
High Performance Multi-Node File Copies and Checksums
for Clustered File Systems∗

Paul Z. Kolano, Robert B. Ciotti
NASA Advanced Supercomputing Division
NASA Ames Research Center, M/S 258-6

Moffett Field, CA 94035 U.S.A.
{paul.kolano,bob.ciotti}@nasa.gov

Abstract
Mcp and msum are drop-in replacements for the stan-
dard cp and md5sum programs that utilize multiple types
of parallelism and other optimizations to achieve maxi-
mum copy and checksum performance on clustered file
systems. Multi-threading is used to ensure that nodes are
kept as busy as possible. Read/write parallelism allows
individual operations of a single copy to be overlapped
using asynchronous I/O. Multi-node cooperation allows
different nodes to take part in the same copy/checksum.
Split file processing allows multiple threads to operate
concurrently on the same file. Finally, hash trees allow
inherently serial checksums to be performed in parallel.
This paper presents the design of mcp and msum and de-
tailed performance numbers for each implemented opti-
mization. It will be shown how mcp improves cp perfor-
mance over 27x, msum improves md5sum performance
almost 19x, and the combination of mcp and msum im-
proves verified copies via cp and md5sum by almost
22x.

1 Introduction

Copies between local file systems are a daily activity.
Files are constantly being moved to locations accessible
by systems with different functions and/or storage lim-
its, being backed up and restored, or being moved due
to upgraded and/or replaced hardware. Hence, maximiz-
ing the performance of copies as well as checksums that
ensure the integrity of copies is desirable to minimize
the turnaround time of user and administrator activities.
Modern parallel file systems provide very high perfor-
mance for such operations using a variety of techniques
such as striping files across multiple disks to increase ag-
gregate I/O bandwidth and spreading disks across multi-
ple servers to increase aggregate interconnect bandwidth.

∗This work is supported by the NASA Advanced Supercomputing
Division under Task Number ARC-013 (Contract NNA07CA29C) with
Computer Sciences Corporation

To achieve peak performance from such systems, it is
typically necessary to utilize multiple concurrent read-
ers/writers from multiple systems to overcome various
single-system limitations such as number of processors
and network bandwidth. The standard cp and md5sum
tools of GNU coreutils [11] found on every modern
Unix/Linux system, however, utilize a single execution
thread on a single CPU core of a single system, hence
cannot take full advantage of the increased performance
of clustered file system.

This paper describes mcp and msum, which are drop-
in replacements for cp and md5sum that utilize multi-
ple types of parallelism to achieve maximum copy and
checksum performance on clustered file systems. Multi-
threading is used to ensure that nodes are kept as busy
as possible. Read/write parallelism allows individual op-
erations of a single copy to be overlapped using asyn-
chronous I/O. Multi-node cooperation allows different
nodes to take part in the same copy/checksum. Split
file processing allows multiple threads to operate con-
currently on the same file. Finally, hash trees allow in-
herently serial checksums to be performed in parallel.

This paper is organized as follows. Section 2 presents
related work. Section 3 describes the test environment
used to obtain performance numbers. Section 4 dis-
cusses the various optimization strategies employed for
file copies. Section 5 details the additional optimizations
employed for file checksums. Section 6 describes how
adding checksum capabilities to file copies decreases
the cost of integrity-verified copies. Finally, Section 7
presents conclusions and related work.

2 Related Work

There are a variety of efforts related to the problem ad-
dressed by this paper. SGI ships a multi-threaded copy
program called cxfscp [25] with their CXFS file system
[27] that supports direct I/O and achieves significant per-
formance gains over cp on shared-memory systems, but



offers minimal benefit on cluster architectures. Stream-
ing parallel distributed cp (spdcp) [17] has similar goals
as mcp and achieves very high performance on clustered
file systems using MPI to parallelize transfers of files
across many nodes. Like mcp, spdcp can utilize multiple
nodes to transfer a single file. The spdcp designers made
the conscious decision to develop from scratch, however,
instead of using GNU coreutils as a base, whereas mcp
started with coreutils to support all available cp options
and to take advantage of known reliability characteris-
tics. Mcp can also use a TCP model as well as MPI to
support a larger class of systems.

Ong et al. [20] describe the parallelization of cp and
other utilities using MPI. The cp command described,
however, was designed to transfer the same file to many
nodes as opposed to mcp, which was designed to allow
many nodes to take part in the transfer of the same file.
Desai et al. [9] use a similar strategy to create a paral-
lel rsync utility that can synchronize files across many
nodes at once. Peer-to-peer file sharing protocols such as
BitTorrent [6] utilize multiple data streams for a single
file to maximize network utilization from low bandwidth
sources and support parallel hashing where the integrity
of each piece may be verified independently.

High performance remote file transfer protocols such
as bbFTP [3] and GridFTP [1] use multiple data streams
for portions of the same file to overcome single stream
TCP performance limitations. GridFTP additionally sup-
ports striped many-to-many transfers to aggregate net-
work and I/O bandwidth. HPN-SSH [22] is a high perfor-
mance version of SSH that achieves significant speedups
using dynamically adjusted TCP receive windows. In ad-
dition, HPN-SSH incorporates a multi-threaded version
of the AES counter mode cipher that increases perfor-
mance further by parallelizing MAC and cipher opera-
tions on both the sender and receiver.

There are several related multi-threaded programs for
the Windows operating systems. RichCopy [14] supports
multi-threading in addition to the ability to turn off the
system buffer, which is similar to mcp’s direct I/O op-
tion. MTCopy [15] operates in a similar manner as mcp
with a single file traversal thread and multiple worker
threads. MTCopy also has the ability like mcp to split
the processing of large files amongst multiple threads.
HP-UX MD5 Secure Checksum [13] is an md5sum util-
ity that uses multi-threading to compute the checksums
of multiple files at once. Unlike msum, however, it can-
not parallelize the checksum of a single file.

A variety of work uses custom hardware to increase
checksum performance. Deepakumara et al. [8] describe
a high speed FPGA implementation of MD5 using loop
unrolling. Campobello et al. [4] describe a technique to
generate high performance parallelized CRC checksums
in compact circuits. CRCs are fast but are unsuitable for

integrity checks of large files.
In general, checksums are not easily parallelizable

since individual operations are not commutative. A
general technique, used by mcp and msum, is based
on Merkle trees [18], which allow different subtrees of
hashes to be computed independently before being con-
solidated at the root. A similar approach is described
by Sarkar and Schellenberg [23] to parallelize any hash
function using a predetermined number of processors,
which was used to create a parallel version of SHA-256
call PARSHA-256 [21]. Fixing the number of proces-
sors limits achievable concurrency, however, so mcp and
msum instead use a predetermined leaf size in the hash
tree, which allows an arbitrary number of processors to
operate on the same file.

The underlying file system and hardware determine
the maximum speed achievable by file copies and check-
sums. High performance file systems such as Lustre
[26], CXFS [27], GPFS [24], and PVFS [5] utilize par-
allel striping across large numbers of disks to achieve
higher aggregate performance than can be achieved from
a single-disk file system.

3 Test Environment

All performance testing was carried out using dedicated
jobs on the Pleiades supercluster at NASA Ames Re-
search Center, which was recently ranked as the sixth
fastest computer system in the world [29] with peak per-
formance of 1.009 PFLOPs/s. Pleiades currently con-
sists of 84,992 cores spread over 9472 nodes, which are
connected by DDR and QDR Infiniband. There are three
types of nodes with different processor and memory con-
figurations. The nodes used for testing consist of a pair
of 3.0 GHz quad-core Xeon Harpertown processors with
6 MB cache per pair of cores and 1 GB DDR2 memory
per core for a total of 8 GB per node.

All file copies were performed between Lustre file sys-
tems, each with 1 Metadata Server (MDS) and 8 Object
Storage Servers (OSS) serving 60 Object Storage Targets
(OST). Based on the IOR benchmark [12], the source
file system has peak read performance of 6.6 GB/s while
the destination file system has peak write performance of
10.0 GB/s. Since copies can only progress at the mini-
mum of the read and write speeds, the peak copy per-
formance of this configuration is 6.6 GB/s. Checksums
were performed on the same source file system, hence
peak achievable checksum performance is also 6.6 GB/s.
Both file systems had zero to minimal load during test-
ing.

Two test cases are used throughout the paper. One case
consists of 64 1 GB files while the other consists of a sin-
gle 128 GB file. Both sets of files were generated from
an actual 650 GB user data set. Before any tests could



be done, it was necessary to choose a Lustre stripe count
for the files that determines how many OSTs they are
striped across. Table 1 shows the performance of cp for
the two cases at the default (4 OSTs) and the maximum
(60 OSTs) stripe counts. As can be seen, the 64 file case
performs best at the default stripe count while the single
file case performs best at the maximum. In the 64 file
case, the maximum stripe count yields too much paral-
lelism as every OST has to be consulted for every file.
In the single file case, the default stripe count yields too
little parallelism as large chunks of the file will reside on
the same OST, which limits how much I/O bandwidth is
available for the copy.

All operations in the remainder of the paper will use
the default stripe count for the 64 file case and the max-
imum stripe count for the single file case. The corre-
sponding cp performance of 174 MB/s for the 64 file
case and 240 MB/s for the single file case represent the
baseline that the various optimizations throughout the re-
mainder should be compared against.

tool stripe count 64x1 GB 1x128 GB
cp default 174 102
cp maximum 132 240

Table 1: Copy performance (MB/s) vs. stripe count

4 File Copy Optimization

4.1 Multi-Threaded Parallelism
In general, copying regular files is an embarrassingly par-
allel task since files are completely independent from one
another. The processing of the hierarchy of directories
containing the files, however, must be handled with care.
In particular, a file’s parent directory must exist and must
be writable when the copy begins and must have its orig-
inal permissions and ACLs when the copy completes.

The multi-threaded modifications to the cp command
of GNU coreutils [11] utilize three thread types as shown
in Figure 1 implemented via OpenMP [7]. A single
traversal thread operates like the original cp program,
but when a regular file is encountered, a copy task is
pushed onto a shared task queue instead of performing
the copy. Mutual exclusivity of all queues discussed is
provided by semaphores based on OpenMP locks. Be-
fore setting properties of the file, such as permissions,
the traversal thread waits until an open notification is re-
ceived on a designated open queue, after which it will
continue traversing the source tree.

One or more worker threads wait for tasks on the
task queue. After it receives a task, each worker opens
the source and target files, pushes a notification onto

the open queue, then reads/writes the source/target un-
til done. When stats are enabled, the worker pushes the
task (with embedded stats) onto a designated stat queue
and then waits for another task. The stat queue is pro-
cessed by the stat thread, which prints the results of each
copy task.

Table 2 shows the performance of multi-threading for
varying numbers of threads. As can be seen, multi-
threading alone has some benefit in the many file case
up to 4 threads, after which the kernel buffer cache most
likely becomes a bottleneck. For the single file case,
multi-threading alone has no benefit since all but one
thread sit idle while the file is being transferred. This
case will be addressed in the next section.

tool threads 64x1 GB 1x128 GB
mcp 1 177 248
mcp 2 271 248
mcp 4 326 248
mcp 8 277 248

Table 2: Multi-threaded copy performance (MB/s)

4.2 Single File Parallelization

As seen in the previous section, a number of files less
than the number of threads results in imbalanced utiliza-
tion and correspondingly lower performance. To evenly
distribute workload across threads, mcp supports split
processing of a single file so that multiple threads can
operate on different portions of the same file. Figure 2
shows the processing by the traversal thread and worker
threads when split processing is added. The main dif-
ference is that the traversal thread may add a number of
tasks up to the size of the file divided by the split size and
worker threads will seek to the correct location first and
only process up to split size bytes.

Table 3 shows the performance of multi-threaded
copies of a single large file when different split sizes are
used. As can be seen, performance is increased from
the unsplit case, but only minimal speedup is seen as
the number of threads increases. In Section 4.5, how-
ever, significant benefits will be shown when splitting
over multiple nodes. In addition, the table shows very lit-
tle difference between the performance at different split
sizes indicating that overhead from splitting is minimal.
Since there is minimal difference, a split size of 1 GB
will be used throughout the remainder of the results in
the paper.



Traversal Thread Stat Thread Worker Thread

file = traverse(source)

push(task_q, new_task(file))

regular(file) normal_cp_behavior

pop(open_q)

set_properties(file)

task = pop(send_q)

print(stats(task))

task = pop(task_q)

open(files(task))

push(open_q, done)

read(src_file(task), buffer)

write(dst_file(task), buffer)

push(send_q, task)

Figure 1: Multi-threaded copy processing

tool threads split size 1x128 GB
mcp 2 1 GB 286
mcp 2 16 GB 296
mcp 4 1 GB 324
mcp 4 16 GB 322
mcp 8 1 GB 336
mcp 8 16 GB 336

Table 3: Split file copy performance (MB/s)

4.3 Buffer Management

As witnessed in the Section 4.1, increasing the number of
threads yields minimal gains at a certain point. One is-
sue is that file copies generally exhibit poor buffer cache
utilization since file data is read once, but then never ac-
cessed again. This increases CPU workload by the kernel
and decreases performance of other I/O as it thrashes the
buffer cache. To address this problem, mcp supports two
buffer cache management approaches.

The first approach is to use file advisory informa-
tion via the posix_fadvise() function, which allows pro-
grams to inform the kernel about how it will access data
read/written from/to a file. Since mcp only uses data
once, it advises the kernel to release the data as soon as it
is read/written. The second approach is to skip the buffer
cache entirely using direct I/O. In this case, all reads and
writes go direct to disk without ever touching the buffer
cache.

Table 4 shows the performance of multi-threaded
copies when fadvise and direct I/O are utilized with dif-
ferent buffer sizes. As can be seen, performance in-
creases significantly for both cases. Direct I/O achieves

about double the performance of fadvise for a single
node, but as will be seen in Section 4.5, the performance
difference decreases as the number of nodes increases.
From this point forward, 128 MB buffers will be used
to maximize performance, although this size of buffer is
impractical on multi-user systems due to memory limi-
tations. More reasonable 4 MB buffers, however, have
been found in testing to achieve a significant fraction of
the performance of larger buffers.

4.4 Read/Write Parallelism
In the original cp implementation, a file is copied through
a sequence of blocking read and write operations across
each section of the file. Through the use of double buffer-
ing, it is possible to exploit additional parallelism be-
tween reads of one section and writes of another. Fig-
ure 3 shows how each worker thread operates in double
buffering mode. The main difference is with the write
of each file section. Instead of using a standard blocking
write, an asynchronous write is triggered via aio_write(),
which returns immediately. The read of the next section
of the file cannot use the same buffer as it is still being
used by the previous asynchronous write, so a second
buffer is used. During the read, a write is also being per-
formed, thereby theoretically reducing the original time
to read each section from time(read) + time(write) to
max(time(read), time(write)). After the read completes,
the worker thread blocks until the write is finished (if not
already done by that point) and the next cycle begins.

Table 5 shows the copy performance of double buffer-
ing for each buffer management scheme across a vary-
ing number of threads. As can be seen, double buffering
increases the performance of the 64 file case across all



Traversal Thread Worker Thread

file = traverse(source)

push(task_q, new_task(file, offset))

regular(file) normal_cp_behavior

pop(open_q)

offset += split_size

set_properties(file)

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer)

write(dst_file(task), buffer)

bytes <= split_size

push(send_q, task)

Figure 2: Split file copy processing

numbers of threads. The single file case, however, yields
minimal benefit with the exception of the 1 thread case.
It is clear a bottleneck exists in the single file case from a
single node, but further investigation is needed to deter-
mine the exact cause. Double buffering is enabled in all
remaining copy results.

4.5 Multi-Node Parallelism

While the results in Table 5 show significant speedup
compared to the original cp implementation, it is still a
fraction of the peak performance of the file system, hence
it is unlikely that a single node can ever achieve the max-
imum. For this reason, mcp supports multi-node paral-
lelism using both TCP and MPI models. Only the TCP
model will be discussed as it is the more portable case
and many of the processing details are similar.

In the multi-node TCP model, one node is designated
as the manager node and parcels out copy tasks to worker
nodes. The manager node is the only node that runs a
traversal thread and stat thread. Both types of nodes have
some number of worker threads as in the multi-threaded
case. In addition, each node runs a TCP thread that is re-
sponsible for handling TCP-related activities, whose be-
havior is shown in Figure 4. The manager TCP thread
waits for connections from worker TCP threads. A con-
nection is initiated by a worker TCP thread whenever a
worker thread on the same node is idle. If the worker
previously completed a task, its stats are forwarded to
the manager stat thread via the manager TCP thread. In

all cases, the manager thread pops a task from the task
queue and sends it back to the worker TCP thread, where
it is pushed onto the local task queue for worker threads.

TCP communication introduces security concerns, es-
pecially for copies invoked by the root user. Integrity
concerns include lost or blocked tasks, where files may
not be updated that are supposed to be, replayed tasks
where files may have changed between legitimate copies,
and/or modified tasks with the source and destination
changed arbitrarily. The main confidentiality concern is
that contents of normally unreadable directories may be
revealed if tasks are intercepted on the network or falsely
requested from the manager. Finally, availability can be
disrupted by falsely requesting tasks and/or by normal
network denials of service.

To protect against TCP-based attacks, all communica-
tion is secured by Transport Layer Security (TLS) with
Secure Remote Password (SRP) authentication [28].
TLS [10] provides integrity and privacy using encryp-
tion so tasks cannot be intercepted, replayed, or modi-
fied over the network. SRP [30] provides strong mutual
authentication so worker nodes will only perform tasks
from legitimate manager nodes and manager nodes will
only reveal task details to legitimate worker nodes.

Table 6 shows the copy performance for different
numbers of total threads spread across a varying num-
ber of nodes. As can be seen, multi-node parallelism
achieves significant speedups over multi-threading alone,
especially for the single file case. For the same number
of total threads, performance increases as the number of



tool threads buffer size 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(MB) (fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 1 32 216 383 227 408
1 64 219 401 226 411
1 128 226 388 204 415

mcp 2 32 360 689 319 670
2 64 372 723 317 696
2 128 402 683 313 723

mcp 4 32 541 1065 330 679
4 64 575 1039 327 699
4 128 610 1055 331 721
8 32 653 1185 332 685
8 64 681 1223 328 718

mcp 8 128 692 1336 328 743

Table 4: Buffer cache managed copy performance (MB/s)

tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 1 303 645 329 645
mcp 2 503 1111 329 709
mcp 4 653 1557 327 725
mcp 8 663 1763 325 731

Table 5: Double buffered copy performance (MB/s)

nodes increases as there is greater aggregate bandwidth
and less resource contention. Direct I/O achieved the
highest performance using 16 nodes and a single thread,
while fadvise was best in the cases with the largest num-
ber of nodes and threads. While fadvise performed sig-
nificantly worse than direct I/O in earlier sections, it ac-
tually surpasses direct I/O in some of the larger 64 file
cases and achieved the fastest overall performance at 4.7
GB/s.

5 File Checksum Optimization

5.1 Multi-Threaded Parallelism
The greater the amount of data copied, the greater the
possibility for data corruption [2]. The traditional ap-
proach to verifying integrity is to checksum the file at
both the source and target and ensure that the values
match. Checksums are inherently serial, however, so
many of the techniques of the previous sections cannot be
applied to any but the most trivial checksum algorithms.

Instead of parallelizing the algorithms themselves, se-
rial algorithms are utilized in parallel through the use of
Merkle (hash) trees [18] as mentioned previously. This
functionality is implemented in a modification to the
md5sum command of GNU coreutils called msum. Note
that the use of hash trees makes multi-threaded msum

unsuitable for verifying standard hashes. Hence, the
main purpose of msum is to verify the integrity of copies
within the same organization or across organizations that
both use msum. This limitation is necessary for perfor-
mance, however, as most standard hashes cannot be par-
allelized.

Msum uses a processing model that is similar to the
mcp model shown in Figure 1. The msum traversal
thread, however, is based on md5sum functionality with
correspondingly less complexity. Figure 5 shows the pro-
cessing by the msum stat thread (which has become the
stat/hash thread) and worker threads. After copying their
portion of the file, worker threads also create a hash tree
of that portion, which is embedded in the task sent back
to the stat/hash thread through the TCP threads. The
stat/hash thread computes the root of the hash tree when
all portions have been received.

Table 7 shows the performance of msum across vary-
ing numbers of threads and buffer management schemes.
Note that msum utilizes libgcrypt [16] to enable support
for many different hash types besides MD5, hence per-
formance is not strictly comparable between the md5sum
implementation and msum. As can be seen, significant
performance gains are achieved by multi-threading even
without buffer management. Direct I/O yields sizable
gains while the gains by fadvise are more minimal.



Manager Node TCP Thread Worker Node TCP Thread

worker = accept

read(worker, data)

push(stat_q, data)

task = pop(task_q)

empty(data)

write(worker, task)

n_threads * push(send_q, empty)

data = pop(send_q)

main = connect(main_host)

write(main, data)

read(main, task)

push(task_q, task)

Figure 4: Multi-node copy processing

Worker Thread

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer[i])

aio_suspend(write)

aio_write(dst_file(task), buffer[i])

i = !i

bytes <= split_size

push(send_q, task)

Figure 3: Double buffered copy processing

5.2 Read/Hash Parallelism

Like the original cp implementation, the original
md5sum implementation uses blocking I/O during reads
of each section of the file. Double buffering can again
be used to exploit additional parallelism between reads
of one section and the hash computation of another. Fig-
ure 6 shows how each worker thread operates in double
buffered mode within msum. In this mode, an initial read

Stat/Hash Thread Worker Thread

task = pop(send_q)

print(stats(task))

hash_final(task)

last_split(task)

print(hash(task))

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

read(src_file(task), buffer)

hash_tree(task, buffer)

bytes <= split_size

push(send_q, task)

Figure 5: Multi-threaded checksum processing

is used to seed one buffer. When that read completes,
an asynchronous read is triggered via aio_read() into the
second buffer. During this read, the hash of the first
buffer is computed, after which the buffers are swapped
and execution proceeds to the next section of the file after
blocking until the previous read completes.

Double buffering theoretically reduces the original
time to process each section of the file from time(read)
+ time(hash) to max(time(read), time(hash)) with best
performance achieved when the time to read each sec-



tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

mcp 2 2 1 578 1161 273 1080
mcp 4 2 2 969 1673 379 1248
mcp 4 4 1 1119 2074 689 2001
mcp 8 2 4 1256 1857 426 1239
mcp 8 4 2 1818 2996 1068 2316
mcp 8 8 1 2058 3213 1289 3196
mcp 16 2 8 1276 2807 451 1226
mcp 16 4 4 2398 3446 1187 2208
mcp 16 8 2 3187 3599 1787 3723
mcp 16 16 1 3474 4098 2786 4501
mcp 32 4 8 2411 2957 1189 2142
mcp 32 8 4 3430 3459 2257 3706
mcp 32 16 2 4510 4011 3110 3930
mcp 64 8 8 3216 3346 2253 3626
mcp 64 16 4 4735 4011 3620 3914
mcp 128 16 8 – – 3824 4400

Table 6: Multi-node copy performance (MB/s)

tool threads 64x1 GB 64x1 GB 64x1 GB 1x128 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

md5sum 1 309 – – 286 – –
msum 1 278 284 330 263 265 349
msum 2 541 536 625 378 385 483
msum 4 906 903 1092 570 626 698
msum 8 886 908 1355 508 692 711

Table 7: Multi-threaded checksum performance (MB/s)

tion is the same as the time to hash each section. Ta-
ble 8 shows the performance achieved by double buffer-
ing within msum for each buffer management scheme
across a varying number of threads. As can be seen, dou-
ble buffering increases the performance of all the 64 file
cases except the 8 thread direct I/O case and all the sin-
gle file cases except the 8 thread fadvise case. Double
buffering is enabled in all remaining checksum results.

5.3 Multi-Node Parallelism

Msum supports the same TCP and MPI models as mcp
for multi-node parallelism. TCP threads behave identi-
cally to those shown for mcp in Figure 4. Table 9 shows
the checksum performance for different numbers of to-
tal threads spread across a varying number of nodes. As
can be seen, multi-node parallelism achieves significant
speedups over multi-threading alone. As was the case
with mcp, performance generally increases for the same
number of total threads as the number of nodes increases
as there is greater aggregate bandwidth and less resource

contention.
Both fadvise and direct I/O achieved the highest per-

formance with 16 nodes and 2 threads in the 64 file case
and with 16 nodes and 8 threads in the single file case.
Once again, fadvise began to yield higher performance
than direct I/O in some of the larger cases and once again
had the highest overall performance at 5.8 GB/s. Note
that this is 88% of peak of the file system and includes
hashes as well as reads.

6 Verified File Copy Optimization

6.1 Buffer Reuse
In a typical integrity-verified copy, a file is checksummed
at the source, copied, and then checksummed again at the
destination to gain assurance that the bits at the source
were copied accurately to the destination. This pro-
cess normally requires two reads at the source since the
checksum and copy programs are traditionally separate
so each must access the data independently. Adding



tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

msum 1 428 489 461 520
msum 2 811 973 462 522
msum 4 926 1647 662 766
msum 8 936 1315 613 776

Table 8: Double buffered checksum performance (MB/s)

tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

msum 2 2 1 821 928 471 603
msum 4 2 2 1522 1834 832 939
msum 4 4 1 1487 1744 820 1027
msum 8 2 4 1819 2845 1298 1330
msum 8 4 2 2837 3122 1454 1798
msum 8 8 1 2844 3130 1808 2225
msum 16 2 8 1649 2979 1165 1076
msum 16 4 4 3218 3689 1891 1944
msum 16 8 2 4820 5292 3148 3654
msum 16 16 1 4770 4957 3248 3397
msum 32 4 8 3248 3719 1759 1936
msum 32 8 4 4664 4183 4640 4256
msum 32 16 2 5812 5613 4533 4856
msum 64 8 8 4114 3680 4256 3579
msum 64 16 4 5543 5131 4595 5114
msum 128 16 8 – – 5192 5227

Table 9: Multi-node checksum performance (MB/s)

checksum functionality into the copy portion eliminates
one of the reads to increase performance. Mcp incorpo-
rates checksums for this reason. This processing is sim-
ilar to Figure 5 except the buffer is written between the
read and the hash computation.

Table 10 shows the performance of copying with
checksums for varying numbers of threads and different
buffer management schemes. As was the case with the
standard copy results in Table 4, direct I/O outperforms
fadvise on a single node with the 64 file case achieving
better results than the single file case.

6.2 Read/Hash Parallelism

The double buffering improvements of Section 5.2 were
incorporated into mcp’s checksum functionality with
processing similar to Figure 6 with an additional write af-
ter the hash. Ideally, both the read of the next section and
the write of the current section could be performed while
the hash of the current section was being computed. This
approach was implemented, but did not behave as ex-
pected, possibly due to concurrency controls within the

file system. Further investigation is warranted as this
would provide an additional increase in performance. Ta-
ble 11 shows the performance increases achieved with
double buffering during copies with checksums. As can
be seen, performance increases in all but the 64 file fad-
vise case.

6.3 Multi-Node Parallelism

Table 12 shows the multi-node performance of copies in-
corporating checksum functionality. Peak performance
of just under 4.0 GB/s was achieved with 8 nodes and 4
threads in the 64 file direct I/O case.

Table 13 is a composite view of Tables 5, 6, 8, 9, 11,
and 12 that shows the performance of integrity-verified
copies using the traditional checksum + copy + check-
sum versus a copy with embedded checksum + check-
sum. As can be seen, performance is better in almost ev-
ery case with only a few scattered exceptions. Both fad-
vise and direct I/O achieve verified copies over 2 GB/s
with 16 nodes and 2 threads in the 64 file case.



tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp (w/ sum) 1 156 224 92 201
mcp (w/ sum) 2 294 428 152 376
mcp (w/ sum) 4 503 770 216 510
mcp (w/ sum) 8 629 1102 266 602

Table 10: Copy with checksum performance (MB/s)

tool threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(fadvise) (direct i/o) (fadvise) (direct i/o)

mcp (w/ sum) 1 190 290 104 222
mcp (w/ sum) 2 356 558 171 400
mcp (w/ sum) 4 561 966 235 560
mcp (w/ sum) 8 626 1498 275 671

Table 11: Double buffered copy with checksum performance (MB/s)

7 Conclusions and Future Work

Mcp and msum provide significant performance im-
provements over standard cp and md5sum using multi-
ple types of parallelism and other optimizations. Tables
14, 15, and 16 show the maximum speedups obtained at
each stage of optimization for copies, checksums, and
integrity-verified copies, respectively. The relative ef-
fectiveness of each optimization is difficult to discern
as they build upon each other and would have different
peak speedups if applied in a different order. The total
speedups from all improvements, however, is significant.
Mcp improves cp performance over 27x, msum improves
md5sum performance almost 19x, and the combination
of mcp and msum improves verified copies via cp and
md5sum by almost 22x. These improvements come in
the form of drop-in replacements for cp and md5sum so
are easily used and are available for download as open
source software [19].

There are a variety of directions for future work. Cur-
rently, only optimized versions of cp and md5sum have
been implemented from GNU coreutils. Optimized ver-
sions of the coreutils install and mv utilities should also
be implemented as they would immediately benefit from
the same techniques. In general, other common single-
threaded utilities should be investigated to see if similar
optimizations can be made.

Another area of study is to determine if mcp can be
made into a remote transfer utility. While it currently
can only be used for copies between local file systems,
mcp already contains network authentication process-
ing in the multi-node parallelization. In addition, most
of the other techniques would be directly applicable to
a high performance multi-node striping transfer utility.
The missing component is a network bridge between the

local read buffer and remote write buffer. The buffer
reuse optimizations to checksums can be used directly
to support integrity-verified remote transfers.

Although not discussed, mcp and msum both have
the ability to store intermediate hash tree values within
file system extended attributes. The purpose of this fea-
ture is to allow file corruption to be detected and pre-
cisely located over time in persistent files. The use of ex-
tended attributes has been found to be impractical, how-
ever, when the hash leaf size is small since only some
file systems such as XFS support large extended attribute
sizes and read/write performance of extended attributes
is suboptimal. Further investigation is required to deter-
mine if greater generality and higher performance can be
achieved using a mirrored hierarchy of regular files that
contain the intermediate hash tree values.

References

[1] W. Allcock, J. Bresnahan, R. Kettimuthu, M.
Link, C. Dumitrescu, I. Raicu, I. Foster: The
Globus Striped GridFTP Framework and Server.
ACM/IEEE Supercomputing 2005 Conf., Nov.
2005.

[2] L.N. Bairavasundaram, G.R. Goodson, B.
Schroeder, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau: An Analysis of Data Corruption in the
Storage Stack. 6th USENIX Conf. on File and
Storage Technologies, Feb. 2008.

[3] BbFTP. http://doc.in2p3.fr/bbftp.
[4] G. Campobello, G. Patane, M. Russo: Parallel CRC

Realization. IEEE Trans. on Computers, vol. 52,
no. 10, Oct. 2003.

[5] P.H. Carns, W.B. Ligon, R.B. Ross, R. Thakur:
PVFS: A Parallel File System for Linux Clusters.



tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

mcp (w/ sum) 2 2 1 375 554 197 439
mcp (w/ sum) 4 2 2 682 1028 257 779
mcp (w/ sum) 4 4 1 714 1028 380 833
mcp (w/ sum) 8 2 4 1075 1756 398 1106
mcp (w/ sum) 8 4 2 1304 1815 611 1396
mcp (w/ sum) 8 8 1 1387 1858 722 1545
mcp (w/ sum) 16 2 8 1185 2506 617 1568
mcp (w/ sum) 16 4 4 2000 2716 825 1905
mcp (w/ sum) 16 8 2 2362 3032 1151 2233
mcp (w/ sum) 16 16 1 2439 2858 1319 2274
mcp (w/ sum) 32 4 8 2166 2809 907 2215
mcp (w/ sum) 32 8 4 3124 3952 1494 2318
mcp (w/ sum) 32 16 2 3229 3595 1973 3088
mcp (w/ sum) 64 8 8 2139 3147 1525 2693
mcp (w/ sum) 64 16 4 3275 3739 2353 3277
mcp (w/ sum) 128 16 8 – – 2481 3183

Table 12: Multi-node copy with checksum performance (MB/s)

4th Annual Linux Showcase and Conf., Oct. 2000.
[6] B. Cohen: Incentives Build Robustness in BitTor-

rent. 1st Wkshp. on Economics of Peer-to-Peer Sys-
tems, Jun. 2003.

[7] L. Dagum, R. Menon: OpenMP: An Industry-
Standard API for Shared-Memory Programming.
IEEE Computational Science and Engineering, vol.
5, no. 1, Jan.-Mar. 1998.

[8] J. Deepakumara, H.M. Heys, R. Venkatesan: FPGA
Implementation of MD5 Hash Algorithm. 14th
IEEE Canadian Conf. on Electrical and Computer
Engineering, May 2001.

[9] N. Desai, R. Bradshaw, A. Lusk, E. Lusk:
MPI Cluster System Software. 11th European
PVM/MPI Users’ Group Meeting, Sept. 2004.

[10] T. Dierks, E. Rescorla: The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. IETF Request for
Comments 5246, Aug. 2008.

[11] GNU Core Utilities. http://www.gnu.
org/software/coreutils/manual/
coreutils.html.

[12] R. Hedges, B. Loewe, T. McLarty, C. Morrone:
Parallel File System Testing for the Lunatic Fringe:
the care and feeding of restless I/O Power Users.
22nd IEEE / 13th NASA Goddard Conf. on Mass
Storage Systems and Technologies, Apr. 2005.

[13] Hewlett Packard: HP-UX MD5 Secure Check-
sum A.01.01.02 Release Notes. Sept. 2007.
http://docs.hp.com/en/5992-2115/
5992-2115.pdf.

[14] J. Hoffman: Utility Spotlight: RichCopy. TechNet

Magazine, Apr. 2009.
[15] Y.S. Li: MTCopy: A Multi-threaded Sin-

gle/Multi File Copying Tool. CodeProject arti-
cle, May 2008. http://www.codeproject.
com/KB/files/Lys_MTCopy.aspx.

[16] Libgcrypt. http://www.gnupg.org/
documentation/manuals/gcrypt.

[17] K. Matney, S. Canon, S. Oral: A First Look at Scal-
able I/O in Linux Commands. 9th LCI Intl. Conf.
on High-Performance Clustered Computing, Apr.
2008.

[18] R.C. Merkle: Protocols for Public Key Cryptosys-
tems. 1st IEEE Symp. on Security and Privacy, Apr.
1980.

[19] Multi-Threaded Multi-Node Utilities. http://
mutil.sourceforge.net.

[20] E. Ong, E. Lusk, W. Gropp: Scalable Unix
Commands for Parallel Processors: A High-
Performance Implementation. 8th European
PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, Sept. 2001.

[21] P. Pal, P. Sarkar: PARSHA-256 – A New Paralleliz-
able Hash Function and a Multithreaded Implemen-
tation. 10th Intl. Wkshp. on Fast Software Encryp-
tion, Feb. 2003.

[22] C. Rapier, B. Bennett: High Speed Bulk Data
Transfer Using the SSH Protocol. 15th ACM Mardi
Gras Conf., Jan. 2008.

[23] P. Sarkar, P.J. Schellenberg: A Parallel Algorithm
for Extending Cryptographic Hash Functions. 2nd



Worker Thread

task = pop(task_q)

open(files(task))

push(open_q, done)

seek(files(task), offset(task))

aio_read(src_file(task), buffer[i])

aio_suspend(read)

aio_read(src_file(task), buffer[!i])

hash_tree(task, buffer[i])

i = !i

bytes <= split_size

push(send_q, task)

Figure 6: Double buffered checksum processing

Intl. Conf. on Cryptology in India, Dec. 2001
[24] F. Schmuck, R. Haskin: GPFS: A Shared-Disk

File System for Large Computing Clusters. 1st
USENIX Conf. on File and Storage Technologies,
Jan. 2002.

[25] Silicon Graphics Intl.: Cxfscp Man Page.
http://techpubs.sgi.com/library/
tpl/cgi-bin/getdoc.cgi?coll=
0650&db=man&fname=/usr/share/
catman/a_man/cat1m/cxfscp.z.

[26] P. Schwan: Lustre: Building a File System for
1,000-node Clusters. 2003 Linux Symp., Jul. 2003.

[27] L. Shepard, E. Eppe: SGI InfiniteStorage Shared
Filesystem CXFS: A High-Performance, Multi-OS
Filesystem from SGI. Silicon Graphics, Inc. white
paper, 2004.

[28] D. Taylor, T. Wu, N. Mavrogiannopoulos, T. Perrin:
Using the Secure Remote Password (SRP) Protocol
for TLS Authentication. IETF Request for Com-
ments 5054, Nov. 2007.

[29] TOP500 Supercomputing Sites, Jun. 2010. http:
//www.top500.org/lists/2010/06.

[30] T. Wu: The Secure Remote Password Protocol.
5th ISOC Network and Distributed System Secu-
rity Symp., Mar. 1998.



tool threads nodes threads 64x1 GB 64x1 GB 1x128 GB 1x128 GB
(total) (per node) (fadvise) (direct i/o) (fadvise) (direct i/o)

md5sum + cp + md5sum 1 1 1 100 90
msum + mcp + msum 1 1 1 125 177 135 185
mcp (w/ sum) + msum 1 1 1 131 182 84 155
msum + mcp + msum 2 1 2 224 338 135 190
mcp (w/ sum) + msum 2 1 2 247 354 124 226
msum + mcp + msum 2 2 1 240 331 126 235
mcp (w/ sum) + msum 2 2 1 257 346 138 254
msum + mcp + msum 4 1 4 270 538 164 250
mcp (w/ sum) + msum 4 1 4 349 608 173 323
msum + mcp + msum 4 2 2 426 592 198 341
mcp (w/ sum) + msum 4 2 2 470 658 196 425
msum + mcp + msum 4 4 1 446 613 257 408
mcp (w/ sum) + msum 4 4 1 482 646 259 459
msum + mcp + msum 8 1 8 274 478 157 253
mcp (w/ sum) + msum 8 1 8 375 700 189 359
msum + mcp + msum 8 2 4 527 805 257 432
mcp (w/ sum) + msum 8 2 4 675 1085 304 603
msum + mcp + msum 8 4 2 796 1026 432 647
mcp (w/ sum) + msum 8 4 2 893 1147 430 785
msum + mcp + msum 8 8 1 840 1052 531 825
mcp (w/ sum) + msum 8 8 1 932 1165 515 911
msum + mcp + msum 16 2 8 500 973 254 373
mcp (w/ sum) + msum 16 2 8 689 1361 403 638
msum + mcp + msum 16 4 4 962 1201 526 674
mcp (w/ sum) + msum 16 4 4 1233 1564 574 962
msum + mcp + msum 16 8 2 1372 1524 836 1225
mcp (w/ sum) + msum 16 8 2 1585 1927 842 1386
msum + mcp + msum 16 16 1 1414 1544 1025 1233
mcp (w/ sum) + msum 16 16 1 1613 1812 938 1362
msum + mcp + msum 32 4 8 970 1141 505 666
mcp (w/ sum) + msum 32 4 8 1299 1600 598 1033
msum + mcp + msum 32 8 4 1388 1303 1144 1351
mcp (w/ sum) + msum 32 8 4 1870 2032 1130 1500
msum + mcp + msum 32 16 2 1767 1651 1311 1500
mcp (w/ sum) + msum 32 16 2 2075 2191 1374 1887
msum + mcp + msum 64 8 8 1254 1187 1094 1198
mcp (w/ sum) + msum 64 8 8 1407 1696 1122 1536
msum + mcp + msum 64 16 4 1748 1564 1405 1546
mcp (w/ sum) + msum 64 16 4 2058 2162 1556 1997
msum + mcp + msum 128 16 8 – – 1546 1639
mcp (w/ sum) + msum 128 16 8 – – 1678 1978

Table 13: Multi-node verified copy performance (MB/s)



origin optimization peak speedup
cp multi-threading 1.9

multi-threading split files 1.4
split files posix_fadvise 2.5
spit files direct I/O 4.8

posix_fadvise double buffering 1.3
direct I/O double buffering 1.6

double buffering multiple nodes 7.1
cp all 27.2

Table 14: Summary of copy optimizations

origin optimization peak speedup
md5sum multi-threading 2.9

multi-threading split files 2.2
split files posix_fadvise 1.4
split files direct I/O 1.5

posix_fadvise double buffering 1.7
direct I/O double buffering 1.6

double buffering multiple nodes 6.2
md5sum all 18.8

Table 15: Summary of checksum optimizations

origin optimization peak speedup
md5sum + cp + md5sum multi-threaded + split files +

buffer management + buffer reuse 6.1
multi-threaded + split files + double buffering 1.2

buffer management + buffer reuse
double buffering multiple nodes 10.7

md5sum + cp + md5sum all 21.9

Table 16: Summary of verified copy optimizations


