Fast and Secure Laptop Backups with Encrypted De-duplication

Paul Anderson
University of Edinburgh
dcspaul@ed.ac.uk

Keywords: backup, de-duplication, encryption, cloud
computing.

Abstract

Many people now store large quantities of personal and
corporate data on laptops or home computers. These of-
ten have poor or intermittent connectivity, and are vulner-
able to theft or hardware failure. Conventional backup
solutions are not well suited to this environment, and
backup regimes are frequently inadequate. This paper
describes an algorithm which takes advantage of the data
which is common between users to increase the speed of
backups, and reduce the storage requirements. This al-
gorithm supports client-end per-user encryption which is
necessary for confidential personal data. It also supports
a unique feature which allows immediate detection of
common subtrees, avoiding the need to query the backup
system for every file. We describe a prototype implemen-
tation of this algorithm for Apple OS X, and present an
analysis of the potential effectiveness, using real data ob-
tained from a set of typical users. Finally, we discuss the
use of this prototype in conjunction with remote cloud
storage, and present an analysis of the typical cost sav-
ings.

1 Introduction

Data backup has been an important issue ever since com-
puters have been used to store valuable information.
There has been a considerable amount of research on
this topic, and a plethora of solutions are available which
largely satisfy traditional requirements. However, new
modes of working, such as the extensive use of personal
laptops, present new challenges. Existing techniques do
not meet these challenges well, and many individuals and
organisations have partial, ad-hoc backup schemes which
present real risks. For example:

Le Zhang
University of Edinburgh
zhang.le@ed.ac.uk

e Backups are often made to a local disk and copies
are not stored offsite.

e Backups are not encrypted and vulnerable to theft.

e Personal (rather than corporate) information is ac-
cidentally stored in plaintext on a corporate service
where it can be read by other employees.

e Backups often just include “user files” in the as-
sumption that “system files” can be easily recovered
from elsewherd!]

e The inconvenience of making backups leads to in-
frequent and irregular scheduling.

Even recent attempts to make backups largely transpar-
ent, such as Apple’s Time Machine [[10] suffer from the
first two of the above problems, and may even lead users
into a false sense of data security.

There has recently been a proliferation of “Cloud”
backup solutions [3| (7, [12} 4} |1} (8} |6l 2]. In theory,
these are capable of addressing some of the above prob-
lems. But, in practice, complete backups are unreason-
ably slo

”I have a home Internet backup service and
about ITB of data at home. It took me about
three months to get all of the data copied off
site via my cable connection, which was the
bottleneck. If I had a crash before the off-site
copy was created, I would have lost data ”

And many organisations may prefer to hold copies of the
backup data themselves.

'In practice, we found a small but significant number of unique files
outside of the "user space” (ﬁgureE]) which means that this may not be
such a reasonable assumption.

2Home broadband connections usually have upload speeds which
are very significantly less than the download speed

3Henry Newman, October 9th 2009 - |http://www.
enterprisestorageforum.com/technology/features/
article.php/3843151

http://www.enterprisestorageforum.com/technology/features/article.php/3843151
http://www.enterprisestorageforum.com/technology/features/article.php/3843151
http://www.enterprisestorageforum.com/technology/features/article.php/3843151

1.1 De-duplication & Encryption

We observed that there is a good deal of sharing between
the data on typical laptops (figure [3). For example, most
(but not all) of the “system files” are likely to be shared
with at least one other user. And it is common for users in
the same environment to share copies of the same papers,
or software packages, or even music files. Exploiting this
duplication would clearly enable us to save space on the
backup system. But equally importantly, it would signifi-
cantly reduce the time required for backups in most cases
— upgrading an operating system, or downloading a new
music file should not require any additional backup time
at all if someone else has already backed-up those same
files.

There has been a lot of interest recently in de-
duplication techniques, using content-addressable stor-
age (CAS). This is designed to address exactly the above
problem. However, most of these solutions are intended
for use in a local filesystem [18} |9, [11] or SAN [20].
This has two major drawbacks: (i) clients must send the
data to the remote filesystem before the duplication is
detected — this forfeits the potential saving in network
traffic and time. And (ii) any encryption occurs on the
server, hence exposing sensitive information to the owner
of the service — this is usually not appropriate for many
of the files on a typical laptop which are essentially “’per-
sonal”, rather than ”corporate’ﬂ

1.2 A Solution

This paper presents an algorithm and prototype software
which overcome these two limitations. The algorithm
allows data to be encrypted independently without inval-
idating the de-duplication. In addition, it is capable of
identifying shared sub-trees of a directory hierarchy, so
that a single access to the backup store can detect when
an entire subtree is already present and need not be re-
copied. Clearly, this algorithm works for any type of sys-
tem, but it is particularly appropriate for laptops where
the connection speed and network availability are bigger
issues than the processing time.

Initial versions of the prototype were intended to make
direct use of cloud services such as Amazon S3 for re-
mote storage. However, this has proven to be unwork-
able, and we discuss the reasons for this, presenting a
practical extension to enable the use of such services.

Section 2| describes the algorithm. Section [3|describes
the prototype implementation and gives some prelimi-
nary performance results. Section [] presents the data
collected from a typical user community to determine

40f course, performing local encryption with personal keys would
produce different cipher-text copies of the same file and invalidate any
benefits of the de-duplication.

the practical extent and nature of shared files. This data is
used to predict the performance in a typical environment,
and to suggest further optimisations. Section [5]discusses
the problems with direct backup to the cloud and presents
a practical solution, including an analysis of the cost sav-
ings. Section [6]presents some conclusions.

2 The Backup Algorithm

The backup algorithm builds on existing de-duplication
and convergent encryption technology:

2.1 De-duplication

A hashing function (e.g. [14]) can be used to return a
unique key for a block of data, based only on the con-
tents of the data; if two people have the same data, the
hashing function will return the same keyﬂ If this key
is used as the index for storing the data block, then any
attempt to store multiple copies of the same block will be
detected immediately. In some circumstances, it may be
necessary store additional metadata, or a reference count
to keep track of the multiple “owners”, but it is not nec-
essary to store multiple copies of the data itself.

2.2 Convergent Encryption

Encrypting data invalidates the de-duplication; two iden-
tical data blocks, encrypted with different keys, will yield
different encrypted data blocks which can no longer be
shared. A technique known as convergent encryption
[L6l 211 {19} 23] is designed to overcome this — the en-
cryption key for the data block is derived from the con-
tents of the data using a function which is similar to
(but independent of) the hash function. Two identical
data blocks will thus yield identical encrypted blocks
which can be de-duplicated in the normal way. Of course
each block now has a separate encryption key, and some
mechanism is needed for each owner to record and re-
trieve the keys associated with “their” data blocks.

Typical implementations (such as [25]) involve com-
plex schemes for storing and managing these keys as part
of the block meta-data. This can be a reasonable ap-
proach when the de-duplication is part of a local filesys-
tem. But there is considerable overhead in interrogat-
ing and maintaining this meta-data, which can be sig-
nificant when the de-duplication and encryption is being
performed remotely — and this is necessary in our case,
to preserve the privacy of the data.

STechnically, it is possible for two different data blocks to return the
same key. However, with a good hash function, the chances of this are
sufficiently small to be insignificant - ”if you have something less than
95 EB of data, then your odds don’t appear in 50 decimal places” 5]
- i.e. many orders of magnitude less than the chances of failure in any
other part of the system.

2.3 The Algorithm

We have developed an algorithm which takes advantage
of the hierarchical structure of the filesystem:

e Files are copied into the backup store as file objects
using the convergent encryption process described
above.

e Directories are stored as directory objects — these
are simply files which contain the normal directory
meta-data for the children, and the encryption/hash
keys for each child.

To recover a complete directory hierarchy, we need
only know the keys for the root node — locating this di-
rectory object and decrypting it yields the encryption and
hash keys for all of the children and we can recursively
recover the entire tree. This has some significant advan-
tages:

e Each user only needs to record the keys for the root
node. Typically, these would be stored indepen-
dently on the backup system (one set for each stored
hierarchy), and encrypted with the user’s personal
key.

e The hash value of a directory object acts as a unique
identifier for the whole subtree; if the object repre-
senting a directory is present in the backup store,
then we know that the entire subtree below it is also
present. This means that we do not need to query
the store for any of the descendants. It not uncom-
mon to see fairly large shared subtreesE], so thisis a
significant saving for remote access where the cost
of queries is likely to be high. Section presents
some concrete experimental results.

e No querying or updating of additional metadata is
require(ﬂ This means that updates to the backup
store are atomic.

This algorithm does have some disadvantages. In par-
ticular, a change to any node implies a change to all of the
ancestor nodes up to the root. It is extremely difficult to
estimate the impact of this in a production environment,
but preliminary testing seems to indicate that this is not
a significant problem. There is also some disclosure of
information; if a user has a copy of a file, it it possible
to tell whether or not some other user also has a copy of
the same file. This is an inevitable consequence of any
system which supports storage sharing — if a user stores a
file, and the size of the stored data does not increase, then
there must have been a copy of this file already present.

SFor example, between successive backups of the same system, or
as the same application downloaded to different systems.

7If it is necessary to support deletion of shared blocks, then some
kind of reference counting or garbage-collection mechanism is neces-
sary, and this may be require additional metadata.

2.4 Implementation

An efficient implementation of this algorithm requires
some care. The hash key for a directory object depends
on its contents. This in turn depends on the keys for all
of the children. Hence the computation of keys must
proceed bottom-up. However, we want to prevent the
backup from descending into any subtree whose root is
already present. And this requires the backup itself to
proceed top-down. For example:

BackupNode(N) {
If N is a directory, then let O = DirectoryObjectFor(N)
Otherwise, let O = contents of N
Let H=Hash(O)
if there is no item with index H in the backup store, then {
Store O in the backup store with index H
If N is a directory {
For each entry E in the directory, BackupNode(E)

}
}
}

DirectoryObjectFor(D) {

Create an empty directory object N

For each entry E in the directory D {
If E is a directory, then let O = DirectoryObjectFor(E)
Otherwise, let O = contents of E
Let H = Hash(O)
Add the metadata for E, and the hash H to N

}

Return N

Of course, this is still a rather naive implementation
— the hash for a particular object will be recomputed
once for every directory in its path. This would be
unacceptably expensive in practice and the hash func-
tion would probably be memoized. A production im-
plementation presents many other opportunities for opti-
misation; caching of directory objects, parallelisation of
compute-intensive tasks (encryption,hashing), and care-
ful detection of files which have been (un-)modified
since a previous run.

3 Prototype System

We developed a prototype backup system for Apple OS
X as a proof of concept of the proposed algorithnﬂ The
purpose is to be able to backup all files on a user’s lap-
top to a central remote storage. The prototype was im-
plemented as a set of command line utilities each per-
forms a single task in the backup process such as scan-

8 An earlier, simpler proof-of-concept was implemented under Win-
dows as a student project [22].

ning file system changes, uploading files, restoring file
system from backup etc. When wrapped in a GUI front-
end, our application can be used as a drop-in replacement
for the built-in Time Machine backup application [10].

3.1 Architecture

The underlying storage model we adopt is a write once,
read many model. This model assumes that once a file is
stored on the storage, it will never be deleted or rewrit-
ten. This is the common practice employed in enterprise
environment where key business data such as electronic
business records and financial data are required by law
to be kept for at least five and seven years respectively
[L3]. This kind of storage model, commonly found in
DVD-R or tape backup storage, is usually optimised for
throughput rather than random access speed. The alter-
native storage model is write many, read many model that
permits deleting older backups to reclaim some space.
To achieve that some kind of reference counting mech-
anism is needed to safely delete un-referred files on the
storage. To keep the prototype simple we opt to use the
write once, read many storage model.

Our system is architected as a client/server applica-
tion, where a backup client running on a user’s laptop
uploads encrypted data blocks to a central server which
includes dedicated server side processing. This is in
contrast to the thin-cloud approach where only mini-
mal cloud-like storage interface is required on the server
end as proposed in the Cumulus system [24]. Cumulus
demonstrated that with careful client side data aggrega-
tion, backing up to the thin-cloud can be as efficient as
integrated client/server approaches. This thin-cloud ap-
proach is appealing in a single user environment, how-
ever it raises three problems in a multi-user setting with
data de-duplication technology:

1. The cloud storage model used by the thin-cloud
backup solution does not have a straightforward
way of sharing data between different user accounts
without posing serious security threat.

2. There is no way to validate the content address of an
uploaded object on the server. A malicious user can
start an attack by uploading random data with a dif-
ferent content address to corrupt the whole backup.

3. The client side data aggregation used in the thin-
cloud approach for performance reason will make
data de-duplication very difficult, if not impossible.

In our prototype system we argue for a thin-server ap-
proach that addresses all these issues. The majority of
computation will happen on the client side (hashing, en-
cryption, data aggregation). A dedicated backup server

will handle per-user security required in a multi-user en-
vironment. Instead of going for a full-blown client/server
backup architecture with custom data transfer protocol,
user authentication mechanism and hefty server end soft-
ware we want to re-use the existing services provided
by operating system itself as much as possible. To this
end, we used standard services that come with many
POSIX systems (Access control list (ACL) mechanism,
user account management, Common Internet File Sys-
tem/Server Message Block (CIFS/SMB) server) and de-
ployed a small server application written in Python on
the server side to handle data validation. In addition, the
whole server, once properly configured with ACL per-
missions, server application scripts, storage devices, can
be packed as a virtual machine image and deployed into
an enterprise’s existing visualised storage architecture.
This means the number of supported clients can be easily
scaled to meet the backup demands.

Figure|l|depicts the architecture employed in our pro-
totype. The system consists of several modules described
below.

3.1.1 FSEvents Module

FSEvents was introduced as a system service in the OS
X Leopard release (version 10.5). It logs file changes at
the file system level and can report file system changes
since a given time stamp in the past. This service is part
of the foundational technologies used by Apple’s built-
in backup solution Time Machine. Our prototype system
utilises the FSEvents service to get a list of changed files
for incremental backup.

For efficiency reason, the event reported by the FSEv-
ents API is at directory level only, i.e. it only tells which
directory has changes in it but not exactly what was
changed. To identify which files are changed we use a lo-
cal meta database to maintain and compare current files’
meta information with their historical values.

3.1.2 Local Meta DB

The local meta DB is used to implement incremental
backup. The content of the DB includes: pathname, file
size, last modification time, block-level checksums, and
a flag indicates if the file has been backed up or not. For
each backup session, the local meta DB will produce a
list of files to backup which is sorted by directory-depth
from bottom up. This is to ensure that a directory will be
backed up only after all its children have been backed-up.

3.1.3 Backup Module

The backup module encapsulates the backup logic and
interfaces with other modules. For each backup session,
it first retrieves a list of files to backup from the local

Changed files

Local FS Events
Dlsk

Meta Update

Local Meta DB
Files
List of files
to backup Backup status
update

Data Compression (Optional) |

v

| Convergent Encryption |

v

Encrypted blocks

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
'
. Backup Module
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Client
Upload Queue
1 1 1 1 1 1
1 1 1 1 1 1
---------- B R s e el il B
SR YoMLY N NY
' e — .
! 1
! 1
:Server Backup Server '
1
: 1
———————————— l-———————‘————————\-————————————I
1 \ \L
¥ : X ;

Cloud Storage 1 Cloud Storage 2
1
|

Cloud Storage 3

Secondary Storage

Figure 1: Architecture of the proposed backup system.
Optionally data on the backup server can be replicated to
multiple cloud storages in background.

meta DB, then it fetches those files from the local disk,
calculates file hashs at block level, and encrypts each
data block with an encryption key generated from the
block’s hash value. The final sequence of encrypted data
blocks, together with their unique content addresses, are
put in an upload queue to be dispatched to the remote
storage. Optionally, data compression can be applied
prior to the data encryption step to further reduce the size
of the data to upload. We use a 256-bit cryptographically
strong hash function (SHA?2 [14])) for the content address
and a 256-bit symmetric-key encryption (Salsa20 [17]])
for data encryption.

3.1.4 Upload Queue

The system maintains an upload queue in memory for
those data blocks to be uploaded to the backup server
via CIFS protocol. First the content address of each data
block is checked to see if the same data block is already
on the server. If not the block will be scheduled to one of
the uploading threads. A typical user machine contains
many small files, which are less efficient to transfer over
a standard network file system like CIFS compared to
a custom upload protocol. We therefore perform data
aggregation in the upload queue to pack small blocks into
bigger packets of 2 MB before sending them over the
network.

3.1.5 Server Application

A Python script on the server periodically checks any
new files in a user’s upload directory. ACL permission
was set up so that the server application can read/write
files in both public data pool and users’ own upload di-
rectories. For each incoming packet, the server will dis-
assemble the packet into original encrypted data blocks.
If the block checksum matches its content address, the
block will be moved to the public data pool. If a block
has incorrect checksum due to network transmission er-
ror, it will be discarded and a new copy will be requested
from the client.

Optionally, the server can choose to replicate its data
to multiple public cloud storage vaults in the background.
The use of cloud storage will be discussed in section 3]

4 Laptop Filesystem Statistics

The characteristics of the data, and the way in which it
is typically organised and evolved, can have a significant
effect on the performance of the algorithm and the im-
plementation. We are aware of several relevant studies
of filesystem statistics (e.g. [15]), however these have
significant differences from our environment, such as the

operating system, or the type of user. We therefore de-
cided to conduct our own small study of laptop users
within our typical target environment. We are reasonably
confident that this represents “typical usage”.

A data collection utility was distributed to voluntary
participants in the university to compute a 160-bit cryp-
tographically strong hash for each file on their Mac lap-
top, along with other meta information such as file size,
directory depth etc. Each file was scanned multiple times
to get hash values of the following block sizes:128KB,
256KB, 512KB and 1024KB as well as single file hash
value. Filenames were not collected to maintain pri-
vacy. We grouped the stats gathered from each ma-
chine into three categories: USR, APP and SYS. All data
within a user’s home folder is labelled as USR, data in
/Applications is classified as APP, and all the rest
are labelled as SYS. This is to help us identify where
the data duplication occurs. We would expect a high de-
gree of inter-machine data redundancy among Applica-
tion and System files, but not so much between users’
own data. In a real backup system, the amount of data
transfer for subsequent incremental backups is typically
much smaller than that of the initial uploads. To help
estimate the storage request of incremental backup we
collected the statistics twice over a two-month period.

4.1 Key Statistics

We gathered filesystem statistics from 24 Mac machines
within the university, all of them are running either OS X
10.5 or 10.6. Although this is a small sample, we believe
that this is a good representation of a typical target envi-
ronment. Key statistics of the data are given in table [T}
The histogram of file sizes is given in figure[2] The file
size distribution follows normal distribution. A further
breakdown reveals that the majority (up to 95%) of the
files are relatively small (less than 100 KB).

The presence of huge number of small files will likely
impose a speed issue when backing up due to I/O over-
head and network latency. In addition, a cloud service
provider is likely to charge for each upload/download
operation. Therefore direct uploading to a cloud stor-
age may not be an economically viable option, as will be
seen in section[3.1]

4.2 Backup Simulation

We simulated a backup process by backing up one ma-
chine a time to the backup server. After each simulated
backup, the projected and actual storage was recorded
and the data duplication rate calculated. This was re-
peated until all machines were added to the backup stor-
age, and this clearly demonstrates the increasing sav-
ings (in space per machine) as more machines partici-

Machines 24
Files 20,332,615
Directories 4,607,966
Entries (File + Dir) 24,940,581
File Sizes
Median 24K
Average 779 K
Maximum 32.2GB
Total 1.94 TB
File Category
USR 1.22 TB (62.94%)
APP 149.32 GB (7.68%)
SYS 570.8 GB (29.38%)
Harddisk Size
Average HD Size 290 GB
Average Used HD 115 GB

Table 1: Filesystem statistics from Mac laptops.

Frequency

0 10Bytes 1K
File size distribution (in log10 domain)

100K 1MB 1GB 10GB

Figure 2: Histogram of file size distribution, the X-Axis
is logyo(file size).

pate. Figure [3] shows the projected and actual storage
for different numbers of machines. As expected, there is
greater data sharing among System and Application files,
but less so between users’ own files.

4.3 Data Duplication

To measure data duplication (or redundancy) we define
the data duplication rate as:

Projected St Size-Actual St Si
rojected Storage Size-Actual Storage Size 100%

Projected Storage Size

where the projected storage size is the sum of all data to
backup, actual storage size is the actual amount of stor-
age required due to data de-duplication. For instance, if
we need to store a total amount of 100 GB data from two
machines A and B, and only 70 GB is needed for ac-
tual storage, then the data duplication rate for A and B is
30%.

Backup Block Size

File backup can be performed at whole file level or sub-
file level where a file is split into a series of fixed-
size blocks. There are two main benefits of perform-
ing backup at sub-file block level. First is the increased
level of data de-duplication as a result of inter-file block
sharing, which will use less storage space. Second, it is
more efficient to backup certain type of files where only
a small portion of the file content is constantly chang-
ing. For instance, database files and virtual machine disk
images are usually a few GB in size and are known to
subject to frequent updating. Modifications to those files
are usually made in-place at various small portions of the
file for performance reason. Block-level backup enables
us to only backup those changed blocks. Finally, there
is also a practical benefit: it is more reliable to upload a
small block of data over remote network than a big file.
Even the transfer fails due to network glitch, only the last
block needs to be resent.

Despite the listed advantages, backup at block-level
will incur some overhead that can be significant. De-
pending on the size of the block, the number of to-
tal stored objects could be much higher than whole file
backup, which would be an concern when backing up
to a cloud storage where the network I/O requests are
charged (see section[5.1)). Also extra storage is needed to
record the block relationship which could offset some of
the benefit of data de-duplication.

We tested different block sizes as well as whole file,
single block backup in the simulation experiment. The
result is plotted in figure]

As expected, all the sub-file blocks achieve a higher
data duplication rate than single block, shown in figure

Overall
29.31%

USR SYS
891% 63.34%

APP
63.06%

Table 2: Overall data duplication rate by category.

Mh. The bigger the block size is, the lower data duplica-
tion rate due to less inter-file block sharing. For block
size of 128KB, we the data duplication rate of 32.08%,
which is 9.5% higher than the 29.31% of single block.
This transfers into less storage used for all sub-file blocks
(Figure). However, the increased number of block ob-
jects could be quite substantial: for block size of 128KB,
the total number of objects is 38m (million), 64.4% more
than that of single block objects which is 24.94m (Figure

B

Directory Tree Duplication

As mentioned in section [2] the directory meta data is
stored in directory objects. The size of all directory ob-
jectsis 16.24 GB. With data de-duplication, the actual re-
quired storage is 6.4 GB, or 0.47% of total used storage.
The collected stats also reveals that, among all 4,607,966
directory objects, only 1,052,338 unique ones are stored
on the server. This suggests that up to 77% directory
objects are shared. This strongly supports the value of
sub-tree de-duplication.

Finally, we report overall data duplication rate in table

2

Changes Over Time

Once an initial, full backup of a user machine is made,
subsequent backups can be much faster as only changed
data needs to be uploaded. To get an estimate of the
file change rate, we collected and analysed the data for
a second time towards the end of the two-month pi-
lot experiment. We are mainly interested in the sizes
of newly added files and changed files that will be in-
cluded in the incremental backup. Files deleted since last
scan were not included. The average daily and monthly
per-machine data change rates calculated using a block
size of 128KB are presented in table E} In addition, we
observed that the estimated monthly per-machine data
change rate would raise from 17.17 GB to 20.61 GB if
the backup is performed at file level. This confirms our
earlier assumption that backing up at sub-file level can
be more efficient in dealing with partial changes in large
files. In our scenario it would reduce the amount of data
to backup by 3.44 GB for each machine on a monthly
basis.

Overall Storage Saving SYS Storage Saving

I Actual Storage (TB) I Actual Storage (TB)
[]Saved Storage (TB) 0.5} [__]Saved Storage (TB)
1.5F)
@ £ 04}
= o
Y &
= 1 § 0.3F
5 %)
@ Q 0.2
0.5 @
0.1f
0 5 10 15 20 25 0 5 10 15 20 25
Number of machines added Number of machines added
APP Storage Saving USR Storage Saving
0151 I Actual Storage (TB) 141 I Actual Storage (TB)
[]Saved Storage (TB) 1.2}] Saved Storage (TB)
@ g 4l
5 o1 by
& & 0.8}
S S
n » 061
o L o
& 0.05 % 04l
0.2
0
0 5 10 15 20 25 0 5 10 15 20 25
Number of machines added Number of machines added

Figure 3: Projected and actual storage by number of machines added during simulated backup.

a. Data duplication rate vs block size b. Actual storage needed vs block size ¢. Number of backup objects vs block size
325 1.4 40
32 I All Objs
— [] Stored Objs
® 315 @ o 30
[0] — =1
'5:*3 31 Y 1.35 _8
© o)
S 305 S O 20
Sl @ &
£ 30 I =
o a 1.3 S
a 295 2 10
29
28.5 . 1.25 . 0 .
128K 256K 512K 1024K File 128K 256K 512K 1024K File 128K 256K 512K 1024K File

Figure 4: Data duplication rate and actual storage under different block sizes (File means the whole file is treated as a
single block).

Overall USR SYS APP
Daily 0.57GB 031GB 0.10GB 0.03GB
Monthly 17.17GB 9.20GB 290GB 0.86 GB
Table 3: Estimated daily and monthly (30 days) per-

machine data change rates by category.

5 Using Cloud Storage

Backing up to cloud-based storage becomes increasing
popular in recent years. The main benefits of using a
cloud storage are lower server maintenance cost, cheaper
long term operational cost, and sometimes enhanced data
safety via a vendor’s own geographically diverse data
replication. However, there are still some obstacles to
integrating cloud storage into a full-system backup solu-
tion:

1. Network bandwidth can be a bottle-neck: uploading
data directly to a cloud storage can be very slow
while requiring a reliable network connection.

2. The cloud interface has yet be standardised with
each vendor offering its own security and data trans-
fer models. In addition, many organisations pre-
fer to have a backup policy that can utilise multiple
cloud services to avoid vendor lock-in.

3. A cloud service provider is likely to impose a
charge on individual data upload/download opera-
tions, which means backing up directly to a cloud
can be very costly.

Despite these disadvantages, in the next section we will
show that the proposed de-duplicated backup algorithm
can effectively reduce the cost of backing up to a cloud
storage by a large margin. Furthermore, in our backup ar-
chitecture it is possible to adopt cloud storage as the sec-
ondary storage of the backup server (Figure [I), thereby
largely ameliorating the above issues. In particular, the
benefits of employing a cloud-based secondary storage
are:

1. Backing up to local backup server can still be very
fast with all the security features enabled, while the
data replication to cloud storage can be performed
in the background.

2. New cloud services can be added easily on the
backup server to provide enhanced data safety and
to reduce the risk of vendor lock-in.

3. Upload cost to cloud storage can be reduced via data
aggregation techniques such as employed in [24]].

5.1 Cost Saving: Data De-Duplication

In this section we measure the estimated cost of backup
to a cloud storage in terms of the bill charged by a typical
storage provider: Amazon S3ﬂ Its data transfer model is
based on standard HTTP protocol requests like GET and
PUT.

For de-duplication backup, the client first needs to
check if an object exists on the cloud via an HEAD opera-
tion. If not, the object is then uploaded via a PUT opera-
tion. Fortunately, if a file already exists on the server due
to data de-duplication, we do not need to use the more
expensive PUT operation, and no data will be uploaded.

Using the Amazon S3 price mode we plot the esti-
mated cost of backing up 1.94 TB data from 24 machines
to S3 in terms of US dollars in figure 5] The data de-
duplication technology, coupled with data aggregation
(see next section), is able to achieve 60% cost reduction
for the initial data upload.

5.2 Cost Saving: Data Aggregation

Backing up directly to Amazon S3 can be very slow and
costly due to large number of I/O operations and the way
Amazon S3 charges for the uploads. Client side data
aggregation packs small files into bigger packets before
sending them to the cloud. We packed individual files
into packets with a size of 2 MB each and compared the
estimated cost against that of direct upload (see figure
[6). The result shows that an overall of 25% of cost sav-
ing can be achieved via data aggregation alone. More-
over, even when cost is not an issue, as is the case when
backing up to a departmental server, data aggregation can
still speed up the process significantly. In our experi-
ment we observed that the underlying file system (CIFS
in this case) did not handle large amount of small I/O re-
quests efficiently between the client and the server, even
on a high-speed network. This resulted in a much slower
backup speed. Uploading aggregated data to the server
and unpacking the data there overcomes this problem.

5.3 Case Study: Six-Month Bill Using S3

Using the gathered information so far, we are able to es-
timate the cost of backing up all the machines we have
to Amazon S3 over a six-month period. The initial up-
load of 1.94 TB data (25m objects) will cost $434 with-
out data de-duplication, together with storage cost ($291)
that is $725. With data de-duplication, only a total of

9https://s3.amazonaws.com/

10As of writing this paper, data upload to Amazon S3 is charged
at $0.1 per GB. Data storage rate is $0.15 per GB for the first 50
TB/Month of storage. Operating cost is $0.01 per 1,000 requests for
PUT operation and $0.01 per 10,000 requests for HEAD operation, re-
spectively. All prices quoted are from US Standard tier.

https://s3.amazonaws.com/

$400

Amazon S3 Price

$100

Amazon S3 Price

Figure 5: Estimated cost when backing up 24 machines to Amazon S3 (total cost for the initial backup of all machines)

$300

$200

Overall Cost Saving

I Actual S3 Cost
[| C__JSaved S3 Cost

$80

$60

$40

$20

25

20

10 15
Number of machines added

APP Cost Saving

| I Actual S3 Cost —
[1Saved S3 Cost

20

10 15 25

Number of machines added

Overall Cost Comparison

I S3 Packet Cost
$2007|) 53 File Overhead 1
[0
2
a $150f 1
™
»
S s100f 1
©
£
<
$50 1
0 5 10 15 20 25
Number of machines added
APP Cost Comparison
$25 L . " i
I S3 Packet Cost
[1S3 File Overhead
$20
[0}
ks
& 815
%]
S
8 $10
£
<
$5

Figure 6: Estimated cost comparison of client side data aggregation (packet) and normal upload (file).

20

10 15
Number of machines added

0 5

25

$200

©“
=
o
o

$100

Amazon S3 Price

$50

$150

$100

Amazon S3 Price

$60

$50

Amazon S3 Price

$151

$10

Amazon S3 Price

$50 1

$40¢]
$301]

$20+ J

$50 : 1

SYS Cost Saving

[| NI Actual S3 Cost
[] Saved S3 Cost

20

10 15 25

Number of machines added

USR Cost Saving

| I Actual S3 Cost —
] Saved S3 Cost

20

10 15 25

Number of machines added

SYS Cost Comparison

I S3 Packet Cost
1S3 File Overhead 1

20

10 15 25

Number of machines added

0 5

USR Cost Comparison

oF . .
I S3 Packet Cost
[1S3 File Overhead

ot . J

20

10 15 25

Number of machines added

0 5

Conventional De-Duplicated

Months Storage Cost Storage Cost
1 1.94TB $725 1.37TB $370

2 235TB $445 1.66TB $284

3 276 TB $507 1.95TB $328

4 3.18TB $569 225TB $372

5 359TB $630 2.54TB $415

6 400TB $692 283TB $459

Total $3,568 $2,228

Table 4: Estimated monthly and accumulated bills for
backing up to Amazon S3 over a six-month period with-
out and with the De-Duplicated backup. The monthly
data change rate is estimated to be 0.49 TB for 24 ma-
chines using figures in table 3| with an estimated duplica-
tion rate of 29.31%. The monthly cost is the sum of S3
storage bill (currently $150 per TB) plus the estimated
data upload cost from the pilot experiment.

$370 ($164 for upload and $206 for storage) is needed,
saving $355 or 49.0% of the initial upload cost. More-
over, as only 1.37 TB of data needs to be uploaded, it is
estimated to save 29.4% uploading time. The saving can
be even greater over time as less cloud storage is used
and billed. The accumulated costs of using Amazon S3
over the course of six months are $3,568 using conven-
tional backup method, and $2,228 using de-deuplicated
backup. Monthly estimated bills are presented in table[d]

6 Conclusions

We have shown that a typical community of laptop users
share a considerable amount of data in common. This
provides the potential to significantly decrease backup
times, and storage requirements. However, we have
shown that manual selection of the relevant data - for
example, backing up only home directories - is a poor
strategy; this fails to backup some important files, at the
same time as unnecessarily duplicating other files.

We have presented a prototype backup program which
achieves an optimal degree of sharing at the same time
as maintaining confidentiality. This exploits a novel al-
gorithm to reduce the number of files which need to be
scanned and hence decreases backup times.

We have shown that typical cloud interfaces, such as
Amazon S3 are not well suited to this type of applica-
tion, due to the time and cost of typical transfers, and the
lack of multi-user authentication to shared data. We have
described a implementation using a local server which
can avoid these problems by caching and pre-processing

data before transmitting to the cloud. This is shown to
achieve significant cost savings.

7 Acknowledgements

This project has been funded by the Edinburgh Univer-
sity Initiating Knowledge Transfer Fund (iKTFﬂ and
the IDEA Lab[ﬁ Thanks to Toby Blake from the School
of Informatics for support with the infrastructure, and to
all those who contributed data.

Whttp://www.eri.ed.ac.uk/commercial/
development funding/ikta.htm
“http://www.idea.ed.ac.uk/IDEA/Welcome.html

http://www.eri.ed.ac.uk/commercial/developmentfunding/ikta.htm
http://www.eri.ed.ac.uk/commercial/developmentfunding/ikta.htm
http://www.idea.ed.ac.uk/IDEA/Welcome.html

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Backblaze: online backup [cited 2nd April 2010].
http://www.backblaze.com/}

Backjack: online backup [cited 2nd April 2010].
http://www.backjack.com.

Carbonite: online backup [cited 2nd April 2010].
http://www.carbonite.com/|

Crashplan: online backup [cited 2nd April 2010].
http://www.crashplan.com,

Hash collisions: The real odds [cited 31st March 2010].
http://www.backupcentral.com/content/view/
145/47/.

Humyo: online backup [cited 2nd April 2010].
http://humyo.com/.

IDrive: remote data backup [cited 2nd April 2010].
http://www.idrive.com,

JungleDisk: online backup [cited 2nd April 2010].
http://www. jungledisk.com/,

Lessfs — a high performance inline data deduplicating filesystem
for Linux [cited 2nd April 2010].
http://www.lessfs.com,

Mac OS X Time Machine [cited 2nd April 2010].
http://www.apple.com/macosx/what-is-macosx/
time-machine.html,

SDFS: A deduplication file-system for Linux [cited 2nd April
2010].
http://www.opendedup.org/.

Soonr: active backup [cited 2nd April 2010].
http://www.soonr.com/,

Sarbanes-Oxley act of 2002, February 2002.
http://www.gpo.gov/fdsys/pkg/
PLAW-107publ204/content-detail.html,

Federal information processing standards publications 180-2:
Secure hash standard (SHS). Technical report, National Institute
of Standards and Technology Gaithersburg, MD 20899-8900,
October 2008.
http://csrc.nist.gov/publications/fips/
fips180-3/fipsl180-3_final.pdfl

N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies, pages
31-45, 2007.
http://www.usenix.org/events/fast07/tech/
agrawal.html,

K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient
sharing of encrypted data. In In Proceedings of ASCIP 2002,
pages 107-120. Springer-Verlag, 2002.
http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.19.9837,

D. Bernstein. The Salsa20 family of stream ciphers. New Stream
Cipher Designs, pages 84-97, 2008.
http://dx.doi.org/10.1007/
978-3-540-68351-3_8.

W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single
instance storage in Windows 2000. In Proceedings of 4th
USENIX Windows Systems Symposium. Usenix, 2000.
http://research.microsoft.com/apps/pubs/
default.aspx?id=74261,

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility
of a serverless distributed file system deployed on an existing set
of desktop PCs. In Proceedings of the international conference
on measurement and modeling of computer systems (SIGMET-
RICS), 2007.
http://research.microsoft.com/apps/pubs/
default.aspx?1d=74262,

A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentral-
ized deduplication in SAN cluster file systems. In Proceedings
of the 2009 Usenix Annual Technical Conference. Usenix, June
2009.
http://www.usenix.org/events/usenix09/tech/
full papers/clements/clements.pdf.

J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In In Proceedings of 22nd
International Conference on Distributed Computing Systems
(ICDCS, 2002.

http://citeseerx.ist.psu.edu/
viewdoc/download; jsessionid=
75E78117EB6C02C4493CA49F28775D652doi=10.
1.1.8.7586&rep=repl&type=pdf.

G. Gonsalves. Content addressable storage for encrypted shared
backup. Master’s thesis, School of Informatics, University of
Edinburgh, 2009.
http://homepages.inf.ed.ac.uk/dcspaul/
publications/CASFESB.pdf.

M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure
data deduplication. In StorageSS ’08: Proceedings of the 4th
ACM international workshop on Storage security and survivabil-
ity, pages 1-10, New York, NY, USA, 2008. ACM.
http://portal.acm.org/citation.cfm?id=
1456469.1456471+#.

M. Vrable, S. Savage, and G. M. Voelker. Cumulus: Filesystem
backup to the cloud. In Proceedings of the 7th USENIX Confer-
ence on File and Storage Technologies (FAST), February 2009.
http://cseweb.ucsd.edu/~voelker/pubs/
cumulus—fast09.pdfl

D. Wang, L. Wang, and J. Song. SEDBRS: A secure and efficient
desktop backup and recovery system. Data, Privacy, and
E-Commerce, International Symposium on, 0:304-309, 2007.
http://www.computer.org/portal/web/csdl/
doi/10.1109/ISDPE.2007.27

http://www.backblaze.com/
http://www.backjack.com
http://www.carbonite.com/
http://www.crashplan.com
http://www.backupcentral.com/content/view/145/47/
http://www.backupcentral.com/content/view/145/47/
http://humyo.com/
http://www.idrive.com
http://www.jungledisk.com/
http://www.lessfs.com
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.apple.com/macosx/what-is-macosx/time-machine.html
http://www.opendedup.org/
http://www.soonr.com/
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.usenix.org/events/fast07/tech/agrawal.html
http://www.usenix.org/events/fast07/tech/agrawal.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.9837
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.9837
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1007/978-3-540-68351-3_8
http://research.microsoft.com/apps/pubs/default.aspx?id=74261
http://research.microsoft.com/apps/pubs/default.aspx?id=74261
http://research.microsoft.com/apps/pubs/default.aspx?id=74262
http://research.microsoft.com/apps/pubs/default.aspx?id=74262
http://www.usenix.org/events/usenix09/tech/full_papers/clements/clements.pdf
http://www.usenix.org/events/usenix09/tech/full_papers/clements/clements.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=75E78117EB6C02C4493CA49F28775D65?doi=10.1.1.8.7586&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=75E78117EB6C02C4493CA49F28775D65?doi=10.1.1.8.7586&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=75E78117EB6C02C4493CA49F28775D65?doi=10.1.1.8.7586&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=75E78117EB6C02C4493CA49F28775D65?doi=10.1.1.8.7586&rep=rep1&type=pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/CASFESB.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/CASFESB.pdf
http://portal.acm.org/citation.cfm?id=1456469.1456471#
http://portal.acm.org/citation.cfm?id=1456469.1456471#
http://cseweb.ucsd.edu/~voelker/pubs/cumulus-fast09.pdf
http://cseweb.ucsd.edu/~voelker/pubs/cumulus-fast09.pdf
http://www.computer.org/portal/web/csdl/doi/10.1109/ISDPE.2007.27
http://www.computer.org/portal/web/csdl/doi/10.1109/ISDPE.2007.27

	Introduction
	De-duplication & Encryption
	A Solution

	The Backup Algorithm
	De-duplication
	Convergent Encryption
	The Algorithm
	Implementation

	Prototype System
	Architecture
	FSEvents Module
	Local Meta DB
	Backup Module
	Upload Queue
	Server Application

	Laptop Filesystem Statistics
	Key Statistics
	Backup Simulation
	Data Duplication

	Using Cloud Storage
	Cost Saving: Data De-Duplication
	Cost Saving: Data Aggregation
	Case Study: Six-Month Bill Using S3

	Conclusions
	Acknowledgements

