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Abstract

Large Internet services companies like Google, Yahoo,
and Facebook use the MapReduce programming model
to process log data. MapReduce is designed to work
on data stored in a distributed filesystem like Hadoop’s
HDEFS. As a result, a number of log collection systems
have been built to copy data into HDFS. These systems
often lack a unified approach to failure handling, with
errors being handled separately by each piece of the col-
lection, transport and processing pipeline.

We argue for a unified approach, instead. We present
a system, called Chukwa, that embodies this approach.
Chukwa uses an end-to-end delivery model that can
leverage local on-disk log files for reliability. This ap-
proach also eases integration with legacy systems. This
architecture offers a choice of delivery models, mak-
ing subsets of the collected data available promptly for
clients that require it, while reliably storing a copy in
HDFS. We demonstrate that our system works correctly
on a 200-node testbed and can collect in excess of 200
MB/sec of log data. We supplement these measurements
with a set of case studies describing real-world opera-
tional experience at several sites.
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1 Introduction

Almost every distributed service generates logging data.
The rise of Cloud computing makes it easier than ever to
deploy services across hundreds of nodes [4], with a cor-
responding increase in the quantity of logs and the diffi-
culty of manual debugging. Automated log analysis is in-
creasing the amount of information that can be extracted
from logs, thus increasing their value [26, 30, 3, 16].
Hence, log collection and processing is increasingly im-
portant. Scalable data processing is challenging and so it
is very desirable to leverage existing tools.

MapReduce is emerging as a standard tool for data-
intensive processing of all kinds, including log file anal-
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ysis [10, 29]. Tasks like indexing and aggregation fit
naturally into the MapReduce paradigm. So do more
sophisticated analyses, such as machine learning-based
anomaly detection using console logs [30].

In this paper, we present Chukwa, a scalable system
for collecting logs and other monitoring data and pro-
cessing the data with MapReduce. Today, an administra-
tor seeking to use MapReduce for system analysis would
need to build a great deal of infrastructure to connect data
sources with processing tools. Several sites have built
such tools [23, 29], but each has been highly tailored to
the specific context at hand. All have flawed failure re-
covery mechanisms, potentially leading to data loss. In
contrast, Chukwa is designed to integrate cleanly with a
wide variety of legacy systems and analysis applications
and to offer strong reliability guarantees. It is available as
open-source software and is currently in use at a number
of sites, including Berkeley, Selective Media, and CBS
Interactive. A previous publication described our initial
goals and our prototype implementation [7]. In this pa-
per, we describe Chukwa’s design in more detail, present
performance measurements, and describe real-world ex-
periences.

1.1 Why distributed log collection is diffi-
cult

While MapReduce is a powerful and increasingly pop-
ular tool, there is a tension between its performance
characteristics and those of many log collection work-
loads. One of the major design principles of MapReduce
is to push computation to the node holding the associ-
ated data. This is accomplished by storing the input to
a MapReduce job in a distributed filesystem such as the
Google File System (GFS) [12], or its open-source coun-
terpart, the Hadoop Distributed File System (HDFS).
GFS and HDFS are user-level filesystems that do not im-
plement POSIX semantics and that do not integrate with
the OS filesystem layer. Both MapReduce and the un-



derlying filesystems are heavily optimized for the case
of large files (measured in gigabytes) [6]. This means
that applications must either be modified to write their
logs to these filesystems, or else a separate process must
copy logs into the filesystem.

This problem would be comparatively easy in a dis-
tributed filesystem that allowed multiple concurrent ap-
pends and where writes never failed. But such systems
are quite difficult to build; no existing filesystem has
both properties, and no system available in the open-
source world has either. Support for single-writer non-
concurrent appends has been in-progress in Hadoop for
several years, despite implementation effort by a large
population of paid full-time developers.

As a result, the implementation strategy adopted by
the open-source world has been to implement this func-
tionality in application code. In the standard approach,
processes send their log messages across the network
to a daemon, commonly called a collector, that serial-
izes the updates and writes them to the filesystem. Sev-
eral companies, such as Rapleaf, Rackspace, and Face-
book [23, 29, 1], have built specialized log collection
systems of this type.

These collection systems have largely treated log col-
lection as just another network service. They expose a
narrow interface to clients commonly using remote pro-
cedure call (RPC). The monitoring system is responsible
for receiving and recording data and plays no role once
data has been written to the distributed filesystem. While
this separation of concerns is normally an attractive de-
sign style, we argue that it is the wrong approach for re-
liable monitoring of monitoring legacy systems.

A common task for a monitoring system is to collect
data from legacy application log files on disk. Ideally,
files on disk would be deleted once their contents have
been stored durably by the monitoring system. But this is
impossible without some way for the monitoring system
to report back success or failure. In the event of a tran-
sitory failure, data may be buffered by the monitoring
system for some time, meaning that a synchronous RPC
model, with success or failure reported as soon as data
is sent, is insufficient. This problem is perhaps less sig-
nificant in organizations like Facebook or Google, where
legacy code can be rewritten. But in smaller organiza-
tions, it looms large as a problem.

1.2 Our innovations

Our system, Chukwa, adopts a different architecture.
Rather than expose a narrow interface to the monitoring
system, we try to confine as much complexity as possible
as close as possible to the application being monitored.
This means that the interface between the system being
monitored and the monitoring system is highly flexible

and can be tailored to a particular context. It also means
that the rest of the monitoring system can be simple and
optimized for the common case. This enables substantial
design simplification and good performance while offer-
ing superior reliability guarantees.

In Chukwa, data is collected by a dedicated agent pro-
cess on each machine being monitored. This process
can hold far more application-specific functionality than
the simple network services offered by systems such as
Scribe. As we show, this enables us to easily support a
range of desirable features not found in alternative mon-
itoring systems. Agents are responsible for three impor-
tant tasks: producing metadata, handling failures, and in-
tegrating with existing data sources.

e Unlike other systems, Chukwa has a rich metadata
model, meaning that semantically-meaningful sub-
sets of data are processed together. This metadata is
collected automatically and stored in parallel with
data. This eases the development of parallel, scal-
able MapReduce analyses.

e We push failure handling and data cleaning to the
endpoints of the monitoring system. Each agent is
responsible for making sure that data is stored at
least once. A MapReduce job removes duplicates.
As a result, the interior of the collection system can
be much simpler and can optimize for the common
case where writes succeed.

e Last, we optimize for the case of log files on lo-
cal disk. Such logs are common in many environ-
ments. Logs on disk are easy to create, easy to rea-
son about, and robust to many failures. They are
commonly produced by legacy systems. Chukwa
demonstrates that these logs can also be used for
low-cost failure recovery. From the point of view of
Chuwka agents, data collection is asynchronous and
need not be reliable. If a timer expires before data
is stored durably, agents re-send using the on-disk
log.

While Chukwa is optimized for logs on disk, it can
handle many other monitoring tasks. Chukwa can col-
lect a variety of system metrics and can receive data via
a variety of network protocols, including syslog. Our
reliability model encompasses these sources naturally
and flexibly. Depending on user preferences, each data
source can be buffered to disk pessimistically, buffered
on error, or not buffered.

This work is timely for two reasons. The development
of automated log analysis (such as [30, 3, 16] has made
system logs much more useful. If logs are rarely con-
sulted, then collecting them is a low priority. Now that
system logs can be analyzed automatically and continu-
ously, collecting them becomes a much higher priority.



The rise of Cloud computing makes it easier than ever to
deploy services across hundreds of nodes [4], with a cor-
responding increase in the quantity of logs. At that scale,
sophisticated storage and analysis tools like Hadoop be-
come very desirable.

We begin, in the next section, by describing our de-
sign goals and assumptions and explaining why exist-
ing architectures do not adequately meet them. Section
3 describes our concrete implementation and Section 4
presents quantitative measurements. Section 5 discusses
deployment experience. We describe related work in
Section 6 and summarize our conclusions in Section 7.

2 Design Goals and Alternatives

Many monitoring and log collection systems have been
built before Chukwa. In this section, we discuss our
goals and why existing systems fail to meet them. These
goals were based on design discussions at both Yahoo!
and UC Berkeley and reflect real operational needs.

2.1 Supporting Production Use

We first list the core set of requirements needed to mon-
itor production systems.

e The system must support a wide variety of data
sources, not just log files. This is needed to col-
lect system metrics and to cope with existing legacy
systems that sometimes use other logging protocols,
such as syslog [15].

e If the monitoring system fails, the system being
monitored should continue working without inter-
ruption or slowdown.

e The system should scale to handle large numbers
of clients and large aggregate data rates. Our target
was to support 10,000 hosts and 30 MB/sec, match-
ing the largest clusters currently in use at Yahoo [7].

e The system should impose low overhead. We have
often heard 5% described as the largest fraction of
system resources that administrators are comfort-
able devoting to monitoring. Lacking any more
principled standard, we have adopted this as our tar-
get maximum resource utilization for the monitor-
ing system.

e No matter how intense a bust of log writes, the
resource consumption of the monitoring system
should remain with its resource bounds.

Some log analysis jobs are very sensitive to missing
data. In general, whenever the absence of a log message

is significant to an analysis, losing even a small quan-
tity of data can result in a badly wrong answer. For
instance, Rackspace uses a MapReduce-based analysis
of email logs to determine the precise path that mail is
taking through their infrastructure [29]. If the log en-
try corresponding to a delivery is missing, the analysis
will wrongly conclude that mail was lost. The machine-
learning based log file analysis developed by Xu et al.
[30] is another example of a loss-sensitive analysis. And
of course, if web access logs are used for billing pur-
poses, lost messages translate directly into lost revenue.
To support these sorts of log analysis applications, we
made reliable delivery a core goal for Chukwa.

Two of our goals conflict. A system cannot both offer
reliable delivery in all circumstances while never hav-
ing the system being monitored block while waiting for
the monitoring system. Local storage is limited, mean-
ing that if the monitoring system is unavailable for a
long time, the system being monitored must either dis-
card data or block. To reconcile these goals, we adopted
the following reliability standard: if the machine origi-
nating the data stays does not fail permanently, data will
eventually be delivered.

Making data available to MapReduce in less than a
minute or two was not a goal. Chukwa was primarily de-
signed to enable MapReduce processing of log data. Due
to scheduling overheads, a Hadoop MapReduce job sel-
dom executes in less than a minute. As a result, reducing
data delivery latency below a minute offers limited ben-
efit.

2.2 Why existing architectures are inade-
quate

Perhaps surprisingly, existing monitoring systems and ar-
chitectures are inadequate to meet the goals listed above.
The oldest and simplest form of logging is writing to
local disk. Local disk writes are low-cost, and have
predictable performance. Unfortunately, processing data
scattered across local disks of a cluster is difficult. Doing
so while processing data in-place will result in analysis
workloads and production loads conflicting, which is of-
ten unacceptable in practice.

Doing processing on a separate analysis cluster re-
quires some way of moving data from source to des-
tination. A shared NFS mount and streaming data via
syslog are two standard ways to do this. These
two approaches make contrasting reliability-availability
choices. If the network fails, an NFS write will fail,
blocking the application. Syslog, built on UDP, will
silently discard data.

That leaves writing data locally, either on failure or
before attempting to copy it to HDFS. We discuss each
in turn. Several systems, notably Scribe [1] attempt to



write data across the network, and buffer locally only on
failure. The catch is that clients do not participate in fail-
ure recovery. Data loss will be fatal if a crash occurs
after data has been handed to Scribe, and before that data
has been stored durably. Likewise, data can be lost if
a filesystem write returns success before data is serial-
ized. (This can happen because HDFS buffers aggres-
sively before flushing data to remote hosts.) As a re-
sult, pessimistic logging by the application is required to
achieve high reliability.

For large files, copied periodically and all-at-once, this
is simple to implement and works well. For stream-
ing data, however, complexities emerge. There is an
“impedance mismatch” between many logging work-
loads and the optimal performance envelope for scalable
distributed MapReduce-friendly file systems like HDFS.
Those file systems are designed for a small number of
large files, written once and never updated. In contrast,
large numbers of small log files updated sporadically are
an important kind of monitoring data. Easing this gap re-
quires consolidating logs from many machines into one
file. Since HDFS lacks concurrent appends, this requires
a separate process to do the merging. This increases the
number of points at which failures can occur.

Chukwa responds to this reliability problem in an end-
to-end manner, by pushing the retry logic as close to the
data source as possible. Data is either stored in log files
on local disks, or else in HDFS. No other copies are
made, by default. Data transmission is only treated as
successful once data from the one source has been suc-
cessfully copied to the other. The technical challenge is
two-fold. Reliability needs to be integrated with legacy
applications that may be oblivious to the monitoring sys-
tem. And this comparison must be performed efficiently
and continuously at run-time.

Not all sources or uses of log data require the same
degree of reliability. A site might decide that pessimisti-
cally recording all system metrics to disk is an unnec-
essary and wasteful degree of robustness. An additional
design goal for us was to avoid imposing excessive costs
for collecting this sort of ephemeral data.

2.3 A choice of delivery models

It became clear to us as we were developing Chukwa that
in addition to reliability-sensitive applications, there is an
another class of applications with quite different needs.
It is sometimes desirable to use logs to drive an ongo-
ing decision-making process, such as whether to send
an alert to an administrator based on a critical error or
whether to scale up or scale down a cloud service in
response to load. These applications are perforce less
sensitive to missing data, since they must work correctly
even if the node that generated the missing data crashes.

Reliable delivery Fast-path delivery

Visible in minutes Visible in seconds
Writes to HDFS Writes to socket
Resends after crash Does not resend

All data User-specified filtering
Supports MapReduce Stream processing

In order No guarantees

Table 1: The two delivery models offered by Chukwa

To support latency-sensitive applications, we offer an al-
ternate “fast path” delivery model. This model was de-
signed to impose minimal delays on data delivery. Data
is sent via TCP, but we make no other concession to re-
liable delivery on this path. Applications using the fast
path can compensate for missing data by inspecting the
reliably-written copy on HDFS. Table 1 compares these
two delivery models.

3 Architecture

In the previous section, we described our design goals. In
this section, we describe our design and how it achieves
these goals. Like the other systems of this type, we in-
troduce auxiliary processes between the log data and the
distributed filesystem. Unlike other systems, we split
these processes into two classes. One set of processes,
the collectors, are responsible for writing to HDFS and
are entirely stateless. The other class, the agents run on
each machine being monitored. All the state of the mon-
itoring system is stored in agents, and is checkpointed
regularly to disk, easing failure recovery. We describe
each half of the system in turn. We then discuss our data
model and the fault-tolerance approach it enables. Figure
1 depicts the overall architecture.

3.1 Agents

Recall that a major goal for Chukwa was to cleanly in-
corporate existing log files as well as interprocess com-
munication protocols. The set of files or sockets being
monitored will inevitably grow and shrink over time, as
various processes start and finish. As a result, the agent
process on each machine needs to be highly configurable.

Most monitoring systems today require data to be
sent via a specific protocol. Both syslogd and Scribe
[15, 1] are examples of such systems. Chukwa takes a
different approach. In Chukwa, agents are not directly
responsible for receiving data. Instead, they provide
an execution environment for dynamically loadable and
configurable modules called adaptors. These adaptors
are responsible for reading data from the filesystem or di-
rectly from the application being monitored. The output
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Figure 1: The flow of data through Chukwa, showing retention times at each stage.

from an adaptor is conceptually a stream of consecutive
bytes. A single stream might correspond to a single file,
or a set of repeated invocations of a Unix utility, or the
set of packets received on a given socket. The stream ab-
straction is implemented by storing data as a sequence of
chunks. Each chunk consists of some stream-level meta-
data (described below), plus an array of data bytes.

At present, we have adaptors for invoking Unix com-
mands, for receiving UDP messages (including syslog
messages), and, most importantly, for repeatedly “tail-
ing” log files, sending any data written to the file since
its last inspection. We also have an adaptor for scanning
directories and starting a file tailing adaptor on any newly
created files.

It is possible to compose or “nest” adaptors. For in-
stance, we have an adaptor that buffers the output from
another adaptor in memory and another for write-ahead
logging. This sort of nesting allows us to decouple the
challenges of buffering, storage, and retransmission from
those of receiving data. This achieves our goal of allow-
ing administrators to decide precisely the level of failure
robustness required for each data stream.

The agent process is responsible for starting and stop-
ping adaptors and for sending data across the network.
Agents understand a simple line-oriented control proto-
col, designed to be be easy for both humans and pro-
grams to use. The protocol has commands for starting
adaptors, stopping them, and querying their status. This
allows external programs to reconfigure Chukwa to begin
reading their logs.

Running all adaptors inside a single process helps ad-
ministrators impose resource constraints, a requirement
in production settings. Memory usage can be controlled
by setting the JVM heap size. CPU usage can be con-
trolled via nice. Bandwidth is also constrained by the
agent process, which has a configurable maximum send

rate. We use fixed-size queues inside the agent process,
so if available bandwidth is exceeded or if the collectors
are slow in responding, then back-pressure will throttle
the adaptors inside the process [28].

The agent process periodically queries each adaptor
for its status, and stores the answer in a checkpoint
file. The checkpoint includes the amount of data from
each adaptor that has been committed to the distributed
filesystem. Each adaptor is responsible for recording
enough additional state to be able to resume cleanly,
without sending corrupted data to downstream recipients.
Note that checkpoints include adaptor state, but not the
underlying data. As a result, they are quite small — typi-
cally no more than a few hundred bytes per adaptor. This
allows Chukwa to scale to many hundreds or thousands
of files being monitored.

One challenge in using files for fault-tolerance is cor-
rectly handling log file rotation. Commonly, log files are
renamed either on a fixed schedule, or when the reach
a predetermined size. When this happens, data should
still be sent and sent only once. In our architecture, cor-
rectly handling log file rotation is the responsibility of
the adaptor. Different adaptors can be implemented with
different strategies. Our default approach is as follows:
If instructed to monitor log file foo, assume that any file
starting with foo . » is a rotated version of foo. Use file
modification dates to put rotated versions in the correct
order. Store the last time at which data was successfully
committed and the associated position in the file. This is
enough information to resume correctly after a crash.

3.2 Collectors

We now turn to the next state of our architecture, the col-
lectors. If each agent wrote directly to HDFS, this would
result in a large number of small files. Instead, Chukwa



uses the increasingly-common collector technique men-
tioned in the introduction, where a single process multi-
plexes the data coming from a large number of agents.

Each collector writes the data it receives to a single
output file, in the so-called “data sink” directory. This
reduces the number of files generated from one per ma-
chine or adaptor per unit time to a handful per cluster.
In a sense, collectors exist to ease the “impedance mis-
match” between large numbers of low-rate sources and a
filesystem that is optimized for a small number of high-
rate writers. Collectors periodically close their output
files, rename the files to mark them available for pro-
cessing, and begin writing a new file. We refer to this as
“file rotation.” A MapReduce job periodically compacts
the files in the sink and merges them into the archive of
collected log data.

Chukwa differs in several ways from most other sys-
tems that employ the collector design technique. We do
not make any attempt to achieve reliability at the collec-
tor. Instead, we rely on an end-to-end protocol, discussed
in the next section. Nor do Chukwa agents dynamically
load-balance across collectors. Instead, they try collec-
tors at random until one appears to be working and then
use that collector exclusively until they receive errors, at
which point they fail-over to a new one. The benefit of
this approach is that it bounds the number of agents that
will be affected if a collector fails before flushing data to
the filesystem. This avoids a scaling problem that would
otherwise occur where every agent is forced to respond
to the failure of any collector. One drawback is that col-
lectors may be unevenly loaded. This has not posed any
problems in practice since in a typical deployment the
collectors are far from saturated. With a collector on
every HDFS node, we have found that the underlying
filesystem saturates well before the collectors do.

To correctly handle overload situations, agents do not
keep retrying indefinitely. If writes to a collector fail, that
collector is marked as “bad”, and the agent will wait for
a configurable period before trying to write to it again.
Thus, if all collectors are overloaded, an agent will try
each, fail on each, and then wait for several minutes be-
fore trying again.

Collectors are responsible for supporting our “fast
path” delivery model. To receive data using this model,
clients connect to a collector, and specify a set of reg-
ular expressions matching data of interest. (These reg-
ular expressions can be used to match either content or
the Chukwa metadata, discussed in the next subsection.)
Whenever a chunk of data arrives matching these filters,
it is sent via a TCP socket to the requesting process in
addition to being written to HDFS. To get full coverage,
a client needs to connect to every collector. As we will
show in the next section, a modest number of collectors
are sufficient for the logging needs of large datacenter

services. Hence, “every collector” is often only a hand-
ful.

Filtering data at collectors has a number of advan-
tages. In the environments we have seen, collectors are
10-bound, not CPU-bound, meaning that CPU resources
are available for the pattern matching. Moreover, col-
lectors are stateless, meaning that it is straightforward to
spread out this matching across more machines, if need
be, by simply adding more collectors.

The fast path makes few reliability promises. Data can
be duplicated, if an agent detects a collector failure and
resends. Data can be lost, if the collector or the data
recipient fails. In some failure scenarios, data can be re-
ceived out of order. While data is normally delivered to
clients as soon as it is received by the collector, it can be
delayed if the network is congested. One guarantee the
fast path does make is that each individual chunk of data
will be received correctly or not at all. As we will see,
this guarantee is enough to be useful.

On the regular “reliable path”, collectors write their
data in the standard Hadoop sequence file format. This
format is specifically designed to facilitate parallel pro-
cessing with MapReduce. To reduce the number of files
and to ease analysis, Chukwa includes an “archiving”
MapReduce job that groups data by cluster, date, and
data type. This storage model is designed to match the
typical access patterns of jobs that use the data. (For in-
stance, it facilitates writing jobs that purge old data based
on age, source, and type: “Store user logs for 14 days,
and framework logs for one year.”) The archiving job
also detects data loss, and removes duplicate data. Re-
peated invocations of this job allow data to be compacted
into progressively larger files over time.

This stored data can be used in a number of
ways. Chukwa includes tools for searching these files.
The query language allows regular-expression matches
against the content or metadata of the stored data. For
larger or more complex tasks, users can run customized
MapReduce jobs on the collected data. Chukwa in-
tegrates cleanly with Pig, a language and execution
environment for automatically producing sequences of
MapReduce jobs for data analysis [18].

3.3 Metadata

When agents send data, they add a number of meta-
data fields, listed in Table 2. This metadata serves
two distinct purposes: uniquely identifying a chunk
for purposes of duplicate detection, and supplying con-
text needed for analysis. Three fields identify the
stream. Two are straightforward: the stream name (e.g.
/var/log/datanode) and source host. In addition,
we also tag data with the “source cluster.” In both clouds
and datacenters, users commonly allocate virtual clus-



ters for particular tasks and release them when the task
is complete. If two different users each use a given host
at different times, their logs may be effectively unrelated.
The source cluster field helps resolve this ambiguity. An-
other field, the sequence ID, identifies the position of a
given data chunk within that stream.

To these four fields, we add one more, “data type,’
that specifies the format of a chunk’s data. Often, only a
subset of the data from a given host is relevant to a given
analysis. One might, for instance, only look at Hadoop
Task logs. The datatype field lets a human or a program
describe the logical content of chunks separately from
the physical origin of the data. This avoids the need to
separately maintain a table describing the semantics of
each file or other physical data source.

Taken together, this metadata set allows MapReduce
jobs to easily check if data is missing from a stream.
(Data can be missing from a stream either for streams
with reliable retransmission disabled, or as a transitory
condition before a retransmission.) Missing data will
show up as a gap between the sequence numbers for a
pair of adjacent chunks, in precisely the same way that
TCP sequence numbers allow dropped packets to be de-
tected.

The Chukwa metadata model does not include time
stamps. This was a deliberate decision. Timestamps
are unsuitable for ordering chunks, since several chunks
might be read from a file in immediate succession, result-
ing in them having identical timestamps. Nor are times-
tamps necessarily useful for interpreting data. A single
chunk might correspond to many minutes of collected
data, and as a result, a single timestamp at the chunk
level would be misleading. Moreover, such timestamps
are redundant, since the content of each chunk generally
includes precise application-level timestamps. Standard
log file formats include per-line timestamps, for instance.

3.4 Reliability

Fault-tolerance was a key design goal for Chukwa. Data
must still arrive even if processes crash or network con-
nectivity is interrupted. Our solution differs substantially
from other systems that record logs to distributed storage
and is a major contribution of this work. Rather than try
to make the writer fault-tolerant, we make them stateless,
and push all state to the hosts generating the data.
Handling agent crashes is straightforward. As men-
tioned above, agents regularly checkpoint their state.
This checkpoint describes every data stream currently
being monitored and how much data from that stream
has been committed to the data sink. We use standard
daemon-management tools to restart agents after a crash.
When the agent process resumes, each active adaptor is
restarted from the most recent checkpoint state. This

means that agents will resend any data sent but not yet
committed or committed after the last checkpoint. These
duplicate chunks will be filtered out by the archiving job,
mentioned above.

File tailing adaptors can easily resume from a fixed
offset in the file. Adaptors that monitor ephemeral data
sources, such as network sockets, can not. In these cases,
the adaptor can simply resume sending data. In some
cases, this lost data is unproblematic. For instance, los-
ing one minute’s system metrics prior to a crash does
not render all subsequent metrics useless. In other cases,
a higher reliability standard is called for. Our solution
is to supply a library of “wrapper” adaptors that buffer
the output from otherwise-unreliable data sources. Cur-
rently, users can choose between no buffering, buffering
data in memory, or write-ahead logging on disk. Other
strategies can be easily implemented.

Rather than try to build a fault tolerant collector,
Chukwa agents look through the collectors to the under-
lying state of the filesystem. This filesystem state is what
is used to detect and recover from failure. Recovery is
handled entirely by the agent, without requiring anything
at all from the failed collector. When an agent sends data
to a collector, the collector responds with the name of the
HDES file in which the data will be stored and the future
location of the data within the file. This is very easy to
compute — since each file is only written by a single col-
lector, the only requirement is to enqueue the data and
add up lengths.

Every few minutes, each agent process polls a collec-
tor to find the length of each file to which data is being
written. The length of the file is then compared with the
offset at which each chunk was to be written. If the file
length exceeds this value, then the data has been commit-
ted and the agent process advances its checkpoint accord-
ingly. (Note that the length returned by the filesystem
is the amount of data that has been successfully repli-
cated.) There is nothing essential about the role of col-
lectors in monitoring the written files. Collectors store
no per-agent state. The reason to poll collectors, rather
than the filesystem directly, is to reduce the load on the
filesystem master and to shield agents from the details of
the storage system. On error, agents resume from their
last checkpoint and pick a new collector. In the event of a
failure, the total volume of data retransmitted is bounded
by the period between collector file rotations.

The solution is end-to-end. Authoritative copies of
data can only exist in two places: the nodes where
data was originally produced, and the HDFS file system
where it will ultimately be stored. Collectors only hold
soft state; the only “hard” state stored by Chukwa is the
agent checkpoints. Figure 2 diagrams the flow of mes-
sages in this protocol.



Field Meaning Source
Source Host where Chunk was generated Automatic
Cluster Cluster host is associated with Configured by user per-host
Datatype Format of output Configured by user per-stream
Sequence ID | Offset of Chunk in stream Automatic
Name Name of data source Automatic
Table 2: The Chukwa Metadata Schema
Agent Collector HDFS
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Figure 2: Flow of messages in asynchronous acknowl-
edgement. Data written through collector without wait-
ing for success. Separately, collectors check lengths of
written files, and report this back to agents.

4 Evaluation

In this section, we will demonstrate three properties.
First, Chukwa imposes a low overhead on the system be-
ing monitored. Second, Chukwa is able to scale to large
data volumes. Third, that Chukwa recovers correctly
from failures. To verify these properties, we conducted a
series of experiments at scale on Amazon’s Elastic Com-
pute Cloud, EC2. Using EC2 means that our hardware
environment is well-documented, and that our software
environment could be well controlled. All nodes used
the same virtual machine image, running Ubuntu Linux,
with a 2.6.21 kernel. We used version 0.20.0 of the
Hadoop File System.

4.1 Overhead of Monitoring

To measure the overhead of Chukwa in production, we
used Cloudstone, a benchmark [24], designed for com-

paring the performance of web application frameworks
and configurations. Each run takes about ten minutes
to complete and outputs a score in requests handled per
second for a standardized simulated workload. The ver-
sion we used starts a large number of Ruby on Rails pro-
cessors, backed by a MySQL database. We used a 9-
node cluster, with Chukwa running on each host. Each
node was an EC2 “extra large” (server class) instance.
Chukwa was configured to collect console logs and sys-
tem metrics. In total, this amounted to 60 KB per minute
of monitoring data per node.

Our results are displayed in Figure 3. As can be seen,
the runs with and without Chukwa were virtually indis-
tinguishable. All of the runs within Chukwa performed
within 3% of the median of non-Chukwa runs. This
shows that the overhead of monitoring using Chukwa is
quite modest. One run each with and without Chukwa
failed, due to a bug in the current Cloudstone implemen-
tation. These have been excluded from Figure 3.

To test overhead with other workloads, we ran a series
of Hadoop jobs, both with and without Chukwa. We used
a completely stock Hadoop configuration, without any
Chukwa-specific configuration. As a result, our results
reflect the experience that a typical system would have
when monitored by Chukwa. We used a 20-node Hadoop
cluster, and ran a series of random-writer and word-
count jobs, included with the standard Hadoop distribu-
tion. These jobs are commonly used as Hadoop bench-
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Figure 4: Hadoop job execution times, with and without
Chukwa monitoring

marks and their performance characteristics are well un-
derstood [32]. They first produced, then indexed, 50
GB of random text data. Each pair of jobs took roughly
ten minutes to execute. Chukwa was configured to col-
lect all Hadoop logs plus standard system metrics. This
amounted to around 120 KB/min/node, and an average
of 1296 adaptors per node.

Of this data, roughly two-thirds was task logs, and
most of the rest was Hadoop framework logs. This is
in accord with the internal Yahoo! measurements quoted
in [7]. The IO performance of EC2 instances can vary by
a few percent. We used the same instances throughout
to control for this. The first job, run with Chukwa, was
noticeably slow, presumably due to EC2 disk effects. All
subsequent sequences of runs appear indistinguishable.
Statistically, our results are consistent with Chukwa im-
posing no overhead. They effectively rule out the pos-
sibility of Chukwa imposing more than a 3% penalty on
median job completion time.

4.2 Fan-in

Our next round of experiments was designed to verify
that Chukwa collectors could handle the data rates and
degree of fan-in expected operationally. Recall that our
goal was to use no more than 5% of a cluster’s resources
for monitoring. Hence, designating 0.5% of machines as
Chukwa collector and storage nodes is reasonable. This
works out to a 200-to-1 fan-in.

We measured the maximum data rate that a single col-
lector could handle with this degree of fan-in by conduct-
ing a series of trials, each using a single collector and 200
agents. In each run, the collector was configured to write
data to a five-node HDFS cluster. After 20 minutes, we
stopped the agents, and examined the received data.

As can be seen in Figure 5, a single collector is able to
handle nearly 30 MB/sec of incoming data, at a fan-in of
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Figure 5: Throughput as a function of configured max-
imum send rate, showing that Chukwa can saturate the
underlying filesystem. Fan-in of 200-1.

200-to-1. However, as the data rate per agent rises above
that point, collector throughput plateaus. The Hadoop
filesystem will attempt to write one copy locally, mean-
ing that in our experimental setup, Collector throughput
is limited by the sequential-write performance of the un-
derlying disk. From past experiments, we know that 30
MB/sec is a typical maximum write rate for HDFS in-
stances on EC2 in our configuration. Chukwa achieves
nearly the maximum possible data rates on our config-
uration. We checked for lost, duplicate, and corrupted
chunks — none were observed.

4.3 Scale

Hadoop and its HDFS file system are robust, mature
projects. Hadoop is routinely used on clusters with thou-
sands of nodes at Yahoo! and elsewhere. HDFS performs
well even with more than a thousand concurrent writers,
e.g. in the Reduce phase of a large distributed sort. [19].
In this section, we show that Chukwa is able to take ad-
vantage of these scaling properties. To do this, we started
Hadoop clusters with a range of sizes, and a Chukwa col-
lector on each Hadoop worker node. We then started
a large number of agents, enough to drive these col-
lectors to saturation, and measured the resulting perfor-
mance. The collectors and HDFS DataNodes (workers)
were hosted on “medium CPU-heavy” instances. The
agent processes ran on “small” instances.

Rather than collect artificial logs, we used the output
from a special adaptor emitting pseudorandom data at
a controlled rate. This adaptor chooses a host-specific
pseudorandom seed, and stores it in each chunk. This al-
lows convenient verification that the data received came
from the expected stream and at the expected offset in
the stream.
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Our results are displayed in Figure 6. Aggregate write
bandwidth scales linearly with the number of DataNodes,
and is roughly 10 MB/sec per node — a very substan-
tial volume of log data. This data rate is consistent with
our other experiences using Hadoop on EC2. In this ex-
periment, the Chukwa collection cluster was largely 10-
bound. Hosts had quite low CPU load and spent most
of their time in the iowait state, blocked pending disk
I/O. Chukwa is saturating the filesystem, supporting our
assertion above that collector processes will seldom be
the bottleneck in a Chukwa deployment.

Recall that our original goal was for Chukwa to con-
sume less than 5% of a cluster’s resources. The ex-
periments presented here demonstrate that we have met
this goal. Assume that monitoring imposes a 3% slow-
down on each host. That would leave 2% of the clus-
ter’s resources for dedicated collection nodes. Given
a thousand-node cluster, this would mean 20 dedicated
Chukwa collectors and a 50-to-1 fan-in. Given the data
rates observed in [7], each collector would only be re-
sponsible for 130 KB/sec; slightly over 1% of our mea-
sured collection capacity on a 20-node HDFS cluster. We
conclude that, given 5% of a cluster’s resources, Chukwa
is able to easily keep up with real-world datacenter log-
ging workloads.

4.4 Failure Tolerance

Fault-tolerance is a key goal for Chukwa. We ran a se-
ries of experiments to demonstrate that Chukwa is able to
tolerate collector failures without data loss or substantial
performance penalty. The configurations in this experi-
ment were the same as described above, with a Chukwa
collector on every HDFS node.

We began by testing Chukwa’s response to the per-
manent failure of a subset of collectors. Our procedure
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Figure 7: Performance before and after killing two col-
lectors, showing modest degradation of throughput. La-
bels represent numbers of agents/collectors.

was as follows: After running a test cluster for 10 min-
utes, we killed two collectors, and then let Chukwa run
for another 10 minutes. We then stopped the agents and
analyzed the results. We repeated this experiment with a
variety of cluster sizes. In each case, all data had been re-
ceived correctly, without missing or corrupted data. Fig-
ure 7 plots performance before and after stopping the two
collectors. Having fewer collectors than Datanodes de-
graded performance slightly, by reducing the fraction of
writes that were local to the collector.

We also tested Chukwa’s response to a transient failure
of all collectors. This models what would happen if the
underlying filesystem became unavailable, for instance if
the HDFS Namenode crashed. (The HDFS Namenode is
a single point of failure that sometimes crashes, result-
ing in the filesystem being unavailable for a period from
minutes to hours.) We began our experiment with 128
agents and 10 collectors running. After five minutes, we
turned off the collectors. Five minutes later, we turned
them on again. We repeated this process two more times.

We plot data received over time in Figure 8. As can be
seen, data transfer resumes automatically once collectors
are restarted. No data was lost during the experiment.
The data rate quickly jumps to 100 MB/sec, which is
consistent with the maximum rates measured above for
clusters of this size.

5 Case Studies

In this section, we discuss operational experiences using
Chukwa in several contexts: web log analysis at several
technology companies and real-time Cloud monitoring at
Berkeley. We show that Chukwa is a natural solution for
these disparate problems.
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Data transfer resumes automatically whenever collectors
are available.

5.1 Web Log analysis

Web access logs are a particularly important class of log-
ging data. These logs are typically line oriented, with one
line per HTTP request. Automatically analyzing these
logs is a core technical underpinning for web content
and advertising companies. This makes analysis a good
fit for Chukwa: the data volumes are large and short-
turnaround automated analysis is important. We describe
the experiences of two different companies: CBS Inter-
active and Specific Media.

CBS Interactive manages a wide range of online con-
tent, including the CBS News web site. Short-turnaround
analysis allows the news room staff to monitor the pop-
ularity of stories from minute to minute, helping them
gauge reader interest in particular topics. It also al-
lows them to track the source of referrals to each story.
Chukwa is a key piece of infrastructure for the under-
lying analysis. Content is served from a cluster of app
servers, each of which writes its logs to local disk.
Chukwa then copies this data into a small Hadoop clus-
ter, where a series of Pig jobs aggregate this data and
store it into a MySQL database. This database, in turn,
is used by an internal web application to render data for
users. Chukwa has been in use for several months and is
functioning smoothly. The total volume of data is several
gigabytes per day. A single collector is able to keep up
with this load.

Specific Media is a leading online advertising vendor,
responsible for placing advertisements on affiliate sites.
Short-turnaround analytics are essential to make sure that
ads are placed on sites with high likelihood of click-
throughs from the advertiser’s target demographic. The
click-through data totals over a terabyte per day, before
compression.
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Chukwa is a natural fit for these uses. The data rates
and past data volumes are high enough that distributed
computing is necessary. Hadoop, with its easy scale-
out, is a natural choice. However, blocking the produc-
tion websites because of a monitoring or analysis system
failure is unacceptable. As a result, the loosely-coupled
Chukwa log tailing strategy is a good approach.

Both of these deployments made modifications to
Chukwa to cope with site-specific needs. (These changes
have been contributed back to the project.) Developers
found it convenient to use the Chukwa agent process to
manage parts of their logging workflows; notably CBS
Interactive contributed the ability to trigger an HTTP
post after every demux run in order to trigger further
downstream processing.

5.2 Near-real-time Adaptive Provisioning

Chukwa was originally targeted at system analysis and
debugging. But it can also be used for applications re-
quiring lower latency in data delivery. One such ap-
plication is adaptively provisioning distributed systems
based on measured workload. SCADS, the Scalable
Consistency-Adjustable Data Store, is an ongoing re-
search project aiming to develop a low-latency data store
with performance-safe queries [S]. A key component
of SCADS is the “Director,” a centralized controller re-
sponsible for making data placement decisions and for
starting and stopping storage nodes in response to work-
load. Internally, SCADS uses X-Trace reports [11] as its
data format. The total data volume varies from 60 to 90
KB/sec of data per node.

The SCADS development team opted to use local
UDP to send the reports to Chukwa. Using TCP would
have meant that SCADS might block if the Chukwa pro-
cess fell behind and the kernel buffer filled up. Using the
filesystem would have imposed unnecessary disk over-
head. Each X-Trace report fits into a single UDP packet
and in turn is sent through Chukwa as a single Chunk.
This means that the Director will always see complete re-
ports. The price for using UDP is that some kernels will
discard local UDP messages under load. Some data loss
is acceptable in this context, since the Director merely re-
quires a representative sample, rather than every report.

Rather than wait for data to be visible in HDFS, the
Director receives updates via fast path delivery. On boot,
the Director connects to each collector, and requests
copies of all reports. Once received, the reports are used
to detect which hosts were involved in each read and
write operation, and how long each host took to respond.
Using this information, the Director is able to split up the
data stored on an overloaded host, or consolidate the data
stored on several idle ones. Data is typically delivered to
the Director within a few seconds of being generated.



Using Chukwa in this scenario had a significant ad-
vantages over a custom-built system. While seeing data
immediately is crucial to the Director, having a durable
record for later analysis (potentially with MapReduce) is
very helpful in tuning and debugging. Chukwa supports
both, and can guarantee that all data that appeared once
will eventually be stored. Using Chukwa also meant that
the code for receiving data locally could be shared be-
tween this application and others.

5.3 Machine learning on logs

As mentioned in the introduction, one of our key goals
was to enable various log analysis techniques that can-
not gracefully tolerate lost data. We give an example of
one such technique here. This illustrates the sort of au-
tomated log analysis Chukwa was intended to facilitate
and shows why unreliable delivery of logs can poison
the analysis.

Xu et al. have developed a machine learning approach
able to detect many subtle error conditions by inspect-
ing logs [30]. In a nutshell, their technique works as
follows. Categorize the messages in a log and group
them together based on whether they have a shared iden-
tifier (an ID number for an object in the system, such
as a task ID.) Compare the number of messages of each
type mentioning each identifier. For instance, on the
Hadoop filesystem, a fixed number of “writing replica”
statements should appear for each block. Seeing an un-
expected or unusual number of events is a symptom of
trouble.

Imperfect log statements can easily throw off the anal-
ysis. There is no easy way to differentiate a message
dropped by the collection system event report from a
message that was never sent because of an application
bug. To conduct their experiments, Xu ef al. copied logs
to a central point at the conclusion of each experiment
using scp. This would be unsuitable in production; logs
grow continuously and the technique requires a consis-
tent snapshot to work correctly. As a result, the largest
test results reported for that work were using 200 nodes
running for 48 hours. Experimental runs needed to be
aborted whenever nodes failed in mid-run. There was no
easy way to compensate for lost data.

Copying data off-node quickly, and storing it durably,
would significantly enhance the scalability of the ap-
proach. Chukwa does precisely this, and therefore in-
tegrating this machine-learning approach with Chukwa
was of practical importance. (This integration took place
after the experiments described above had already been
concluded.)

Adapting this job to interoperate with Chukwa was
straightforward. Much of the processing in this scheme
is done with a MapReduce job. We needed to add only
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one component to Chukwa — a custom MapReduce “in-
put format” to hide Chukwa metadata from a MapReduce
job and give the job only the contents of the collected
chunks of log data. Aside from comments and boiler-
plate, this input format took about 30 lines of Java code.
The analysis job required only a one-line change to use
this modified input format.

6 Related Work

The Unix syslogd deamon, developed in the 1980s,
supported cross-network logging [15]. Robustness and
fault-tolerance were not design goals. The original spec-
ification for syslogd called for data to be sent via UDP
and made no provision for reliable transmission. To-
day, syslogd still lacks support for failure recovery,
for throttling its resource consumption, or for recording
metadata. Messages are limited to one kilobyte, incon-
veniently small for structured data.

Splunk [25] is a commercial system for log collection,
indexing and analysis. It relies on a centralized collec-
tion and storage architecture. It does not attempt high
availability, or reliable delivery of log data. However, it
does illustrate the demand in industry for sophisticated
log analysis.

To satisfy this need, many large Internet companies
have built sophisticated tools for large-scale monitoring
and analysis. Log analysis was one of the original mo-
tivating uses of MapReduce [10]. Sawzall is a scripting
language, designed for log analysis-type tasks, that sim-
plifies writing big-data queries and that uses MapReduce
as its execution engine [21]. A query language is only
useful if there is data to query. While the MapReduce
and Sawzall query tools have been described in the open
literature, the details of log collection and management
management in enterprise contexts are often shrouded in
secrecy. For instance, little has been published about
Google’s “System Health infrastructure” tools, beyond
mentioning their existence [22]. Chukwa is more com-
parable to these data sources, rather than to the query
languages used to process collected data.

In the introduction, we mentioned a number of spe-
cialized log collection systems. Of these, Scribe is the
best documented and has been used at the largest scale.
Scribe is a service for forwarding and storing monitoring
data. The Scribe metadata model is much simpler than
that of Chukwa: messages are key-value pairs, with both
key and value being arbitrary byte fields. This has the ad-
vantage of flexibility. It has the disadvantage of requiring
any organization using Scribe to develop its own meta-
data standard, making it harder to share code between
organizations.

A Scribe deployment consists of one or more Scribe
servers arranged in a directed acyclic graph with a pol-



icy at each node specifying whether to forward or store
incoming messages. In contrast to Chukwa, Scribe is not
designed to interoperate with legacy applications. The
system being monitored must send its messages to Scribe
via the Thrift RPC service. This has the advantage of
avoiding a local disk write in the common case where
messages are delivered without error. It has the disadvan-
tage of requiring auxiliary processes to collect data from
any source that hasn’t been adapted to use Scribe. Col-
lecting log files from a non-Scribe-aware service would
require using an auxiliary process to tail them. In con-
trast, Chukwa handles this case smoothly.

As mentioned above, Scribe makes significantly
weaker delivery guarantees than Chukwa. Once data has
been handed to a Scribe server, that server has responsi-
bility for the data. Any durable buffering for later deliv-
ery is the responsibility of the server, meaning that the
failure of a Scribe server can cause data loss. There can
be no end-to-end delivery guarantees, since the original
sender does not retain a copy. Clients can be configured
to try multiple servers before giving up, but if a client
cannot find a working Scribe server, data will be lost.

Another related system is Artemis, developed at Mi-
crosoft Research to help debug large Dryad clusters [9].
Artemis is designed purely for a debugging context: it
processes logs in situ on the machines where they are
produced, using DryadLINQ [31] as its processing en-
gine. The advantage of this architecture is that it avoids
redundant copying of data across the network, and en-
ables machine resources to be reused between the system
being analyzed and the analysis. The disadvantage is that
queries can give the wrong answer if a node crashes or
becomes temporarily unavailable. Artemis was not de-
signed to use long-term durable storage, which requires
replication off-node. Analysis on-node is also a poor
fit for monitoring production services. Analyzing data
where it is produced risks having data analysis jobs in-
terfere with the system being monitored. Chukwa and
Scribe, in contrast are both designed to monitor pro-
duction services and were designed to decouple analysis
from collection.

Chukwa is flexible enough to emulate Artemis if de-
sired, in situations with large data volumes per node. In-
stead of writing across a network, agents could write to
a local Hadoop filesystem process, with replication dis-
abled. Hadoop could still be used for processing, al-
though having only a single copy of each data item re-
duces the efficiency of the task scheduler [20].

Flume is another, more recent system developed for
getting data into HDFS [2]. Flume was developed af-
ter Chukwa, and has many similarities: both have the
same overall structure, and both do agent-side replay on
error. There are some notable differences as well. In
Flume, there is a central list of ongoing data flows, stored
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redundantly in Zookeeper. Whereas Chukwa does this
end-to-end, Flume adopts a more hop-by-hop model. In
Chukwa, agents on each machine are responsible for de-
ciding what to send.

There are also a number of more specialized mon-
itoring systems worth mentioning. Tools like Astro-
labe, Pier, and Ganglia [27, 14, 17] are designed to help
users query distributed system monitoring data. In each
case, an agent on each machine being monitored stores
a certain amount of data and participates in answering
queries. They are not designed to collect and store large
volumes of semi-structured log data, nor do they sup-
port a general-purpose programming model. Instead, a
particular data aggregation strategy is built into the sys-
tem.. This helps achieve scalability, at the cost of a cer-
tain amount of generality. In contrast, Chukwa separates
the analysis from the collection, so that each part of a
deployment can be scaled out independently.

7 Conclusions

There is widespread interest in using Hadoop to store
and process log files, as witnessed by the fact that sev-
eral systems have been built to do this. Chukwa im-
proves on these systems in several ways. Rather than
having each part of the monitoring system be responsible
for resuming correctly after a failure, we have demon-
strated an end-to-end approach, minimizing the amount
of state that needs to be stored in the monitoring sys-
tem. In recovering from failures, Chukwa takes advan-
tage of local copies of log files, on the machines where
they are generated. This effectively pushes the responsi-
bility for maintaining data out of the monitoring system,
and into the local filesystem on each machine. This file-
centered approach also aids integration with legacy sys-
tems. Chukwa also offers the flexibility to support other
data sources, such as syslog or local IPC.

Chukwa is efficient and practical. It was designed to
be suitable for production environments, with particular
attention to the cloud. Chukwa has been used success-
fully in a range of operational scenarios. It can scale to
large data volumes and imposes only a small overhead
on the system being monitored.

‘We have shown that Chukwa scales linearly up to 200
MB/sec. If sufficient hardware were available, Chukwa
could almost certainly match or exceed the highest re-
ported cluster-wide logging rate in the literature, 277
MB/sec. [9]. While few of today’s clusters produce re-
motely this much data, we expect that the volume of col-
lected monitoring data will rise over time. A major theme
in computer science research for the last decade has been
the pursuit of ever-larger data sets and of analysis tech-
niques to exploit them effectively [13]. We expect this to
hold true for system monitoring: given a scalable log col-



lection infrastructure, researchers will find more things
worth logging, and better ways of using those logs. For
instance, we expect tracing tools like XTrace and DTrace
to become more common [11, 8]. Chukwa shows how to
build the necessary infrastructure to achieve this at large
scale.

Availability

Chukwa is a subproject of Hadoop and is overseen
by the Apache Software Foundation. All code is
available under permissive license terms. At present,

the Chukwa website is http://hadoop.apache.
org/chukwa; releases can be obtained from there.
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