&q=performance 7 ¥) (29 Google Q

“ : MySQL Bugs: Search °|a Oracle Secure Enterprise Searc... QR Bug List Qvl\ + | —

D)

Sign In

ORACI_E. performance site:bugs.opensolaris.org Within+ 2§

Search within: Sun Defects Results 1 - 10 of about 1753 matches for performance site:bugs.opensolaris.org.

Bug ID: 4472277 Sun Blade 100 gigabit network performance
network:performance, Sun Blade 100 gigabit network performance < U10 gigabit network performance,State: *

11-Closed,Reported: 20-June-2001,Keywords:Blade100 | Gigabit | Network | Performance | ...
bugs.opensolaris.org/bugdatabase/view_bug.do?bug_id=4472277 - 12 KB

Bug ID: 4016979 performance is poor on 64MB SS20 w/local disk

xserver.performance, performance is poor on 64MB SS20 w/local disk,State: 11-Closed,Reported: 27-November-
1996,Keywords:cde | leak | memory | performance,Release Reported Against: cde1.1_45 ...
bugs.opensolaris.org/bugdatabase/view_bug.do?bug_id=4016979 - 12 KB

Bug ID: 4317727 Performance regression from Solaris 7 to Solaris 8 in Unigrahics
xserver:performance, Performance regression from Solaris 7 to Solaris 8 in Unigrahics,State: 10-Fix
Delivered,Reported: 1-March-2000,Keywords:8 | Solaris | performance | regression,Release Reported ...
bugs.opensolaris.org/bugdatabase/view_bug.do?bug_id=4317727 - 14 KB

Bug ID: 4653831 non-ON performance utilities should use 64-bit named per-CPU statistics
utility:performance, non-ON performance utilities should use 64-bit named per-CPU statistics,State:
2-Incomplete,Reported: 16-March-2002 Keywords:SAE | observability | performance,Release Reported ...
bugs.opensolaris.org/bugdatabase/view_bug.do?bug_id=4653831 - 12 KB

Bug ID: 4710147 pool extension to performance provider

Done

19

Thursday, November 11, 2010

bugs.mozilla.org: “performance” ©Joyent

el e

Bug List
'.\4)2," § "\:_..’ i “hnps://buqznla.moznlllo'g/buqhst.cgﬂqu-cksearch-perfocmance wr) (: 2§ Google Q)
E MySQL Bugs: Search © " [, Oracle Secure Enterprise Searc.. © | @ Bug List ol+] -
0
Bugzilla@Mozilla - Bug List
Home | New | Browse | Search | performance (Search) [?] | Reports | Requests | Help | New Account | Log In | Forgot Password
Mon Nov 8 2010 22:45:12 PST
This list is too long for Bugzilla's little mind; the Next/Prev/First/Last buttons
won't appear on individual bugs.
Status: REOPENED, NEW, ASSIGNED, UNCONFIRMED Product: performance Component: performance Alias:
performance Summary: performance Whiteboard: performance Content: "performance”
1995 bugs found.
IDA Sev iﬂ OS Assignee 4 =.&§_9_lus!sm Summary
491602 nor -- All bruce UNCO --- Investigate JSGC performance on real workload
466515 nor -- Wind create-and-change UNCO ~--- "connection interrupted” received after "Change My Votes"
501515 nor -- Mac dmandelin UNCO --- Performance bottleneck for object creation in js_NewGCThir
598466 nor -- Wind dsicore UNCO --- Increased of memory usage between FF3.6 and FF4b6
371063 min -- Mac general UNCO --- Mouse wheel is not working with drop down menu list
i _ , .
398546 nor -- All general UNCO --- /config.cgi?ctype=rdf produces XML with about 30% whites
bandwidth
412373 nor -- All general UNCO --- String assignment too slow
458749 enh -- All general UNCO --- patch to fire interruptHandler once per line of script :
' & Y Ja >
Done 8

20

Thursday, November 11, 2010

“performance” bugs ©Joyent

* ... and those are just the known performance bugs

* ... and usually only of a certain type (architecture)

21

Thursday, November 11, 2010

How to Quantify ©Joyent

* Observation based

e Choose a reliable metric

» Estimate performance gain from resolving issue
* Experimentation based
* Apply fix

* Quantify before vs. after using a reliable metric

22

Thursday, November 11, 2010

Observation based ©Joyent

* For example:
* Observed: application I/O takes 10 ms
* Observed: 9 ms of which is disk I/0O

» Suggestion: replace disks with flash-memory based SSDs, with
an expected latency of ~100 us

» Estimated gain: 10 ms -> 1.1 ms (10 ms - 9 ms + 0.1 ms)
=~ 9X gain

* Very useful - but not possible without accurate quantification

23

Thursday, November 11, 2010

Experimentation based ©Joyent

* For example:

* Observed: Application transaction latency average 10 ms

« Experiment: Added more DRAM to increase cache hits and
reduce average latency

* Observed: Application transaction latency average 2 ms

e Gain: 10 ms -> 2 ms = 5x

* Also very useful - but risky without accurate quantification

24

Thursday, November 11, 2010

Metrics to Quantify Performance OJogent

* Choose reliable metrics to quantify performance:
* |OPS
 transactions/second
* throughput
e utilization
* latency
* |ldeally

* interpretation is straightforward

* reliable

25

Thursday, November 11, 2010

Metrics to Quantify Performance ©Joyent

* Choose reliable metrics to quantify performance:

* 10PS generally better suited for:
 transactions/second
» throughput > Capacity Planning
e utilization
 latency » Workload Analysis
* Ideally

* interpretation is straightforward

* reliable

26

Thursday, November 11, 2010

Metrics Availability

* Ideally (given the luxury of time):

 design the desired metrics
* then see if they exist, or,

* implement them (eg, DTrace)

* Non-ideally

27

* see what already exists

* make-do (eg, vmstat -> gnuplot)

©Joyent

Thursday, November 11, 2010

Assumptions to avoid ©Joyent

* Available metrics are implemented correctly

« all software has bugs

* eg, CR: 6687884 nxge rbytes and obytes kstat are wrong

* trust no metric without double checking from other sources
 Available metrics are designed by performance experts

* sometimes added by the programmer to only debug their code
* Available metrics are complete

* you won'’t always find what you really need

28

Thursday, November 11, 2010

Getting technical ©Joyent

* This will be explained using two examples:

* Workload Analysis

» Capacity Planning

29

Thursday, November 11, 2010

Example: Workload Analysis ©Joyent

* Quantifying performance issues with IOPS vs latency

* |OPS is commonly presented by performance analysis tools

* eQ: disk IOPS via kstat, SNMP, iostat, ...

30

Thursday, November 11, 2010

IOPS ©Joyent

* Depends on where the I/0O is measured

e app -> library -> syscall -> VFS -> filesystem -> RAID -> device
* Depends on what the 1/O is

e synchronous or asynchronous

e random or sequential

* Size
* Interpretation difficult

» what value is good or bad?

* isthere a max”?

31

Thursday, November 11, 2010

Some disk IOPS problems OJogent

* |OPS Inflation

 Library or Filesystem prefetch/read-ahead
* Filesystem metadata

* RAID stripes
* |OPS Deflation

* Read caching
 Write cancellation

* Filesystem I/O aggregation

* |[OPS aren’t created equal

32

Thursday, November 11, 2010

IOPS example: iostat -xnz 1 ©Joyent

» Consider this disk: 86 IOPS == 99% busy

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc _t asvc_t %w %b device
86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 cl1d0

* Versus this disk: 21,284 IOPS == 99% busy

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc _t asvc_t %w %b device
21284 .7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1dO0

33

Thursday, November 11, 2010

IOPS example: iostat -xnz 1 ©Joyent

» Consider this disk: 86 IOPS == 99% busy

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc _t asvc_t %w %b device
86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 cl1d0

* Versus this disk: 21,284 IOPS == 99% busy

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc _t asvc_t %w %b device
21284 .7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 c1dO0

* ... they are the same disk, different 1/0O types

* 1) 8 Kbyte random

« 2) 512 byte sequential (on-disk DRAM cache)

34

Thursday, November 11, 2010

Using IOPS to quantify issues ©Joyent

* to identify

* is 100 IOPS an problem? Per disk?
* to locate

e 90% of IOPS are random. Is that the problem?
* to verify

A filesystem tunable caused IOPS to reduce.
Has this fixed the issue?

35

Thursday, November 11, 2010

Using IOPS to quantify issues ©Joyent

* to identify

* is 100 IOPS an problem? Per disk? (depends...)
* to locate

* 90% of IOPS are random. Is that the problem? (depends...)
* to verify

A filesystem tunable caused IOPS to reduce.
Has this fixed the issue? (probably, assuming...)

 We can introduce more metrics to understand these, but standalone
IOPS is tricky to interpret

36

Thursday, November 11, 2010

Using latency to quantify issues ©Joyent

* to identify

* isa 100ms /O a problem?
* to locate

* 90ms of the 100ms is lock contention. Is that the problem?
* to verify

* Afilesystem tunable caused the 1/O latency to reduce to 1ms.
Has this fixed the issue?

37

Thursday, November 11, 2010

Using latency to quantify issues ©Joyent

* to identify

e isa 100ms I/O a problem? (probably - if synchronous to the app.)
* to locate

* 90ms of the 100ms is lock contention. Is that the problem? (yes)
* to verify

* Afilesystem tunable caused the 1/O latency to reduce to 1ms.
Has this fixed the issue? (probably - if 1ms is acceptable)

e Latency is much more reliable, easier to interpret

38

Thursday, November 11, 2010

Latency ©Joyent

* Time from |/O or transaction request to completion

» Synchronous latency has a direct impact on performance
* Application is waiting
* higher latency == worse performance

* Not all latency is synchronous:

* Asynchronous filesystem threads flushing dirty buffers to disk
eg, zfs TXG synchronous thread

* Filesystem prefetch
no one is waiting at this point

« TCP buffer and congestion window: individual packet latency may
be high, but pipe is kept full for good throughput performance

39

Thursday, November 11, 2010

Turning other metrics into latency

» Currency converter (* -> ms):

random disk IOPS == /O service latency
disk saturation == I/O wait queue latency
CPU utilization == code path execution latency

CPU saturation == dispatcher queue latency

©Joyent

* Quantifying as latency allows different components to be
compared, ratios examined, improvements estimated.

40

Thursday, November 11, 2010

Example: Resource Monitoring ©Joyent

* Different performance activity

* Focus is environment components, not specific issues

 incl. CPUs, disks, network interfaces, memory, 1/0O bus, memory
bus, CPU interconnect, I/0O cards, network switches, etc.

 |nformation is used for capacity planning

* |dentifying future issues before they happen

 Quantifying resource monitoring with IOPS vs utilization

41

Thursday, November 11, 2010

IOPS vs Utilization ©Joyent

* Another look at this disk:

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asve t %w $%b device
86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 cldo

[...]
extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asvc t %w %b device
21284 .7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 ¢1dO0

* Q. does this system need more spindles for IOPS capacity?

42

Thursday, November 11, 2010

IOPS vs Utilization ©Joyent

* Another look at this disk:

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asve t %w $%b device
86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 cldo

[...]
extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asvc t %w %b device
21284 .7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 ¢1dO0

* Q. does this system need more spindles for IOPS capacity?
* |IOPS (r/s + w/s): ?77?

* Utilization (%Db): yes (even considering NCQ)

43

Thursday, November 11, 2010

IOPS vs Utilization wJoyent

* Another look at this disk:

extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asve t %w %b device
86.6 0.0 655.5 0.0 0.0 1.0 0.0 11.5 0 99 cl1dO

[...]
extended device statistics
r/s w/s kr/s kw/s wait actv wsvc t asvc t %w %b device
21284 .7 0.0 10642.4 0.0 0.0 1.8 0.0 0.1 2 99 ¢1dO0

* Q. does this system need more spindles for IOPS capacity?
* |IOPS (r/s + w/s): 7?7
 Utilization (%b): yes (even considering NCQ)
e Latency (wsvc_t): no

 Latency will identify the issue once it is an issue; utilization
will forecast the issue - capacity planning

44

Thursday, November 11, 2010

Performance Summary ©Joyent

Metrics matter - need to reliably quantify performance
* to identify, locate, verify
* try to think, design
* Workload Analysis
e |latency
* Resource Monitoring

e utilization

Other metrics are useful to further understand the nature of
the workload and resource behavior

45

Thursday, November 11, 2010

Obijectives ©Joyent

* Consider performance metrics before plotting

 Why latency is good

e ...and IOPS can be bad ¢
» See the value of visualizations

 Why heat maps are needed

e ... and line graphs can be bad

* Remember key examples

* |/O latency, as a heat map

e CPU utilization by CPU, as a heat map

46

Thursday, November 11, 2010

Visualizations OJogent

Current Examples

Latency

47

Thursday, November 11, 2010

Visualizations OJogent

* So far we’ve picked:

* Latency
 for workload analysis
 Utilization

 for resource monitoring

48

Thursday, November 11, 2010

Latency

* For example, disk 1/0

* Raw data looks like this:

iosnoop -o
DTIME
125
138
127
135
118
108
87
0148
8806
2262
76

UID
100
100
100
100
100
100
100
100
100
100
100

PID
337
337
337
337
337
337
337
337
337
337
337

[...many pages of output...]

AXDVHPWHXDHDXHIIDNO

BLOCK
72608
72624
72640
72656
72672
72688
72696
113408
104738
13600
13616

* josnoop is DTrace based

SIZE
8192
8192
8192
8192
8192
4096
3072
8192
7168
1024
1024

COMM
bash
bash
bash
bash
bash
bash
bash
tar
tar
tar
tar

* examines latency for every disk (back end) I/0

49

»Joyent

PATHNAME
/usr/sbin/tar
/usr/sbin/tar
/usr/sbin/tar
/usr/sbin/tar
/usr/sbin/tar
/usr/sbin/tar
/usr/sbin/tar
/etc/default/lu
/etc/default/lu
/etc/default/cron
/etc/default/devEfsadm

Thursday, November 11, 2010

Latency Data ©Joyent

* tuples
e |/O completion time

* |/O latency

» can be 1,000s of these per second

50

Thursday, November 11, 2010

Summarizing Latency

* jostat(1M) can show per second average:

S iostat -xnz 1

[..

51

-]

r/s
471.0

r/s
631.0

r/s
472 .0
.]

extended
w/s kr/s kw/s
7.0 786.1 12.0
extended
w/s kr/s kw/s
0.0 1063.1 0.0
extended
w/s kr/s kw/s
0.0 529.0 0.0

device statistics

wait actv wsvc t asvc t
0.1 1.2 0.2 2.5

device statistics

wait actv wsvc t asvc t
0.2 1.0 0.3 1.6

device statistics

wait actv wsvc t asvc t
0.0 1.0 0.0 2.1

o° o°
O g O

o°

©Joyent

%b
90

device
cldo

%b
92

device
cldo

b
94

device
cldo

Thursday, November 11, 2010

Per second ©Joyent

* Condenses |I/O completion time

» Almost always a sufficient resolution

e (So far I've only had one case where examining raw completion
time data was crucial: an interrupt coalescing bug)

52

Thursday, November 11, 2010

Average/second wJoyent

* Average loses latency outliers
* Average loses latency distribution

* ... but not disk distribution:

$ iostat -xnz 1

[...]

extended device statistics

r/s w/s kr/s kw/s wait actv wsvc t asve t %w %b device

43.9 0.0 351.5 0.0 0.0 0.4 0.0 10.0 0 34 c0t5000CCA215C46459d0
47 .6 0.0 381.1 0.0 0.0 0.5 0.0 9.8 0 36 c0t5000CCA215C4521Dd0
42 .7 0.0 349.9 0.0 0.0 0.4 0.0 10.1 0 35 c0t5000CCA215C45F89d0
41 .4 0.0 331.5 0.0 0.0 0.4 0.0 9.6 0 32 c0t5000CCA215C42A4Cd0
45.6 0.0 365.1 0.0 0.0 0.4 0.0 9.2 0 34 c0t5000CCA215C45541d0
45.0 0.0 360.3 0.0 0.0 0.4 0.0 9.4 0 34 c0t5000CCA215C458F1d0
42 .9 0.0 343.5 0.0 0.0 0.4 0.0 9.9 0 33 c0t5000CCA215C450E3d0
44 .9 0.0 359.5 0.0 0.0 0.4 0.0 9.3 0 35 c0t5000CCA215C45323d0

[...]
* only because iostat(1M) prints this per-disk

* but that gets hard to read for 100s of disks, per second!

53

Thursday, November 11, 2010

Latency outliers ©Joyent

Occasional high-latency 1/0
» Can be the sole reason for performance issues

» Can be lost in an average

e 10,000 fast /0 @ 1ms
e 1 slow /O @ 500ms

* average = 1.05 ms

Can be seen using max instead of (or as well as) average

54

Thursday, November 11, 2010

Maximum/second ©Joyent

lostat(1M) doesn’t show this, however DTrace can
 can be visualized along with average/second
* does identify outliers

» doesn’t identify latency distribution details

55

Thursday, November 11, 2010

Latency distribution ©Joyent

 Apart from outliers and average, it can be useful to examine
the full profile of latency - all the data.

e For such a crucial metric, keep as much details as possible
* For latency, distributions we’d expect to see include:

* bi-modal: cache hit vs cache miss
* tri-modal: multiple cache layers

e flat: random disk I/0O

56

Thursday, November 11, 2010

Latency Distribution Example ©Joyent

* Using DTrace:

./disklatency.d
Tracing... Hit Ctrl-C to end.
A
C
sd4 (28,256), us:

valuve --—————————-—--- Distribution ----——————---- count
16 | 0
32 | 82
64 |@QEQ 621
128 |@QQE@QE 833
256 |@Q@QQ 641
512 | @@ 615
1024 |Q@QRQEQQM 1239
2048 |(@QQE@QREQQM 1615
4096 |Q@QEQEQE 1483
8192 | 76
16384 | 1
32768 | 0
65536 | 2
131072 | 0

57

Thursday, November 11, 2010

disklatency.d ©Joyent

* not why we are here, but before someone asks...

#!/usr/sbin/dtrace -s
#pragma D option quiet

dtrace: : :BEGIN

{
printf ("Tracing... Hit Ctrl-C to end.\n");

}

io:::start
{
start _time[arg0] = timestamp;

}

io:::done

/this->start = start time[arg0]/

{
this->delta = (timestamp - this->start) / 1000;
@[args[l]->dev_statname, args[l]->dev major, args[l]->dev _minor] =

quantize (this->delta) ;

start_time[arg0] = O;

}

dtrace: : : END

{
printa (" %$s (%d,%d), us:\n%@d\n", Q) ;
}

58

Thursday, November 11, 2010

Latency Distribution Example ©Joyent

./disklatency.d
Tracing... Hit Ctrl-C to end.
A
C
sd4 (28,256), us:

valuve --—————————-—--- Distribution ----——————---- count
16 | 0
32 | 82
64 |QQE 621
128 |@EQEE@E 833
256 |@Q@QQ 641
512 | @@ 615
1024 |Q@QRQEQQME 1239
2048 |@QQE@QREQQM 1615
4096 |QERQEEEEEE 1483
8192 | 76
16384 | 1
32768 | 0
65536 | 2 —3p» 65-131ms
131072 | 0 outliers

* ... but can we see this distribution per second?

* ... how do we visualize a 3rd dimension?

59

Thursday, November 11, 2010

Column Quantized Visualization
aka “heat map” ©Joyent

* For example:

DIracelazlool

File Options
Jdev/dsk/c0d0s3 ‘v Stopi| 500ms (CF:4)
Block 0 I Lo I:'|-l-

Block
2096640

60

Thursday, November 11, 2010

Heat Map: Offset Distribution ©Joyent

DTraceTazTlool

File Options Help
¢ fidev/dskic0d0s3 "; Stop.| 500ms (CF-4)
k) - L _J r 1 " -
Block 0 '.L B o T .

L P

e X-axis: time .
2096640

* y-axis: offset

 z-axis (color scale): 1/0 count for that time/offset range

* Identified random vs. sequential very well

* Similar heat maps have been used before by defrag tools

61

Thursday, November 11, 2010

Heat Map: Latency Distribution QJogent

* For example:

< Protocol: NFSv3 operations per second broken down by latency o

) QAQ QOEER AR RF @FN

ms - I I || | |
45 333ms - ’ g ’| I.I. i
% 267ms ' .'Pr b LA s rlsL s P i
o ms I l ll il l
32 233ms ; g 1" il 5Tk
47 200ms 2 . = ! i lll I L”'-r |# :l X l:-*_'.'_' ' I
43 167ms : : 'Ilﬁ. w's .|I - t i
70 1.33ms " i ’ ' ﬁ II|'l' - l.rII. 1R85

207 1.00ms -'I'I.l. Illﬁ

603 667 us u
3775 334 us
2006 Ous

8494 ops per second 19:30

19:31 19.32 19:33

e X-axis: time
e y-axis: latency

 z-axis (color saturation): I/O count for that time/latency range

62

Thursday, November 11, 2010

Heat Map: Latency Distribution

* ... Infact, this is a great example:

< Protocol: NFSv3 operations per second broken down by latency

P QR OHEERBR AR HTF @M

Range average:

* reads DRAM DRAM
served disk flash-mem_ory based SSD
from: disk
ZFS “L2ARC” enabled

63

Thursday, November 11, 2010

Heat Map: Latency Distribution OJogent

* ... Infact, this is a great example:

< Protocol: NFSv3 operations per second broken down by latency

P QR OHEERBR AR HTF @M

Range average:

* reads DRAM DRAM
served disk | flash-mem_ory based SSD
from: disk

ZFS “L2ARC” enabled

64

Thursday, November 11, 2010

Latency Heat Map ©Joyent

A color shaded matrix of pixels

Each pixel is a time and latency range
» Color shade picked based on number of I/O in that range

* Adjusting saturation seems to work better than color hue.
Eg:

 darker == more |/O

* lighter == less I/O

65

Thursday, November 11, 2010

Pixel Size ©Joyent

» Large pixels (and corresponding time/latency ranges)

* increases likelyhood that adjacent pixels
include 1/0O, have color, and combine to
form patterns

 allows color to be more easily seen

» Smaller pixels (and time/latency ranges)

e can make heat map look like a scatter plot

« of the same color - if ranges are so small
only one /O is typically included

66

Thursday, November 11, 2010

Color Palette ©Joyent

 Linear scale can make subtle details (outliers) difficult to see

* observing latency outliers is usually of high importance
 outliers are usually < 1% of the 1/O

e assigning < 1% of the color scale to them will washout patterns
* False color palette can be used to emphasize these details

e although color comparisons become more confusing - non-linear

67

Thursday, November 11, 2010

Outliers ©Joyent

* Heat maps show these very well

* However, latency outliers can | f
compress the bulk of the heat SUHIE
map data

* eg, 1 second outlier while most

/0O is <10 ms
* Users should have some control data bulk
to be able to zoom/truncate details \
* both x and y axis

68

Thursday, November 11, 2010

Data Storage ©Joyent

Since heat-maps are three dimensions, storing this data can
become costly (volume)

Most of the data points are zero

* and you can prevent storing zero’s by only storing populated
elements: associative array

* You can reduce to a sufficiently high resolution, and
resample lower as needed

* You can also be aggressive at reducing resolution at higher
latencies

e 10 us granularity not as interesting for I/O > 1 second
* non-linear resolution

69

Thursday, November 11, 2010

Other Interesting Latency Heat Maps ©Joyent

* The “lcy Lake”
* The “Rainbow Pterodactyl”

* Latency Levels

70

Thursday, November 11, 2010

The “Icy Lake” Workload ©Joyent

* About as simple as it gets:

 Single client, single thread, sequential synchronous 8 Kbyte
writes to an NFS share

 NFS server: 22 x 7,200 RPM disks, striped pool

* The resulting latency heat map was unexpected

71

Thursday, November 11, 2010

The “Icy Lake” ©Joyent

“ Protocol: NFSv3 operations per second broken down by latency

€« QA QOEER AR HF @¥n

Range average:

1 8.90 ms ~ | =1 g r

4 ﬂl ! JAI_ . L ull
1 llil j~ r:' l’l L

1 8.80ms
1 870 ms '

1 860 ms

1 850 ms] x
1 .40 ms {
1 8.30 ms
1 820 ms
1 810ms
1 8.00 ms
1 8.90 ms
1 8.80 ms
1 8.70ms
1 8.60 ms
1 8.50ms
1 8.40 ms
1 8.30 ms
1 820 ms
1 8.10ms
1 8.00 me
1 7.90 ms
1 7.80 ms
1 7.70 ms
1 7.60 ms
1 7.50 ms
1 7.40 ms
1 7.30 ms

- A

128 ops per second

2010-3-28

72

Thursday, November 11, 2010

“Ilcy Lake” Analysis: Observation OJogent

» Examining single disk latency:

© Disk: I/O operations per second for disk '2029QTF0802QCK003/HDD 2' broken down by latency ©

e« QQ QUEHER YAXR KF @0
Range average:

0 8.77 ms n - - Fi
0 9.53ms r 1

0 8.29 ms !

0 .06 ms

0 8.82ms -
0 8.59ms n! -
0 8.35ms i -"I ".,..I" I
0 8.12ms . - !

0 7.88 ms m" mF ; - oM

0 7.65ms o T pdT

0 741 ms — ' P- - .-L'
0 7.18 ms |12) ..P‘l ! ..l r‘" . l"-l

v -
0 6.94 ms m | -] | | ! | —2.00 ms

6 ops per second 21:35 21:36 21:37 21:38 21:39 21:40
2010-3-28

» Pattern match with NFS latency: similar lines

» each disk contributing some lines to the overall pattern

73

Thursday, November 11, 2010

Pattern Match? ©Joyent

* We just associated NFS latency with disk device latency,
using our eyeballs

* see the titles on the previous heat maps

* You can programmatically do this (DTrace), but that can get
difficult to associate context across software stack layers
(but not impossible!)

* Heat Maps allow this part of the problem to be offloaded to
your brain

* and we are very good at pattern matching

74

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation OJogent

» Same workload, single disk pool:

Protocol: NFSv3 operations per second broken down by latency @

PN QQ QOEHER ¥R REF @in

Range average:
1 929 ms L —]

0 B89 3ms _
0 B857ms -

:
1
%
l
:
!
I
|
:

1 B821ms
110 7856 ms
2 750ms
0 8B6.79ms
0 OQus

-0
115 ops per second 21:25:40 21:26 21:26:20 21:26:40 21:27 21:27:20 21:27:40
2010-3-30

* No diagonal lines

* but more questions - see the line (false color palette enhanced) at
9.29 ms? this is < 1% of the I/0. (I'm told, and | believe, that this
is due to adjacent track seek latency.)

75

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation OJogent

» Same workload, two disk striped pool:

~ Protocol: NFSv3 operations per second broken down Dy latency
PN QAQ QOHEHER A4 X @in

Range average:

2976ms ‘ -4 [1 o . u - " .
2 952ms O - .L 2 .I R . -' ™ -f- H '. -.' ll =B
4 926ms =l e 9 — - - = 5
2 904ms LRl | o h| s . 1

4 879ms o e Fr, - . i " m
2 Bh5ms - " § '- - -. B i = L. . I- “ 8 1
2 831m n B - o

4 s.orrr:: = . - e - i -
2 783ms : n) - .

4 7.59ms - r =

2 71.34ms v

101 ops per second 20:09:15 20:09:30 20:09:45 20:10 20:10:15 20:10:30 20:10:45 20:11 20:11:15 20:11:30

* Ah-hah! Diagonal lines.

... but still more questions: why does the angle sometimes
change? why do some lines slope upwards and some down?

76

Thursday, November 11, 2010

“Icy Lake” Analysis: Experimentation OJogent

* ... each disk from that pool:

Disk: I/O cperations per second for disk '2029QTF0802QCKO003/HDD 23’ broken down by latency ©

e QA AOEHER vA4 HT @in

Range average:

2 9865ms ' s . F o --_. " - " —_— - 10.0ms
2 930ms O = o o = - -~ n ¥
2 B96ms g x . . .
1 881ms = - .l'- - o . o -
2 826ms - ¥ "3 J.... - - LS -
2797ms - - =" H - L ™ -
2 75Tms A - - . - "= =
2 122ms ; — - — — - =
: .6'87 = ’ | | | | | | | —2.00ms
55 ops per second 20:09:15 20:09:30 20:09:45 20:10 20:10:15 20:10:30 20:10:45 20:11 20:11:15 20:11:30

2010-3-30
Disk: /O operations per second for disk '2028QTF0802QCK003/HDD 16" broken down by latency w
e« Qe QPOHER YA X¥T @3N\
Range average: 10.0
R ' — - ms
1930ms O . . By . 'L.. - -1
1 896 ms L = . -
1 881ms | - - " -l.- H- T 1 " L-
2 B26ms - em g - " = — ~“ il

= - -- - - - i H ”

2 797ms Sl ™ -
2 757 ms ~ " " " - . e -'_.-.'- - R, - L,
2722ms A - ¥ - - Sl - e L R .
3 6.67 ms i< - . i 1
2 .6 52 ma. ‘ I I I I I I I —2.00ms
55 ops per second 20:09:15 20:09:30 20:09:45 20:10 20:10:15 20:10:30 20:10:45 20:11 20:11:15 20:11:30

2010-3-30

77

Thursday, November 11, 2010

“Icy Lake” Analysis: Questions OJogent

* Remaining Questions:
* Why does the slope sometimes change?

* What exactly seeds the slope in the first place?

78

Thursday, November 11, 2010

“Ilcy Lake” Analysis: Mirroring OJogent

* Trying mirroring the pool disks instead of striping:

< Protocol: NFSv3 operations per second broken down by latency 9

) QAQ QOHEHEER AR X @¥N

Range average:

s) \ f\){5“"*"'{%’7}
; Sem & b
2 840 ms f '.f Lr ‘

1 9.30 ms P"- H "! .,

1 8.20 ms |

2 8.10ms
2 9.00 ms 1 i¢

“:}/’N . H-f’{ l;}l': ‘;:' _.*;,t"'H'-

1 8.80ms
1 870ms
1 8.60 ms \
1 8.50 ms v r
1 840 ms F-‘
1 8.30 ms J

1 8.20 ms f

1 8.10 ms 1

1 8.00 ms) \I rl
1 7.90 ms ") o

1 7.80 ms :
1 7.70 ms J

.
1 7.60 ms } ' :
1 7.50 ms ~ I 1
A
v

h

SOl ‘1:"&\ |
“}I 'FI;‘:FPKH‘; EI\H(, 'y

I 1
[}
T
1

1 7.40 ms
1 7.30 ms

108 ops per second 00:00 00:01 00:02 00:03
2010-3-29

79

Thursday, November 11, 2010

Another Example: “X marks the spot”

©Joyent

GRAVGLELEEIE - X marks the spot ¢

New Save Clone Close

© Add statistic...
“ Protocol: NFSv3 operations per second broken down by latency

PN QQ QOHEHER v HF @n

Range average:
093m
0929ms
0919ms
0909ms
28%ms
JBE8ms
2878ms
2868ms
2858m
3 B4sms
2838m
2828ms
2818ms
2807Tms
279Tms
278Tms
37T ms
2767Tms
2785Tms
274Tms
273 ms
272Tms
37177 ms
2707Tms
26%ms
3 688ms
I676ms
2666ms
3 656ms
3 646ms
3 63%m
5 626ms
3 616ms
3 606ms
25%ms
2586m
1575ms
1 565ms
155m
1 545ms
253m
1525ms

148 ops per second

ﬂ lu; ""4' W

ll “

.n"" Ll | ‘1 - W,
.“. i Al

3l LU r"u"‘

'. ""'“
-*w. "*- .t,r
R

‘lll
I

.“ 'nﬂt :I
rru.' t”-"'.

bad

.
L

lll"

1
Ly, 0
1 .
¥

I
16:10

|-w"$t ,;""H"'?-

'll
nul”

‘hu\r

Aol)
l'l"r‘ ™

1
16:15 16:20

80

Thursday, November 11, 2010

The “Rainbow Pterodactyl” Workload ©Joyent

* 48 x 7,200 RPM disks, 2 disk enclosures

» Sequential 128 Kbyte reads to each disk (raw device),
adding disks every 2 seconds

» Goal: Performance analysis of system architecture

e identifying I/O throughput limits by driving I/O subsystem to
saturation, one disk at a time (finds knee points)

81

Thursday, November 11, 2010

The “Rainbow Pterodactyl”

©Joyent

© Add statistic...
< Disk: VO operations per second of type read broken down by latency

GAYGIELEEIEN - Rainbow Pterodactyl ¢

New

Save Clone Close

e« QQ QOEHER AR XF @cn

Range average:
T89ms
775 ms
761 ms
T46ms
732me
717 ms
7063 ms
6689 ms
6.75ms
660 ms
646 ms
631 ms
617 ms
603 ms
588 ms
574ms
560 ms
545ms
531ms
517 ms
S502ms

-‘OO:‘“NQNN.

JERBREFBINTE

.
-
—l

|
17:54:40
2009-3-12

 Disk: VO bytes per second broken down by disk

1755

| I
17:55:20 17:55:40 17:56

y =0
17:56:20

82

%) QAQ QOEHER A

Ry

Thursday, November 11, 2010

The “Rainbow Pterodactyl” GJoyent

I I I
17:54:40 17:55 17:55:20 17:55:40 17:56 17:56:20
2009-3-12

83

Thursday, November 11, 2010

The “Rainbow Pterodactyl” QJogent

Buldge Wing Shoulders Body
|

I | I
17:54:40 17:5¢8 17:55:20 17:55:40 17:56 17:56:20
2009-3-12

Beak Head Neck

84

Thursday, November 11, 2010

The “Rainbow Pterodactyl”: Analysis ©Joyent

* Hasn’t been understood in detall

* Would never be understood (or even known) without heat maps

* It is repeatable

85

Thursday, November 11, 2010

The “Rainbow Pterodactyl”: Theories ©Joyent

* “Beak”: disk cache hit vs disk cache miss -> bimodal
» “Head”: 9th disk, contention on the 2 x4 SAS ports

» “Buldge”: ?

* “Neck”: ?

* “Wing”: contention?

* “Shoulders”: ?

» “Body”: PCIl-gen1 bus contention

86

Thursday, November 11, 2010

Latency Levels Workload ©Joyent

» Same as “Rainbow Pterodactyl”, stepping disks

* Instead of sequential reads, this is repeated 128 Kbyte
reads (read -> seek 0 ->read -> ...), to deliberately hit from
the disk DRAM cache to improve test throughput

87

Thursday, November 11, 2010

Latency Levels ©Joyent

< Disk: I/O operations per second broken down by latency

P QA QOHEHER vYAXR HEF @3N

At 15:40:16: 15:40:16

1 7.29ms
4 7.14 ms
818 7.00ms
16 6.88ms
1 6.14 ms
S8 6.00ms
810 5.88ms
123 571 ms
1 5.00 ms
3 486ms
211 471ms
3447 45T ms

—400ms
5394 ops per second 15:38 15:39 15:40 15:41 15:42

< Disk: I/O bytes per second broken down by disk

PN QQ QOHEHER 24X HEF X%

At 15:40:16: 15:40:16
—8.34G

4 »

5.27G per second 15:38 15:39 15:40 15:41 15:42

88

Thursday, November 11, 2010

Latency Levels Theories ©Joyent

° 777

89

Thursday, November 11, 2010

Bonus Latency Heat Map ©Joyent

< Disk: VO operations per second broken down by latency &
e QQ POHER AR XH¥F N

Range average:

199s z' —3.50s
1.07s
913 ms
761 ms
609 ms
457 ms I -
304 ms

§h°\l°~°

1298 152 ms -
7288 0 us v| " L "l e = " T "™
| | | |

—0
| |
8983 ops per second 21:54:20 21:54:30 21:54:40 21:54:50 21:55 21:55:10

2008-12-31

* This time we do know the source of the latency...

90

Thursday, November 11, 2010

Al G A © Joyent

WMEIE/\RS PRUEEES
— 1) G http://chinese.engadget.com/2009/01/05/video~-shouting-at-disk~-drive-causes-high-latency-low-r
HEESAN, SEECHABONE.. © | wE e EReemmE © | + |
R/ BIS | BN ERIEE
Flow Yu
XM Saun

EAARMEIREE, MAMARBIEFANE' A Sun Fishworks MR Brendan Gregg, HFREEMERTAT, REAREREAZL
SHMECRNEREII AT XY —p, SRAREESRRT—HEARE, PR BERART &, HHEFAFROMANBESS, RMEw
MEPOETFREMERELIN, FETIRMEEREL.

91

Thursday, November 11, 2010

Latency Heat Maps: Summary ©Joyent

Shows latency distribution over time

Shows outliers (maximums)

* Indirectly shows average

Shows patterns

 allows correlation with other software stack layers

92

Thursday, November 11, 2010

Similar Heat Map Uses ©Joyent

* These all have a dynamic y-axis scale:

e |/O size

e |/O offset

* These aren’t a primary measure of performance (like
latency); they provide secondary information to understand
the workload

93

Thursday, November 11, 2010

Heat Map: I/O Offset ©Joyent

< Protocol: NFSv3 operations per second broken down by offset 9

€« QAQ QOEEEB ¥YyAXRXR X @FN

Range average:

838M a
791M
745M
698M

652M
605M ..l"'-
559M

512M ﬂ .

1777 ops per second 22:30:20 22:30:40 22:31 22:31:20 22:31:40 22:32

—-1G

AR AR AD 4B 4B 4B 4B 3

* y-axis: I/O offset (in this case, NFSva3 file location)

94

Thursday, November 11, 2010

Heat Map: I/O Size ©Joyent

< Disk: VO operations per second broken down by size

) QQ QOEHEE AR HEF @dN

Range average:

692 128K 4] e
0 112K

0 96K

0 80K

1 84K I

0 48K o - I O I =

1 32K

e mp— | o bk

1 0 | | .| - _ L o om | _0
712 ops per second 22:53:40 22:54 22:54:20 22:54:40 22:55

 y-axis: /O size (bytes)

95

Thursday, November 11, 2010

Heat Map Abuse ©Joyent

* What can we ‘paint’ by adjusting the workload?

96

Thursday, November 11, 2010

I/0 Size

< Protocol: NFSv3 operations per second broken down by size

€PN QAQ APEHER AR ¥¥F N

Range average:
0 8K
17K
0 6K
1 5K L I F 1
0 4K ! :
0 3K
3 D% i1 1N N
00

I il 1
5 ops per second 23:00 23:00:20

2009-3-10

* How was this done?

97

23:01

23:01:20

—12K

23:01:40

Thursday, November 11, 2010

/0 Offset

< Protocol: NFSv3 operations per second broken down by offset

©Joyent

e QQ QVHEER AR X

T nv n::::T

Range average:

1 240K [a]
1 224K i
6 208K
6 192K
2 176K
2 160K
5 144K
5 128K
2 112K
2 96K ~|

49 ops per second

22 57:40 22:58
2009-3-10

* How was this done?

98

redn

— 288K

L.

22:58:20 22:58:40 22:59 22 59:20

Thursday, November 11, 2010

/0 Latency ©Joyent

< Protocol: NFSv3 operations per second of type read broken down by latency R

) QR QOHEEB AR ¥ @FN

Range average:

O-S000S —~ 1.50 ms
0 800 us

0 700 us
0 600 us - |

%g M: | rm m'wﬁ" ! m .'F.Th\ wa Eu ll'r.
il

0 100 us - |
1 Ous hd h ill || h” L‘ |i -0
6 ops per second 23:38 23:40 23 42 23:44

2009-3-10

* How was this done?

99

Thursday, November 11, 2010

Visualizations OJogent

Current Examples

Utilization

100

Thursday, November 11, 2010

CPU Utilization

wJoyent

* Commonly used indicator of CPU performance

* eg, vmstat(1M)

$ vmstat 1 5

kthr memory

95125264
91512024
91511864
91511228
91510824

OO0OO0OO0OO0OH
cocooooob
ecNoNoNeoNel

101

swap free re

28022732
25075924
25075796
25075164
25074940

page disk

mf pi po fr de sr s0O sl
301 1742 1 17 17 0 0 -0

65500 0 0 O O O
92400 0 0 O 0 O
3163 000 O O O O
56600 0 0O O O O

faults cpu
s2 s3 in sy cs us sy id
-0 -0 6 5008 21927 3886 4 1 94
O O 4665 18228 4299 10 1 89
0O O 3504 12757 3158 8 0 92
O O 4104 15375 3611 9 5 86
O O 4607 19492 4394 10 1 89

Thursday, November 11, 2010

CPU Utilization: Line Graph

* Easy to plot:

< CPU: percent utilization broken down by CPU mode

€« QAQ RO EHEHERBRE vAXR HF @

Range average:

50 kernel
0 user

50 percent 09:29:50 y
2009-8-11
T

102

Thursday, November 11, 2010

CPU Utilization: Line Graph

* Easy to plot:

< CPU: percent utilization broken down by CPU mode

e« QQ POEHEEBE AR KR @

Range average:

50 kernel
0 user
50 t | | | | | | -0
percen 09:29:50 09:30 09:30:10 09:30:20 09:30:30 09:30:40
2009-8-11

* Average across all CPUs:

* |dentifies how utilized all CPUs are, indicating remaining
headroom - provided sufficient threads to use CPUs

103

Thursday, November 11, 2010

CPU Utilization by CPU wJoyent

* mpstat(1M) can show utilization by-CPU:

$ mpstat 1
[...]
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl wusr sys wt idl
0 0 0 2 313 105 315 0 24 4 0 1331 5 1 0 94
1 0 0 0 65 28 190 0 12 4 0 576 1 1 0O 098
2 0 0 0 64 20 152 0 12 1 0 438 0 1 0 99
3 0 0 0 127 74 274 1 21 3 0 537 1 1 0 098
4 0 0 0 32 5 229 0 9 2 0 902 1 1 0 98
5 0 0 0 46 19 138 0 7 3 0 521 1 0 0 99
6 2 0 0 109 32 296 0 8 2 0 1266 4 0 0 96
7 0 0 0 30 8 0 9 0 1 0 0 100 0 0 0
8 0 0 0 169 68 311 0 22 2 0 847 2 1 0 97
9 0 0 30 111 54 274 0 16 4 0 868 2 0 0 98
10 0 0 0 69 29 445 0 13 7 0 2559 7 1 0 92
11 0 0 0 78 36 303 0 7 8 0 1041 2 0 0 098
12 0 0 0 74 34 312 0 10 1 0 1250 7 1 0 92
13 38 0 15 456 285 336 2 10 1 0O 1408 5 2 0 093
14 0 0 0 2620 2497 209 0 10 38 0 259 1 3 0 096
15 0 0 0 20 8 10 0 4 2 0 2 0 0 0 100

* can identify a single hot CPU (thread)
e and un-balanced configurations

104

Thursday, November 11, 2010

CPU Resource Monitoring ©Joyent

* Monitor overall utilization for capacity planning

* Also valuable to monitor individual CPUs

 can identify un-balanced configurations

e such as a single hot CPU (thread)
* The virtual CPUs on a single host can now reach the 100s

* |ts own dimension

* how can we display this 3rd dimension?

105

Thursday, November 11, 2010

Heat Map: CPU Utilization ©Joyent

B N 100%

| I Em Emeh 1 1 I} EErw

60s

e X-axis: time
e y-axis: percent utilization

 z-axis (color saturation): # of CPUs in that time/utilization range

106

Thursday, November 11, 2010

Heat Map: CPU Utilization ©Joyent

idle CPUs single ‘hot’ CPU
|
[| \ 100%
i
_ 0%
60s

» Single ‘hot’ CPUs are a common problem due to application
scaleability issues (single threaded)

* This makes identification easy, without reading pages of mpstat
(1M) output

107

Thursday, November 11, 2010

Heat Map: Disk Utilization ©Joyent

* Ditto for disks

» Disk Utilization heat map can identify:

 overall utilization
e unbalanced configurations

 single hot disks (versus all disks busy)

* |deally, the disk utilization heat map is tight (y-axis) and
below 70%, indicating a well balanced config with headroom

e which can’t be visualized with line graphs

108

Thursday, November 11, 2010

Back to Line Graphs... ©Joyent

 Are typically used to visualize performance, be it IOPS or
utilization

Show patterns over time more clearly than text (higher
resolution)

 But graphical environments can do much more

* As shown by the heat maps (to start with); which convey details
line graphs cannot

» Ask: what “value add” does the GUI bring to the data?

109

Thursday, November 11, 2010

Resource Utilization Heat Map Summary @ Joyent

» Can exist for any resource with multiple components:
« CPUs
e Disks
* Network interfaces

* |/O busses

* Quickly identifies single hot component versus all
components

* Best suited for physical hardware resources

« difficult to express ‘utilization’ for a software resource

110

Thursday, November 11, 2010

Visualizations OJogent

Future Opportunities

111

Thursday, November 11, 2010

Cloud Computing ©Joyent

So far analysis has been for a single server

What about the cloud?

112

Thursday, November 11, 2010

From one to thousands of servers ©Joyent

Workload Analysis:
latency 1/0 x cloud

= Resource Monitoring:
- e # of CPUs x cloud

y = =2 # of disks x cloud
Z 7, = 7
7 7 T
Z Z T Z
7 ///
= “ ~
7 /// 7
7 7= /// 7= 7
Z 2 z > Z
ZZ = 7 7 T
7 7 7 7= 7 7= 7,
Z . Z =

Thursday, November 11, 2010

Heat Maps for the Cloud ©Joyent

» Heat Maps are promising for cloud computing observability:

* additional dimension accommodates the scale of the cloud

Find outliers regardless of node
 cloud-wide latency heat map just has more /O
* Examine how applications are load balanced across nodes

* similar to CPU and disk utilization heat maps

mpstat and iostat’s output are already getting too long

* multiply by 1000x for the number of possible hosts in a large
cloud application

114

Thursday, November 11, 2010

Proposed Visualizations

* |nclude:

115

Latency heat map across entire cloud

Latency heat maps for cloud application components
CPU utilization by cloud node

CPU utilization by CPU

Thread/process utilization across entire cloud
Network interface utilization by cloud node

Network interface utilization by port

lots, lots more

©Joyent

Thursday, November 11, 2010

Cloud Latency Heat Map

» Latency at different layers:

116

* Apache

PHP/Ruby/...

MySQL

DNS

Disk I/0

CPU dispatcher queue latency

and pattern match to quickly identify and locate latency

©Joyent

Thursday, November 11, 2010

Latency Example: MySQL ©Joyent

* Query latency (DTrace):

query time (ns)

valuve -—-——-———=—=—-=---- Distribution - - ———————----- count
1024 | 0
2048 | 2
4096 |@ 99
8192 | 20
16384 |@ 114
32768 |@ 105
65536 | @ 123
131072 |Q@ERRAEERRQAEE 1726
262144 |QQQE@QQEQQE@QE 1515
524288 |Q@Q@Q 601
1048576 |@Q@ 282
2097152 |@ 114
4194304 | 6l
8388608 |@Q@@Q@E 660
16777216 | 67
33554432 | 12
67108864 | 7
134217728 | 4
268435456 | 5
536870912 | 0

117

Thursday, November 11, 2010

Latency Example: MySQL ©Joyent

* Query latency (DTrace):

query time (ns)

valuve ---—-——-——-——=—---- Distribution - ---——==-——---- count
1024 | 0
2048 | 2
4096 |@ 99
8192 | 20
16384 |@ 114
32768 |@ 105
65536 |@ 123
131072 |CRREEEEERQRQRARERE 1726
262144 |QQQRQAQAQAQEQEEE 1515
524288 |QQERE 601
1048576 |@@ 282
2097152 |@ 114
4194304 | 6l
8388608 |@Q@@Q@E 660
16777216 ‘g‘~\\\\ : _ 67
33554432 : What is this? 12
67108864 | (8-16 ms latency) 7
134217728 | 4
268435456 | 5
536870912 | 0

118

Thursday, November 11, 2010

119

Latency Example: MySQL

query time (ns)
value
1024

2048

4096

8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912

|
|
| @
|

| @
| @
| @
|QCRRRRERREAREE
|QERRRRERERA
|e@R@

| Q@

| @

|
|e@R@A

innodb srv sleep (ns)

value
4194304
8388608
16777216

oh...

Distribution

©Joyent

jdagdgdddadaadgddaadaadaaadaegdaedaeiaeaciaeciomg: ral

0

Thursday, November 11, 2010

Latency Example: MySQL ©Joyent

Spike of MySQL query latency: 8 - 16 ms

iInnodb thread concurrency back-off sleep latency: 8 - 16 ms

» Both have a similar magnitude (see “count” column)

Add the dimension of time as a heat map, for more
characteristics to compare

* ... quickly compare heat maps from different components of
the cloud to pattern match and locate latency

120

Thursday, November 11, 2010

Cloud Latency Heat Map ©Joyent

* |dentify latency outliers, distributions, patterns

» Can add more functionality to identify these by:
 cloud node
e application, cloud-wide
* |/O type (eg, query type)

» Targeted observability (DTrace) can be used to fetch this

Or, we could collect it for everything

e ...do we need a 4th dimension?

121

Thursday, November 11, 2010

4th Dimension! ©Joyent

» Bryan Cantrill @Joyent coded this 11 hours ago

e assuming it’s now about 10:30am during this talk

e ... and | added these slides about 7 hours ago

122

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime OJogent

100 ms

0O ms

e X-axis: time

e y-axis: thread runtime

 z-axis (color saturation): count at that time/runtime range

123

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime OJoyent

100 ms

e X-axis: time

* y-axis: thread runtime
* z-axis (color saturation): count at that time/runtime range
e omega-axis (color hue): application

* blue == “coreaudiod”

124

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime OJogent

100 ms

X-axis: time

y-axis: thread runtime

Z-axis (color saturation): count at that time/runtime range
e omega-axis (color hue): application

* green == “iChat”

125

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime OJogent

100 ms

|

e X-axis: time

» y-axis: thread runtime
* z-axis (color saturation): count at that time/runtime range
e omega-axis (color hue): application

* violet == “Chrome”

126

Thursday, November 11, 2010

4th Dimension Example: Thread Runtime OJoyent

100 ms

|
l

X-axis: time

y-axis: thread runtime

Z-axis (color saturation): count at that time/runtime range
e omega-axis (color hue): application

* All colors

127

Thursday, November 11, 2010

“Dimensionality” ©Joyent

* While the data supports the 4th dimension, visualizing this
properly may become difficult (we are eager to find out)

* The image itself is still only 2 dimensional

* May be best used to view a limited set, to limit the number of
different hues; uses can include:

* Highlighting different cloud application types: DB, web server, etc.

» Highlighting one from many components: single node, CPU, disk,
etc.

» Limiting the set also helps storage of data

128

Thursday, November 11, 2010

More Visualizations OJogent

* We plan much more new stuft

* We are building a team of engineers to work on it; including Bryan
Cantrill, Dave Pacheo, and mysqlf

 Dave and | have only been at Joyent for 2 1/2 weeks

129

Thursday, November 11, 2010

Beyond Performance Analysis ©Joyent

* Visualizations such as heat maps could also be applied to:

 Security, with pattern matching for:
 robot identification based on think-time latency analysis
* Iinter-keystroke-latency analysis

* brute force username latency attacks?

System Administration

* monitoring quota usage by user, filesystem, disk

Other multi-dimensional datasets

130

Thursday, November 11, 2010

Obijectives ©Joyent

* Consider performance metrics before plotting
 Why latency is good
e ...and IOPS can be bad

» See the value of visualizations

* Why heat maps are needed

e ... and line graphs can be bad

* Remember key examples

* |/O latency, as a heat map

« CPU utilization by CPU, as a heat map

131

Thursday, November 11, 2010

Heat Map: I/0 Latency

©Joyent

< Protocol: NFSv3 operations per second broken down by latency

o

€PN QAQ PEHER AR HF @FN

Range average:

—10.0ms

. = |
333ms

3.00ms
267 ms
233 ms
200 ms
1.67 ms
1.33ms
207 1.00ms
603 667 us
3775 334 us
2006 Ous

8494 ops per second

I : ’II 1 ..
| l ll

b

| |
19:30 19:32

2009-1-20

* Latency matters
e synchronous latency has a direct impact on performance
* Heat map shows

e outliers, balance, cache layers, patterns

132

=) .
el g L
To 1 & |r.

Thursday, November 11, 2010

Heat Map: CPU Utilization ©Joyent

l . 100%

EEEE I N I e o

60s

* |dentify single threaded issues
 single CPU hitting 100%
* Heat map shows

« fully utilized components, balance, overall headroom, patterns

133

Thursday, November 11, 2010

Tools Demonstrated ©Joyent

* For Reference:

* DTraceTazTool

* 2006; based on TazTool by Richard McDougall 1995. Open
source, unsupported, and probably no longer works (sorry).

Analytics

e 2008; Oracle Sun ZFS Storage Appliance

“new stuff” (not named yet)

* 2010; Joyent; Bryan Cantrill, Dave Pacheco, Brendan Gregg

134

Thursday, November 11, 2010

Question Time OJogent

* Thank you!

* How to find me on the web:

 http://dtrace.org/blogs/brendan
* http://blogs.sun.com/brendan <-- is my old blog

* twitter @brendangregg

135

Thursday, November 11, 2010

