
Managing Vendor Relations : A Case Study of Two HPC Network Issues

Loren Jan Wilson
Argonne National Laboratory

Abstract

High performance computing requires fast networks to
move large amounts of data between compute nodes and
disk storage. For a variety of reasons, however, the fast
speeds achieved by bleeding edge network technology
tend to come along with a higher risk of system fail-
ure. When designing and building high end computing
systems using the fastest available network equipment, a
good relationship with the network vendor becomes ab-
solutely crucial for success.

Through 2008 and 2009, the Argonne Leadership
Computing Facility (ALCF) faced two serious chal-
lenges with the high-speed Myricom data network at the
center of its production supercomputers. By studying
these challenges and how we worked with Myricom to
resolve them, we establish a five-step method for vendor-
assisted problem resolution that system and network ad-
ministrators can use to improve their own vendor rela-
tions and time to problem resolution. Furthermore, we
include specific examples that can help Myricom net-
work administrators study and debug their own networks.

1 Introduction

The Argonne Leadership Computing Facility began op-
erating in 2006 to provide leadership-class compute re-
sources to science and engineering projects that receive
allocations from the U.S. Department of Energy’s IN-
CITE program. I joined the ALCF as a network adminis-
trator in July 2007, and throughout 2008 and 2009, we
built and supported two large production clusters: In-
trepid, an IBM Blue Gene/P-based supercomputer which
debuted at #3 on the Top500 list in June 2008, and Eu-
reka, a 100-node visualization cluster.

At the core of both of these computers is a high-speed
network of Myricom switches which connects the com-
pute nodes to 5 Petabytes of disk storage. This network
plays a crucial role inside the production systems. Users

store and retrieve their job data from the filesystems over
this network, so during data reads and writes, user jobs
rely on the network and expect it to be stable. Further-
more, in the case of Intrepid, each node boots and mounts
the network filesystems at the beginning of each job, so
if the network is unreliable, jobs will not be able to run
on the system at all.

This paper is a case study of a series of systemic hard-
ware and software failures on this network which lasted
about two years, and we interleave that study with the
lessons we learned about vendor relations during this
process. I have organized this information into five
chronological steps which can be used to guide vendor
relations to a successful resolution, each accompanied by
real world examples taken from our experiences.

1.1 Technical details about our production
Myricom network

The aforementioned high-speed network is a five stage
Clos network made up of ten 512-port Myricom 10G
switches providing 10 Gigabits of bandwidth per port in
each direction. Six of the switches sit on the edge and
accept connections from hosts, and four of the switches
serve as the network core. In order to achieve full bi-
section bandwidth, the number of links from the edge
switches to the core switches is the same as the number
of connected hosts; in our case, this makes for a total of
over 2,000 10 Gigabit connections. When I started work-
ing at the ALCF in July 2007, I had only ever seen a few
10 Gigabit network connections, so to stand in a room
with 2,000 of them can be quite mind-boggling.

The network uses a link-layer switching protocol
called Myrinet to route packets through the switch fabric.
Myrinet is a source routed protocol, which means that
the hosts themselves decide how their packets will travel
through the switch fabric. Since the hosts route their own
packets, they generate a network map that allows them to
calculate routes to each point on the network. Many of



our hosts, such as our fileservers and graphics processing
nodes, connect to this network using Myricom NICs that
speak Myrinet natively, and those hosts run a daemon
called the Fabric Mapping Agent (fma) that takes care
of the work of generating and distributing the network
maps. Hosts that do not speak Myrinet natively, such
as our 640 Blue Gene I/O nodes, connect to the network
through an Ethernet-to-Myrinet protocol conversion chip
called a Lanai-2Z that sits behind each Ethernet port on
a linecard.

2 Step 1: Identify the symptoms, scope,
and impact

Although I encourage involving the vendor as early as
possible in any serious case, it can be tempting to make
first contact before gathering enough information about
the issue at hand, which can end up wasting a lot of time
for both parties. When any hardware or software prob-
lem comes to light, take some time to come up with a
thorough description of the symptoms, the scope and size
of the issue, and a good understanding of the impact on
your production resources. You may have to iterate over
this data collection process several times as more infor-
mation becomes available.

We identified many issues during the first several
months of our system’s life, but this paper will focus on
the two issues which took us the most time and effort to
resolve: large numbers of errors on our core links, and
sporadic failures of our Ethernet-to-Myrinet ports. Hav-
ing detailed information about a problem can also help
you lessen the impact or entirely resolve it on your own;
our attempts to mitigate the effects of these two issues
are discussed in section 4.

2.1 Issue 1: Errors on core links
Not long after the first batch of hardware arrived at the
end of 2007, we were noticing some network filesystem
performance problems, especially on our GPFS clusters.
I noticed some excessive errors on the fileservers in the
mx counters output, so I opened a ticket with Myri-
com to ask for their help. The vendor helped us track
those errors back to one problematic core link, which
we disabled. Since the core links are quad fiber ports,
it could have been a problem with the fiber cable itself,
the quad fiber transceiver at either end, or the MTP con-
nection between the cable and the transceiver.

By May 2008, I had disabled eight such core links
due to the same types of errors, and I began to think
that we might have a systemic problem on our hands.
I was right: by October, I had disabled a total of 41
core links. Even though 41 broken core links does not
represent a significant percentage of our total core, this

was a serious problem because of the failure mode of
the core links. When a core port started corrupting net-
work packets, the ratio of errored to good packets would
get worse and worse until we manually disabled the link,
but the port would never completely stop working, and
the network would keep passing traffic through the mal-
functioning link. This meant that each problematic port
required manual intervention in order to get the system
back into a working state.

Network filesystems like GPFS and PVFS expect a
stable network, and the filesystem instability caused by
the malfunctioning quad fiber ports manifested itself in
unpredictable ways, ranging from gently insidious to
completely catastrophic. Sometimes, it would take much
longer to mount a filesystem at the start of a job, causing
a number of jobs to time out and not run. Other times,
one or more fileservers would wedge and stop respond-
ing on the network, causing running jobs to lose filesys-
tem connectivity and fail, and it would take a manual
restart in order to bring the fileserver back to life.

2.2 Issue 2: Failing Ethernet-to-Myrinet
ports

During installation and as the system matured, we saw a
number of the 10 Gigabit Ethernet-to-Myrinet ports con-
nected to the Blue Gene I/O nodes fail on the switch side.
I chalked this up to flaky switch ports, and sent a few
troublesome linecards back for testing. As the problem
became more prevalent and the number of failed Ethernet
ports grew to over 20, I started to get more worried.

Although losing an I/O node once in a while was not a
catastrophic problem, I again wondered if we were about
to experience a systemic issue that would affect us in a
much more serious way. Without more data, there was
no way for us to tell whether we were experiencing an
issue with flaky hardware or were instead somehow trig-
gering a firmware bug. Since the Ethernet ports connect
to the Myrinet fabric via a Lanai-2Z protocol conversion
chip that runs its own network mapper, there was cer-
tainly some software running on each chip that could be
causing intermittent failures, but due to a lack of visibil-
ity into that firmware, it was hard for us to collect more
information on our own.

3 Step 2: Communicate early, clearly, and
often

The best time to contact a vendor about an issue is imme-
diately after you have noticed symptoms and have made
an attempt to identify the scope and impact of the prob-
lem. The earlier you contact the vendor, the quicker you
can break through the front lines of technical support



and get your problem resolved. Contacting the vendor
early is especially helpful when dealing with an issue
that transforms from a minor annoyance to a catastrophic
system failure; this is luckily rare, but it does happen.

After you have opened a case, share any new informa-
tion that you have gathered on a regular basis. Commu-
nicating regularly keeps your case fresh in your vendor’s
mind, which increases your chances for a quicker reso-
lution. We find it helpful with our more serious cases to
schedule regular status updates with our vendors, often
in the form of weekly calls. If your issue ends up with
multiple related cases on the vendor’s side, it can also
help a lot to cluster those cases together.

3.1 Improving our lines of communication
For the two issues described above, we opened many
small cases with Myricom about the various symptoms
we were seeing, often without much of an idea of what
might be causing them. As time passed and we got
closer to our production date of January 2009, we real-
ized that without taking drastic steps to improve our situ-
ation, we would be stuck with an extremely unstable pro-
duction system, which would lead to some very unhappy
users. Our unreliable network was juxtaposed against
other problems with our network filesystem software and
hardware, as well, which required separate cases with
IBM, our network filesystem vendor, and DataDirect
Networks, our disk storage vendor. In all, there were
a lot of details to keep track of, and nobody seemed to
have a complete picture of what needed to be done.

To help our odds of resolving our issues before our
production date, we merged all of our outstanding tick-
ets into one case, and organized a weekly phone meeting
with all of our vendors to share status updates with all
parties. Merging our various cases into a single collab-
orative effort gave our vendors a more complete picture
of how the various components of our system were fail-
ing to work together, which improved our troubleshoot-
ing efforts and helped better communicate the impact of
the issues on our system. Also, concentrating our com-
munication into a single weekly call with all parties in-
volved helped our vendors communicate with each other
directly about the problems instead of using us as a me-
diator.

4 Step 3: Mitigate the impact of the issue

If the issue impacts your production system in a signif-
icant way, take steps to mitigate the impact of the issue
before digging deeper into the issue on your own. With
some issues, a complete workaround may not exist, but
steps can often be taken to address at least some of the
symptoms. A case can stay open for quite a while before

the vendor finally addresses the root cause of the issue;
on large clusters, even minor issues can lead to signifi-
cant amounts of lost compute hours over time.

On Intrepid’s production network, a single malfunc-
tioning core port would often cause filesystem outages
for several hours at a time. Even though an hour of down-
time does not seem too catastrophic, the scale of the com-
pute resources that are supported by this network magni-
fies the problem to a very large extent. As an example,
since Intrepid is a 40,960 node machine with quad core
CPUs, every hour where jobs cannot run is the equiva-
lent of losing 4 years and 9 months of compute time on a
similarly-powered single processor quad core system.

To mitigate the flaky core links issue, we had to fig-
ure out a way to quickly discover malfunctioning links
as they started failing, and disable them before they
caused large amounts of downtime. Predicting failures
and responding before the failures become catastrophic
requires an organized method of data collection and anal-
ysis. We had an idea of what data we might need to col-
lect in order to predict link failure, but we needed to de-
vise a better method to collect and sort through that data.

4.1 Improving data collection on the Myri-
com switches

To a network administrator trying to mitigate the impact
of an issue, there is nothing more frustrating than a lack
of network health and performance data. Without good
historical data, it can be quite difficult to understand the
scope of a network issue and predict system failures be-
fore they occur. Also, collecting historical data and pre-
senting it in a useful fashion allows an admin to see a
clear picture of what has happened on a network in the
past, which can be used to correlate symptoms and estab-
lish a proper baseline to compare against future events.

Because of the bleeding edge nature of these particular
switches, we lacked the ability at first to collect meaning-
ful data about our core and Ethernet port failures, which
was a serious handicap as we attempted to alleviate the
symptoms and determine root cause. The two most com-
mon ways that network administrators collect data from
switches—syslog and SNMP—were not an option for us;
logging to syslog was not supported at all by the Myri-
com switches, and SNMP queries did not provide useful
data at this time.

There were a few vendor-provided methods for data
collection, but none of them proved to be as useful for
our purposes as we needed them to be. Each Myricom
switch provides a web interface where an admin can view
view statistics for each linecard and port, but clicking
through hundreds of web pages and reading statistics by
hand was not an effective method of problem determi-
nation. Furthermore, the web interface lacked anything



that functioned like a local log, so there was no historical
data available for the failing ports.

The MX driver package provided a few data collection
utilities as well, although those did not quite serve our
purposes either. The fm watch switches utility gen-
erates a log of some switch errors in real time, although
it tends to die a lot and is not mean to be run as a daemon.
The utility mx counters can be run to get a list of
counters for the local NIC, but that is only capable of pro-
viding statistics from the NIC’s perspective, and is also
not available on Ethernet-connected hosts. Lastly, recon-
figuring the Myricom environment to use fm server
can provide good information, but it was not fully sup-
ported yet on our switches, and since it plays an active
role in the mapping process and is not just a monitoring
tool, running it had a profoundly negative impact on our
network’s stability.

In a perfect world, we would have been able to install
an open source monitoring utility and collect information
about our Myricom switch ports, but since we could not
rely on standard data collection sources like syslog and
SNMP, we decided to roll our own monitoring utility for
the switches.

In April 2008, I finished writing code which pulls data
from the Myricom switches and presents the data in a
variety of useful ways. In addition to keeping a database
of past switch data on disk, the code logs each event to
an easy-to-read log file, and sends a daily report of the
errors that occurred on the previous day. I also found it
useful to visualize some of the data in real-time using the
open-source Munin graphing package, so that we could
compare the incidence of switch remaps to various port
errors on the system.

We used the resulting port error data to detect the lo-
cation of malfunctioning links, and then temporarily dis-
abled the links until we could debug them more thor-
oughly by hand, returning the network to a working state.
Between May 2008 and January 2009, we turned off over
70 core links, which is an average of about two incidents
per week.

5 Step 4: Do your own detective work

After contacting the vendor and opening a support ticket,
you will significantly increase your chances of success
by doing your own troubleshooting to help solve the
case. Even if you are not able to fix things on your own,
gathering data and communicating it back to the ven-
dor periodically will help them determine root cause and
point them in the right direction. Figuring out whether
your incidents are on a downward or upward trend is also
a very good thing; if the issue is becoming more severe
over time, you will definitely want the vendor to be aware
of it.

As a general rule, the smaller of a customer you are,
the more work you will need to do on your own to solve
your case. Similarly, it is not uncommon to run into sit-
uations where your vendor is overextended and does not
have the resources to give you the attention that your is-
sue demands. In situations like these, honing your own
troubleshooting skills can be quite valuable.

In order to collect the right data, you have to get a good
handle on the gaps in your knowledge of the situation.
In our case, we used our knowledge of the symptoms to
create a testing methodology for each problem, which
helped us rule out possible sources of the issues.

5.1 Troubleshooting the core link errors is-
sue

Using the data collected by our custom monitoring util-
ity, we were able to correlate periods of network instabil-
ity with two types of quad fiber port errors: bad crc pack-
ets, which are packets that did not pass through the port
with a correct checksum and were therefore assumed to
be corrupted, and port faults, which are times when the
switch stopped receiving a signal from the transceiver
on the other side of the link. Since quad fiber ports
are only used on our network between edge and core
switches, this confirmed that the periods of network in-
stability were caused by flaky core links.

In December 2008, I did a survey of ten malfunction-
ing core links in order to see whether the problem could
be narrowed down a bit. To do this survey, which re-
quired a scheduled network maintenance period, I turned
the malfunctioning ports on one at a time, and used
the Myricom-provided fm ping xbar utility to send
a large stream of traffic through the link. After veri-
fying that the link was still generating errors, I moved
one side of the cable to a known functioning port, ran
fm ping xbar through the new route, and watched for
errors. If the errors ceased, I knew that the transceiver
on the moved side was to blame; if the errors continued
after the cables were moved on both sides, I knew that
the cable itself was to blame.

Our Myricom switches contained quad port tran-
ceivers made by two vendors (Avago and Zarlink), but
of the ten links I tested, all ten of the malfunctioning
ports were made by Zarlink. I found it highly suspicious
that all ten of the malfunctioning links that I tested only
showed errors on ports that used a particular vendor’s
transceiver. Although this survey did not definitively
prove that the Zarlink transceiver alone was to blame for
the outages we were experiencing, and also did not prove
that every transceiver made by Zarlink would eventually
experience the issue, our belief was that Myricom could
use this new information to help zero in on the root cause.
We sent one of the affected cards back to Myricom for



testing.

5.2 Troubleshooting and resolving the Eth-
ernet ports issue

Our independent research on the Ethernet port death and
reanimation issue proved less fruitful. In fact, our mon-
itoring utility often did not collect any errors when Eth-
ernet ports died on the Myricom switches, save for an
occasional Lanai-2Z chip reboot. By doing some rudi-
mentary port testing of a few ports early on, we were
able to at least determine that the Ethernet transceivers
and fiber cables were not to blame for those few port is-
sues, and our best guess at that time was that we had
flaky Ethernet hardware inside the switch linecard itself.
Over time, we saw Ethernet ports go bad at the rate of
about one every two weeks, for a grand total of about 30
ports. Some of the affected linecards were sent back to
Myricom for analysis and replacement.

In October 2008, I set up a port testing host with a
single 10 Gigabit NIC, and used that host to test all of the
failed ports that had not yet been sent back to the vendor.
As I plugged into each failed port, I was surprised to find
that a number of them had come back to life and were
no longer dead. Finding out that some of the ports had
begun working again was particularly interesting to me,
since it suggested a possible software problem instead of
just a few flaky pieces of hardware.

When we communicated this new information back to
Myricom, they sent us new switch firmware which fixed
several known issues with the Lanai-2Z port code. Sure
enough, loading that firmware onto our switches fixed
the majority of our Ethernet port issues, leaving only a
few ports whose hardware had actually failed. Although
our detective work in this case did not contribute directly
to bug fixes, reporting our findings helped Myricom rule
out hardware as a possible cause, which allowed them to
resolve our problem in a more timely fashion.

6 Step 5: Increase your leverage

Some issues will remain unresolved for many months,
due to any number of reasons. As more time passes on an
open case, it can often go stale as one or both parties get
distracted by other issues. In order to maintain forward
motion on your issue, it is often necessary to increase
your own leverage in order to encourage the vendor to
resolve your case. The smaller of a customer you are, the
more proactive you will need to be in order to encourage
the vendor to put more resources into your case.

The best thing you can do to increase your leverage is
to gather as much relevant data as possible, and present it
in a way that helps strengthen your case. Comprehensive

Figure 1: Port failures from May 08 to Oct 09

data presented clearly can convince the vendor that your
case should be quickly and completely resolved.

6.1 What we did to increase our leverage

As time passed, jobs on our supercomputer continued
to be affected by the flaky quad port issue. Informa-
tion from Zarlink showed that some percentage of our
quad port transceivers came from a bad batch, and would
stop working after an unpredictable amount of time. At
the end of January 2009, we worked with Myricom to
measure the light output of each of over 900 Zarlink
transceivers and replaced each port whose output was
outside of the standard operating range.

After replacing this first batch of defective
transceivers, we continued to experience more of
the same problems, and Myricom could not predict how
many of our remaining transceivers would experience
this issue. Because this network issue was affecting
running jobs, our highest levels of management tasked
us with figuring out how much longer our network would
be unstable, and decide whether it would be necessary
to convince Myricom to replace all of the possibly
defective transceivers in advance of their failure.

We collected a lot of data from the beginning, but the
data that gave us the most leverage was the number of
transceiver failures over time (Figure 1). Plotting the fail-
ures on a simple X-Y graph for our vendor helped them
visualize the issue’s effects on the stability of our system.
Although the number of failures slowed down after our
first proactive transceiver replacement in January 2009,
ports steadily continued to fail. Collecting and present-
ing this data to the vendor helped us make a case to swap
out the rest of our Zarlink transceivers with known good
parts, which resolved the issue.



7 Conclusion

Any complex system, whether it is a bleeding edge high
performance cluster, a large enterprise network, or some-
thing else entirely, is likely to have its own set of unex-
pected setbacks. Often, the issues that appear will require
the vendor’s assistance in order to bring things back into
working order. This case study and the accompanying
five-step method for vendor-assisted problem resolution
will hopefully come in handy as you manage your own
vendor relations during such trying times.

When facing any issue that causes major service in-
terruptions on your system, it helps to steadily follow a
clear methodology such as the one outlined above while
maintaining a visibly positive attitude. Celebrating the
small victories that happen along the road to eventual
problem resolution can help both your team and the ven-
dor’s team persist through the difficult challenges that al-
most inevitably arise.

8 Acknowledgments

This research took place at the Argonne Leadership
Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the
U.S. Department of Energy under contract DE-AC02-
06CH11357.

The author would also like to thank Patrick Geof-
fray, Ruth Sivilotti, Reese Faucette, Glenn Brown, Susan
Blackford, and Justin Pratt at Myricom for their generos-
ity, patience, and expert assistance.


