
RC2 – A Living Lab for Cloud Computing

Kyung Dong Ryu, Xiaolan Zhang, Glenn Ammons, Vasanth Bala, Stefan Berger, Dilma M Da Silva
Jim Doran, Frank Franco, Alexei Karve, Herb Lee, James A Lindeman, Ajay Mohindra, Bob Oesterlin

Giovanni Pacifici, Dimitrios Pendarakis, Darrell Reimer, Mariusz Sabath

IBM TJ Watson Research Center
Yorktown Heights, NY

Abstract

In this paper we present our experience in building the
Research Compute Cloud (RC2), a cloud computing
platform for use by the worldwide IBM Research com-
munity. Within eleven months of its official release RC2
has reached a community of 631 users spanning 34 coun-
tries, and serves on average 350 active users and 1800
active VM instances per month. Besides offering a util-
ity computing platform across a heterogeneous pool of
servers, RC2 aims at providing a living lab for exper-
imenting with new cloud technologies and accelerating
their transfer to IBM products. This paper describes
our experience in designing and implementing a flexible
infrastructure to enable rapid integration of novel ideas
while preserving the overall stability and consumability
of the system.

1 Introduction

Cloud Computing has become synonymous with ways to
contain and manage IT costs for enterprises. Cloud Com-
puting is a paradigm where compute capacity is made
available to users in an on-demand fashion through a
shared physical infrastructure. The expectation is that
sharing hardware, software, network resources, and man-
agement personnel would reduce per unit compute cost
for enterprises. Several vendors such as Amazon EC2,
Google, and Rackspace have been providing commer-
cial Cloud offerings. Though not enterprise-grade level
yet, Cloud Computing has piqued the interest of several
large enterprises, which have started deploying and ex-
perimenting with the technology for their test and devel-
opment environments. IBM Research has developed and
deployed a Cloud Computing platform called Research
Compute Cloud (RC2) for use by the worldwide IBM
Research community. The goals of RC2 are to establish
an “innovation” platform for the IBM Research commu-
nity and to serve as a “living” lab for the research tech-

nologies developed by the IBM Research community.
The platform has been purposefully architected to facil-
itate collaboration among multiple research groups and
encourage experimentation with cloud computing tech-
nologies. The platform also serves as a showcase of
new research technologies to IBM customers and busi-
ness partners.

The IT infrastructure of the IBM Research division re-
sembles that of a global enterprise having many differ-
ent lines of business spread across multiple geographies.
IBM Research is a geographically distributed organiza-
tion, consisting of several thousand research personnel
spread across 9 research laboratories worldwide. Each
IBM research lab operates its own local data center that
is used predominantly for lab-specific research experi-
ments. In addition, a portion of the data center infrastruc-
ture is collectively used for production workloads such
as email, employee yellow pages, wikis, CVS servers,
LDAP servers, etc. Critical production workloads can be
replicated across different lab data centers for purposes
of failover. This infrastructure is a substantial investment
built over many years, and is very heterogeneous in its
make up. For instance, IBM’s POWER series systems
and System Z mainframes are mixed with many genera-
tions of commodity x86 blade servers and IBM iDataplex
systems.

The Research Compute Cloud (RC2) is an
infrastructure-as-a-service cloud built by leveraging
the existing IT infrastructure of the IBM Research
division. Its goals were two-fold: (a) create a shared
infrastructure for daily use by the research population,
and (b) provide a living lab for experimenting with
new cloud technologies. There were several challenges
that the team needed to address to meet the two goals.
The first challenge was to design and build a consistent
infrastructure-as-a-service interface over a heterogenous
infrastructure to meet the needs of the Research user
community. The second challenge was to enable a
true living lab where the Research community could



develop and test new technologies in the cloud. The
architecture of RC2 had to be flexible enough to enable
experimentation with different cloud technologies at
the management, platform, and application layers. All
this had to be achieved without any disruptions to the
stability and consumability of the overall infrastructure.

In this paper, we present our experience in building
RC2. In Section 2, we present the architecture of RC2 to
meet the two design goals. Next, we discuss the imple-
mentation of RC2 in Section 3. Section 4 presents our
experience specifically in the context of pluggability and
extensibility of the environment. We conclude the paper
by discussing related work in Section 5 and future work
in Section 6.

2 Architecture

As mentioned in Section 1, RC2 aims to provide a re-
search platform where exploratory technologies can be
rapidly introduced and evaluated with minimal disrup-
tion on the operation of the cloud. This requirement calls
for a componentized, extensible cloud architecture.

Figure 1 shows the architecture of RC2 which con-
sists of a cloud dispatcher that presents an external REST
API to users and a collection of managers that provide
specific services. For each manager, the dispatcher con-
tains a proxy whose role is to marshal requests to and
responses from the manager itself.

This architecture enables a loose coupling between the
managers. Any manager only knows its corresponding
proxy; there is no direct communication between man-
agers. Different groups within IBM Research can work
on different managers without anyone mandating how
their code should integrate. Groups only need to agree
on the APIs that the manager proxies will expose within
the dispatcher.

The dispatcher is driven by an extensible dispatch ta-
ble that maps request types to manager proxies. When a
request enters the dispatcher (whether from an external
source like an RC2 user or an internal source like one
of the managers), the dispatcher looks up the request’s
signature and dispatches it to the manager proxy respon-
sible for that type of request. A new manager can be
added simply by adding its request type and mapping in-
formation to the table.

Another benefit of this design is that, because all re-
quests pass through the dispatcher, features such as ad-
mission control, logging and monitoring can be imple-
mented easily in the dispatcher. A potential drawback is
that the dispatcher becomes a bottleneck, but this prob-
lem can be solved by distributing requests among multi-
ple dispatcher instances.

Figure 1 shows the managers that currently exist in
RC2. The user manager authenticates users. The im-

age manager catalogs, accesses, and maintains virtual-
machine images. The instance manager creates, deploys,
and manipulates runnable instances of the image man-
ager’s images. The security manager sets up and con-
figures the network isolation of cloud tenants’ security
domains for communication both outside the cloud and
with other security domains inside the cloud.

Distribution of functionality implies distribution of the
system’s state among individual components. This dis-
tribution makes it difficult to obtain a complete and con-
sistent view of the system state during long-running re-
quests (for example, instance creation), which compli-
cates failure detection and recovery. Our architecture
tackles this problem by requiring each manager to main-
tain and communicate the states of the objects it man-
ages. For example, both images and instances have as-
sociated states, which can be queried by sending a “de-
scribe image” or “describe instance” request to the ap-
propriate manager. Long-running requests are processed
in two stages. The first stage synchronously returns an
object that represents the request’s result, and the second
stage asynchronously completes the time-consuming re-
mainder of the request and updates the object’s state ac-
cordingly. Request completion (or failure) can be deter-
mined by querying the object’s state.

Another challenge was to design a set of
infrastructure-as-a-service APIs that could be im-
plemented consistently across a heterogeneous pool of
servers. Differences among platforms can be huge. For
example, consider two different server platforms: an
IBM xSeries blade server and an IBM pSeries blade
server. The former runs a software virtual-machine
monitor (in RC2, Xen or KVM) on commodity x86
hardware, while the latter runs a firmware hypervisor
(PHYP), on IBM Power hardware (also referred to
as System P). These two platforms support different
operating systems, different image formats, and different
mechanisms for creating instances from images.

For example, for Xen and KVM based VM instances,
the images exist in raw (block) disk format. Deploying
those images into new VM instances requires copying
the disks onto the host’s storage and mounting the file
system of those disks to customize the images. The pro-
cess is completely different for the AIX operating sys-
tem that runs on the pSeries servers – the images exist
in a special backup (tar-like) format, and are referred to
as mksysb backups. Deploying those images into new
PHYP instances requires booting off an initial install ker-
nel which in turn drives the installation of the image files
into the newly booted VM. The installation is achieved
through a special central server called the Network In-
stallation Manager (NIM), which creates filesystems for
the instance, with files restored from the mksysb backups.

Our design supports multiple platforms by requiring

2



Figure 1: RC2 Architecture

that requests avoid platform-specific parameters. For ex-
ample, both types of images are stored in the repository
with the same format, has identical list of attributes, and
can be queried in an identical manner. Similarly, the
same instance creation API is used to start an instance for
both image types (although the parameter values vary).
The requester is not required to know the specific plat-
form type of the image or instance that she is operat-
ing on. This approach minimizes the complexity of sup-
porting multiple platforms, as only the instance manager,
which receives requests for creating instances, must con-
cern itself with differences among platforms.

3 Implementation

The RC2 hardware infrastructure is comprised of man-
agement servers, the host server pool, and the storage
subsystem. The management servers host RC2 man-
agement services, provision and capture of virtual ma-
chines, and http access for users. The host pool houses
the provisioned instances and consists of a collection of
IBM iDataplex blades varing in size from 32GB-4way
to 128GB-8way systems. The storage pool consists of
a SAN subsystem that is shared across both the host
servers and the management servers.

3.1 Dispatcher

The RC2 cloud dispatcher is composed of three layers:
a REST servlet, the cloud manager, and several man-
ager proxies. The REST servlet provides an HTTP-based
REST interface to cloud operations. The interface can
be used by programs as well as through a web-based
graphical user interface. The manager proxies decou-
ple interactions between user and cloud dispatcher and
communication between the dispatcher and managers.
This separation promotes flexibility of managers while
allowing uniform cloud interfaces to users. Although,
in the current implementation, all managers are accessed
through REST APIs, they can be easily replaced with im-
plementations that use different communication mecha-
nisms such as Java Message Service (JMS).

The cloud manager sits between the REST servlet and
the manager proxies, providing admission control and
rate control using dispatch queues and request-handler
threadpools. There are currently two types of dispatch
queues: synchronous request queues and asynchronous
request queues. The former handles short-lived cloud re-
quests such as looking up image information and list-
ing an owner’s instances whereas the latter handles long-
lived cloud requests such as creating an instance or cap-
turing an image. The threadpool size of the synchronous
request queue is typically set to a large value to allow

3



more requests to be processed concurrently while that
of the asynchronous request queue is limited to a num-
ber that matches the rate at which the back-end man-
ager can process requests. The configuration of dispatch
queues such as queue length and threadpool size can be
changed at runtime through an administrative REST in-
terface, which is designed to allow feedback-based rate
control in the future.

3.2 Instance Manager

The instance manager keeps track of the cloud’s virtual-
machine instances. An instance-manager implemen-
tation must provide several basic services: “start in-
stance”, which adds a running instance to the cloud;
“stop instance”, which stops an instance; “delete in-
stance”, which removes an instance from the cloud; and
a query service for listing instances and their state. Only
the implementation of “start instance” is described here
because it is the least straightforward.

Starting an instance involves four tasks: selecting a
target host, creating and configuring an instance on that
host (which includes choosing a security domain), re-
trieving and configuring the virtual-machine image, and
finally starting the instance. Each task is implemented
by plugins, so as to support a variety of host and image
types.

The instance manager selects a host with the proper
resources to run the user-requested instance. The current
implementation uses a best-fit algorithm [7] that consid-
ers memory, cpu, disk, network connectivity, and host-
specific requirements such as the host’s architecture and
virtual-machine monitor. Selecting the host also binds
some instance parameters, including the IP address of the
new instance.

The instance manager retrieves the image from the
image manager and configures it for execution. Image
configuration sets both user-specific parameters, such as
ssh keys, and instance-specific parameters, such as the
IP address. Some parameters are set by modifying the
retrieved image before startup while others are set at
startup-time by embedding an “activation engine” [3] in
the image that runs the first time the instance boots. The
instance-specific parameters are provided through a vir-
tual floppy drive. The activation engine is designed for
extensibility and can configure operating system, mid-
dleware, and application parameters.

Next, the instance manager instructs the chosen host to
allocate a new instance. The details are host-specific; the
current implementation includes plugins for AIX hosts
and for x86 hosts based on Xen and KVM.

Finally, the instance manager starts the instance. The
user is notified and a description of the new instance is
sent to a database for compliance tracking.

3.3 Image Manager

The image manager maintains a library of images. The
image manager cooperates with the user manager to con-
trol access to images and with the instance manager to
create runnable instances of images and to capture im-
ages of runnable instances as images.

Each image has a unique image identifier, which
names the image for access-control purposes. The library
stores one or more versions of each image and each ver-
sion has a version identifier, which names both data and
metadata. The data consists of a set of files, including
disk images and other files required to create a runnable
instance. The metadata is a set of version attributes, such
as a name, a description, and the identifier of the ver-
sion’s parent.

Version data is immutable. Therefore, if a disk image
is modified by a running instance, it can be captured back
to the library only as a new version, whose parent will be
the version from which the instance was created. Some
version attributes are mutable, such as the description,
while others are immutable, such as the parent identifier.
The access-control information associated with an image
is mutable.

The most important image manager services are
“checkout” and “checkin”. Given a version or image
identifier and a target URL, checkout creates a runnable
instance from a version; if an image identifier is supplied,
the most recent version of that image will be checked
out. The target URL identifies a directory on the SAN
where the instance manager expects to find the runnable
instance and to which the image manager copies the ver-
sion’s data files. The image manager also places control
files in the directory that, among other things, identify
the source version.

Given a source URL, which identifies a directory on
the SAN that was populated by a checkout, checkin cre-
ates a new version. Note that the directory’s data files,
including its disk images, may have been modified by
instance execution. There are two kinds of checkin calls:
the first creates a new version of the original image while
the second creates the first version of a new image. Cur-
rently, only the second kind is exposed to RC2 users.

Both checkout and checkin are asynchronous calls.
The instance manager invokes these two interfaces and
tests for completion by polling a status file, which the
image manager updates on completion, or by supplying
the URL of a callback, which the image manager invokes
on completion.

The image manager controls access to images in the
library. Each image has an owner, a list of users and
groups with checkout access, and a list of users and
groups with both checkout and checkin access. Only the
owner may update the lists. Each image manager call in-

4



cludes an owner and a list of groups to which the owner
belongs, which the manager uses to verify that the caller
has the required access for the call. The image manager
assumes that a call’s owner and group list is correct: the
user manager is responsible for user authentication and
the cloud dispatcher ensures that calls do not forge user
or group names.

The image manager provides other services besides
checkin and checkout. These include calls that list, de-
scribe, and delete images and versions, plus calls that
update access-control lists. Deleted versions retain their
metadata but lose their data files.

The image manager uses a file-granularity, content-
addressable store (CAS) to maintain the image con-
tent [9]. The CAS saves space by guaranteeing that the
same item is never stored twice. It also keeps the ref-
erence information necessary to garbage collect deleted
image data.

3.4 Security Manager

RC2 has been architected with several mechanisms to
provide security in a cloud environment. In particular,
the security manager provides support for isolation be-
tween different cloud user’s workloads in a heteroge-
neous, multi-tenant environment. The isolation model
follows our established concepts of Trusted Virtual Do-
mains (TVDs) [2] and a Trusted Virtual Data Center
(TVDc) [10]. A TVD is a grouping of (one or more)
VMs belonging to the same user that share a trust rela-
tion and common rules for communicating among them-
selves as well as with the outside world.

The security manager exports a broad API through the
cloud dispatcher and provides extensive functionality for
life-cycle management of security domains and their run-
time configuration.

The security manager is currently built on top of mod-
ifications to the Xen daemon for the establishment and
runtime configuration of firewall rules on virtual ma-
chines’ interfaces in Domain-0. Our architecture makes
use of the fact that in the Xen hypervisor all virtual ma-
chines’ network packets pass through the management
virtual machine (Domain-0) and firewall rules can be ap-
plied on the network interface backends that each VM
has in that domain. This allows us to filter network traffic
originating from and destined to individual virtual ma-
chines.

The extensions to the Xen daemon provide functional-
ity for the application of layer 2 and layer 3 network traf-
fic filtering rules using Linux’s ebtables and iptables sup-
port. While a VM is running, its layer 3 network filtering
rules can be changed to reflect a user’s new configuration
choices for the security domain a virtual machine is asso-
ciated with. We support a similar network traffic filtering

architecture with the Qemu/KVM hypervisor where we
implemented extensions to the libvirt management soft-
ware providing equivalent functionality as the extensions
to the Xen daemon.

Functionality that the security manager provides for
support of security domain life cycle management in-
volves the following:

• Creation and destruction of security domains.

• Renaming and configuration of parameters of secu-
rity domains.

• Retrieval of security domain configuration data.

• Modifications of security domains’ network traffic
rules.

• Establishment of collaborations between security
domains of the same or different cloud tenants.

Altogether, the security manager adds 17 new com-
mands to the dispatcher API.

The realization of the security domains concept drove
extensions to several other existing components in the
architecture. Extensions were implemented in the cloud
dispatcher layer to make the new APIs visible to other
management components as well as external entities.
The instance-manager request that creates a virtual ma-
chine instance was extended with optional parameters
describing the security domain into which a virtual ma-
chine is to be deployed. A new internal request was
added to the instance manager for deployment of filter-
ing rules associated with VM instances. Several previ-
ously existing workflows, which are part of the instance
manager, were modified to notify the security manager
of VMs’ life cycle events as well as to perform configu-
ration in the Xen management virtual machine (Domain-
0).

3.5 Chargeback
We implemented a simple allocation-based pricing
model to experiment with users’ behavior in resource
consumption under different pricing models. Users are
charged for compute capacity based on a billable unit of
“per instance hour consumed”. This begins with instance
creation and ends when an instance is destroyed. At this
time, the same charges are incurred whether the instance
is active (that is, running) or inactive (stopped). Rates
differ by system type (XEN, PHYP, and KVM) and con-
figuration (small, medium, large, and extra large). In ad-
dition, there are separate charges for end-user initiated
transactions that lead to state changes of their instances
(Initialize, Start, Stop, Reboot, Destroy). Charges are
calculated on an hourly basis and are integrated with
IBM’s existing internal billing systems.

5



3.6 User Manager

The user manager authenticates users by invoking ser-
vices available in the IBM infrastructure and associat-
ing authentication with sessions. It also manages user-
specific information, such as ssh public keys, that can be
queried by other managers during provisioning.

4 Experience

RC2 was released in a Beta version in early April, 2009,
and officially released to IBM Research world-wide in
early September, 2009. In this section, we present global
usage statistics of RC2 and our experiences using RC2 as
a research platform to experiment with new cloud tech-
nologies.

4.1 RC2 Usage

Within 11 months of its official production release, RC2
has served 631 distinct users spanning 34 countries. The
image library has accumulated a collection of 2286 im-
ages, all of which derive from just three root images that
were imported into the libary at the beginning. The num-
ber of images in the library grew starting about a week
after the Beta release. The library grew modestly during
the Beta testing period but has been experiencing faster
growth since the official release in early September. The
number of instances has grown at a similar rate; Figure 2
shows this growth since the production release.

The average number of active instances per month is
also growing, reaching 1800 in the most recent month.
This includes 102 instances of the System P type. On
the average there are about 350 distinct active users per
month, who consume a total of 600,000 virtual-machine
hours.

Figure 2: Instance Growth

RC2 was first released free of charge. When charges
for instance ownership were introduced in early October,
it had a dramatic impact on user behavior, as shown in
Figure 3. There was a significant drop in the number of
instances right after users received their first statements,
leading to a drop in memory utilization. Interestingly,
the number quickly bounced back, and memory utiliza-
tion again approached pre-chargeback levels. We con-
sider this to be a strong endorsement from our user com-
munity about the value of the service provided by RC2.

Figure 3: Cloud Memory Utilization
Percentage of memory allocated for instances as a ratio

of total available memory.

4.2 RC2 as a Living Lab
In addition to its role as a production-quality IT offering
for IBM’s research organization, RC2 also serves as an
experimental testbed for innovative cloud management
technologies. To this end, we show how RC2’s archi-
tectural emphasis on extensiblity and pluggability has
helped facilitate these experimental activities.

The initial version of RC2 consisted of three man-
agers: the image manager, the instance manager, and the
user manager. The security manager was added to pro-
vide stronger isolation between multiple tenants’ work-
loads in the cloud. While the security manager presented
significant functionality enhancements, the core RC2 ar-
chitecture remained essentially the same given that it was
designed to be extensible from the start and most changes
were contained at the cloud dispatcher.

The pluggable cloud dispatcher architecture enabled
us to deploy an image manager based on the Network
File System (NFS) for Research sites that lack a SAN
storage environment. For these sites, we reimplemented
the image manager interfaces using NFS as the backing
store. As with the SAN, the file system is mounted on

6



each hypervisor node so that images are locally acces-
sible. The instance manager required no change as the
NFS-based image manager supports the same set of re-
quests as does the SAN-based image manager. The flex-
ibility of RC2 allowed researchers to experiment with
alternate implementations without requiring changes to
other components.

Being a living lab implies that sometimes RC2 needs
to deal with unusual infrastructure-level changes that are
typically not seen in production systems. One such ex-
ample is change of supported hypervisor types. Initially,
RC2 adopted Xen as its only x86 hypervisor. Later on
there was a strategic decision to switch to KVM, which
means that RC2’s entire Xen image collection needs to
be converted to KVM.

Because RC2 is a production system, the conversion
needs to be accomplished with minimal disruption to
the user. This translates into two concrete requirements.
First, the contents of all existing Xen images as well
as instances need to be preserved. Users should just
be able to start their existing images as usual without
even noticing that the images will be in fact running on
a KVM hypervisor. Similarly, when existing Xen in-
stances are captured, they should automatically be con-
verted to KVM without any user intervention. Second,
conversion of the entire Xen image/instance collection
needs to be achieved with zero downtime (except for
the regularly scheduled maintenance window). During
the conversion period, both Xen and KVM provisioning
must be supported.

Our solution required multiple enhancements to be
made to both the instance manager and the image man-
ager. The instance manager, upon receiving a capture
request, performed an on-the-fly conversion of the cap-
tured Xen image to a KVM image. The image manager
was enhanced with a locking functionality that hid newly
converted KVM images from the end user until the im-
ages were ready to be seen by the users. Again, the
decoupled architecture of the RC2 system allowed indi-
vidual component to be separately tested and replaced,
making it possible to achieve the conversion without any
disruption of the system.

The RC2 team successfully converted the entire Xen
image collection (419 images) to KVM. The migration
process started on May 6th, 2010 and ended on June
14th. During this whole period, the RC2 production
system was continuously running with all functionalities
enabled and no noticeable performance slowdown. The
process was also completely transparent to the users. All
conversion activities were shielded from the end users.
End users did not notice any change of their images until
the “conversion” day, at which point the newly converted
images (with new image numbers) appeared on user’s lo-
gin view. Advance notice was sent to the users a few days

earlier so they were prepared for this change on “conver-
sion” day.

5 Related Work

Current cloud computing offerings focus on building an
optimized, homogeneous environment for delivery of
compute services to customers. Amazon’s EC2 [1] and
IBM’s Developer Cloud [4] are examples of such offer-
ings. By contrast, our work focuses on heterogeneity and
providing a pluggable and extensible framework to serve
as a living lab for cloud technologies. The open source
project Eucalyptus [8] provides capabilities similar to
those of Amazon’s EC2 and could be used in a living lab,
as developers can modify and extend the source. How-
ever, the project lacks support for heterogeneous plat-
forms and a pluggable architecture.

6 Conclusion and Future Work

The RC2 project succeeded in achieving its two main
goals: (1) it delivers high-quality cloud computing ser-
vices for the IBM Research community and (2) it pro-
vides an effective framework for integration of novel
ideas into a real cloud platform, rapidly enriching the
evaluation of new technologies by offering meaningful,
realistic user experience and usage/performance data.
Many of these new technologies were adopted by newly
announced IBM products in 2009 such as Websphere
Cloudburst Appliance [6] and VM Control [5].

The current RC2 system is implemented only in the
New York area data center. However, the RC2 services
are available to all of the worldwide IBM Research Labs.
In 2010, we plan to create RC2 zones in at least two other
labs on two different continents.

The current RC2 production system has numerous
monitoring probes installed at different points in the in-
frastructure and in the management middleware that runs
the data center. These probes provide a rich set of real-
time monitoring data, which is itself available as a ser-
vice provided through a collection of REST APIs. We
plan to use this feature to provide a simulated data center
environment over the RC2 production environment, for
experimental purposes. The simulated environment will
behave as if it is the actual production environment un-
derneath, by tapping into the real-time monitoring data
provided by the probes.

7 Acknowledgments

To keep a system such as RC2 in production as it evolves
rapidly and drastically can not be done without the con-

7



tributions of many talented engineers and IT specialists.
We thank the entire RC2 team for the intense effort.

We also thank our anonymous reviewers, and our
shephard Matthew Sacks, for their insightful reviews and
comments.

References

[1] AMAZON. Amazon Elastic Compute Cloud (Ama-
zon EC2). http://aws.amazon.com/ec2.

[2] BUSSANI ET AL. Trusted Virtual Domains: Secure
Foundations for Business and IT Services. Tech-
nical Report RC23792, IBM Research, November
2005.

[3] HE, L., SMITH, S., WILLENBORG, R., AND
WANG, Q. Automating deployment and ac-
tivation of virtual images. White paper, IBM
developerWorks, August 2007. http://www.
ibm.com/developerworks/websphere/
techjournal/0708_he/0708_he.html.

[4] IBM. IBM Cloud Computing. http://www.
ibm.com/ibm/cloud.

[5] IBM. VM Control Enterprise Edition.
http://www-03.ibm.com/systems/
management/director/plugins/
syspools/index.html.

[6] IBM. Websphere Cloudburst Appliance.
http://www-01.ibm.com/software/
webservers/cloudburst/.

[7] KWOK, T., AND MOHINDRA, A. Resource cal-
culations with constraints, and placement of ten-
ants and instances for multi-tenant SaaS applica-
tions. Services-Oriented Computing – ICSOC 5364
(2008).

[8] NURMI, D., WOLSKI, R., GRZEGORCZYK, C.,
OBERTELLI, G., SOMAN, S., YOUSEFF, L., AND
ZAGORODNOV, D. The Eucalyptus open-source
cloud-computing system. In Proceedings of CC-
Grid’09: the 9th IEEE International Symposium on
Cluster Computing and the Grid (Shangai, China,
May 2009).

[9] REIMER, D., THOMAS, A., AMMONS, G., MUM-
MERT, T., ALPERN, B., AND BALA, V. Open-
ing black boxes: Using semantic information to
combat virtual machine image sprawl. In The
2008 ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE
’08) (March 5-7, 2008).

[10] STEFAN BERGER ET AL. Security for the cloud in-
frastructure: Trusted virtual data center implemen-
tation. IBM Journal of Research and Development
53, 4 (2009).

8


