iSCSI SANs Don’t Have To Suck

Derek J. Balling, Answers.com <derekb@answers.com>

Summary: We have created a iSCSI SAN architecture which permits maintenance of network
components without any downtime, thus improving our ability to maintain the SAN beyond iSCSI's
mediocre reputation. We currently use this system to provide web-based services for all of
Answers.com. During development of this architecture we learned three important lessons: Packet
loss/congestion is absolutely fatal. Network design must be smart about Spanning Tree events, and a
separate network, not separate VLANSs, is required. Forethought in design creates a system that is
highly maintainable, permitting an "isolate and swap" methodology for upgrades and maintenance.

Answers.com rolled out a cost effective iSCSI SAN solution from LeftHand Networks (now a
part of HP’s StorageWorks division) in 2008 as part of our first data-center deployment. It was
designed for modular growth, scalability, and all the usual checkbox features one would expect.
However, iSCSI does not have a reputation for being easy to administer or highly available. We sought

to overcome those issues.

A network consultant created our initial configuration with the SAN running on the same
network hardware as our regular data-network, separated only by being on a different VLAN. We
already had a number of VLANs used to separate data such as front-end servers, databases, and so on,
so this seemed to make a lot of sense. At the time, we were using a pair of core switches, for our “A”
and “B” side networks. The core switches were connected to each other, but also to each cabinet switch
(so “Core-A” might be connected to both “Core-B” as well as “Cabinet1-A”, and “Core-B” would be
connected to “Core-A” and “Cabinet1-B”). For maximum redundancy, the cabinet-switches were also
interconnected, with that interconnect set to a lower priority than their uplink to their respective core
switch, so that Spanning Tree Protocol would disable it unless the link to the upstream core switch had
failed. Often, “Cabinet” switches would actually be Blade Switches in an HP blade chassis instead of a
standard 1U access switch, but the wiring principles were the same (with the “A” and “B” side blade
switches connecting internally via some blade-chassis black-magic). Finally, every host and every SAN
module in the network had links to both the “A” and “B” networks, either in an active/passive

configuration (for Linux)?, or active/active (for VMware).

1 After extensive testing we saw an order of magnitude better performance having the Linux bonding
driver use Active/Passive and only get one NIC’s worth of bandwidth than we did when we used
Active/Active and tried to get two NICs’ worth of bandwidth. It was completely counterintuitive, but
since we almost never come close to flooding a NIC itself, Active /Passive was totally fine for our needs.

The only place where we did not use the same network hardware was in the blade-chassis
systems, because each NIC on a blade was exposed via a different switch, so NIC1 was mapped to a
switch in Interconnect Bay 1, NIC2 to Bay 2, etc. In this way we ended up, effectively, having two data-
side switches (in Bays 1 and 2) and two SAN-side switches (in Bays 3 and 4). However, in keeping with
our original design docs, those switches were configured identically, other than which VLAN the blade-

side ports were configured to be on. Bays 1 and 2 were “A” and “B” networks respectively, as were

Bays 3 and 4.
Cabinet Equipment Core Equipment Blade Enclosure Equipment
iy .
NN
Cab Switch A Core Switch A Blade Switch 1
Blade Switch 2
N
¥ Blade Servers
S
~1

Blade Switch 3

Blade Switch 4
Cab Switch B Core Switch B

Figure 1: Unified Network Diagram As Designed

Immediately we noticed, while we were still in the build-out stage of the data-center, that
iSCSI was extremely sensitive to even the slightest hiccup in its ability to get packets from Point-A to
Point-B. Now, this may sound silly, but we had no idea going into this exactly how sensitive it would be
to network issues. If we connected a new set of blade switches, for instance as we built out a new
cabinet of blades, the resulting Spanning Tree Protocol (STP) reconvergence - which might last only a
small fraction of a second - would often cause iSCSI to give up and put all of the LUNs into read-only

mode, effectively crashing their OSes.

Every time we added a new blade chassis (which, during build-out was happening quite

often), we would see STP events and more often than not, those STP events would cause a hiccup to

one or more iSCSI LUNs, requiring cleanup and administrator attention. We realized that above all else
we would need to minimize the number of STP events in the network to hopefully approach zero if we
wanted to trust any portion of our production environment to iSCSI. The first, low-hanging fruit, was
that we enabled a feature in the HP Blade Switches called “Uplink Failure Detection”. This feature had
the switch monitor the upstream link to the core and, if the trunk went down for whatever reason, it
would simply turn off link on all the internal ports connected to the blades themselves. So, instead of
the blades continuing to send their data to the BladeSwitch-“A”, and having that switch send it to
BladeSwitch-“B” to make its way to the Core, the blades would automatically start using BladeSwitch-
“B” directly, since their “A” sides had gone dark. This allowed us to disable the A/B interconnect in the
blade switches, and disable STP on their uplink ports in the core, removing good quantities of our STP

events.

Cabinet Equipment Core Equipment Blade Enclosure Equipment

Cab Switch A Core Switch A Blade Switch 1

Blade Switch 2

Blade Servers

Blade Switch 3

Blade Switch 4
Cab Switch B Core Switch B

Figure 2 : Network Diagram After Enabling Uplink Failure Detection

But, we discovered it wasn’t enough. We’d still occasionally deploy “standard density”
cabinets, which for us meant cabinets equipped with 1U access switches, interconnected for
redundancy, and building out a cabinet in that configuration, or rebooting one of those switches, would
still cause an STP event across the entire network. One thing we’d noticed in our deployment, though,

was that our SAN usage, because of the various conveniences inherent to blade systems, had moved

itself almost entirely to the blade infrastructure, so having the SAN VLAN present on the cabinet access
switches (and subject to their STP events) was largely counterproductive. We decided to do what we
should have done in the first place, and create a separate, electrically isolated, network for the SAN. We
would install a new pair of “SANCore” switches, bringing all the Bay 3 and Bay 4 blade-switches into
those SANCore switches. For the few non-blade SAN clients, we would backhaul their connections

directly into the SANCores.

The practical upshot of this would be that there would only be one “A/B” connection in the
entire SAN network, the one between the SANCores. This meant that STP could be completely disabled,
as there would never be a potential loop in the environment again (short of someone accidentally

creating one, but in our environment of mostly-blade-switches, that was unlikely).

Our network infrastructure’s robust design lent itself to a “isolate and swap” process that has
worked well for us a number of times now, but got its first real test during the move to the new
SANCore switches. The process evolved organically through repeated scribblings on an office
whiteboard, and while it seems simple and intuitively obvious in hindsight, every time we discuss it

with our peers, the level of redundancy it provides always seems to come as a surprise to them.

First, we disconnected the SAN modules from the B-side core switch, forcing them to use the
A-side core. Then we disabled the B-side network completely on all blade and cabinet switches,
causing downstream devices to only use their A-side NICs. This isolated the B-side Core, allowing us to
move all the physical connections to the SAN from the “Core-B” switch to the “SANCore-B” switch
(which was preconfigured to also have all its ports in the disabled state, so no devices would try to talk
through it until we were ready for them to do so). The “SANCore-B” switch was then temporarily
connected to the “Core-A” switch. Once the connections were all complete, we turned the B-side ports
back up, and everything was normal, with no interruptions. After taking a break (this is an excellent
place for what we referred to as the “pre-programmed 30 minute hold”), we repeated the process for
the other side, to install the SANCore-A switch, and then finally simply removed the temporary cabling
that connected SANCore-B and Core-A (since there was no longer anything SAN related connected to

either of the Core-A/B switches).

Cabinet Equipment Core Equipment Blade Enclosure Equipment

3
0 %
SANCore Switch A Blade Switch 3
Blade Servers

Blade Switch 4

SANCore Switch B

Figure 3 : (SAN) Network Diagram After Upgrade

Cabinet Equipment Core Equipment Blade Enclosure Equipment

Core Switch A Blade Switch 1

Cabinet Switch A

Blade Servers

S

Cabinet Switch B Blade Switch 2
Core Switch B

Figure 4 : (Data) Network Diagram After Upgrade

We used this same “isolate and swap” process a couple other times as we have grown to
replace and upgrade our SANCore switching infrastructure, while we settled on what hardware we
would be using. knew we were onto something when we would tell people we had hot-swapped out
our core-switching infrastructure for our iSCSI SAN without causing a single hiccup in the iSCSI LUNs.

We've even used similar processes to replace our LAN-side core switches, although that environment

did trigger occasional STP reconvergences, but this was not an issue as standard TCP/IP traffic was

more forgiving of half-second or so of packet-loss.

Does it always work? It can, if you've prepared your change procedure exhaustively
beforehand and follow it religiously. A clear set of step-by-step procedures, which you've designed
while standing in front of a whiteboard with one or more of your peers, is essential to success. At every
step in the process, you should determine both “Are there any sort of events that trigger when I make
this change” (uplink failure detection triggers, STP events, etc.) as well as, “Trace the path that every
device will use to try and talk to the network”, and ensure that after each step you haven’t accidentally
disconnected a consumer from its provider. Most importantly, follow those procedures! Don’t race
through your maintenance window assuming that you remember the process, or that you remember
the repercussions of various actions. Inevitably, you’ll misremember and the results are disastrous.

You invested the time in the room with the whiteboard for a reason.

In conclusion, we were able to construct a fully fault-tolerant iSCSI SAN. The key to this
redundancy is to have a flat, separate network with redundant hardware. The solution has scaled, for
us, to several dozen connected devices, and should scale to significantly larger, but that has not been
tested. The design works very well for us, and should be useable by other sites of similar size, as well
as larger sites potentially. The big win for us, obviously, is the ability to remove key network hardware
for maintenance, upgrades, or even forklift-upgrade, without causing any sort of outage. This “isolate

and swap” process was a significant win for ease of maintenance.

