
E Unum Pluribus
Google Network Filtering Management

(with apologies to the latin nerds about the conjugation)

 Paul (Tony) Watson
&

Peter Moody

A Few Facts About Google's Edge

•  Around 6,000 configured public services VIPs
o  Many of these are shared between multiple services
o  Each VIP and service has multiple backend systems

•  Around 100 distinct services ports
o  We are not just web anymore!

•  HTTP / HTTPS services run on over 4,600 of those VIPs
•  Edge cache deployments

•  Recently, Facebook announced it had over 30,000 servers
o  This amounts to a rounding error compared to the

infrastructure we are required to protect at Google

•  Unfortunately, we can't release specific numbers

Network Access Control Needs

•  Specific Router ACL Needs
o  Production filtering
o  Edge cache filtering
o  Corporate filtering
o  Internal filtering (labs, contractors, special needs, etc)‏
o  Acquisition access filtering
o  Transit filtering
o  Individual host and network device filtering

•  Stateful firewalls are used in many places as well, but are not
alw
ays necessary, or cannot meet the throughput requirements.

Historical ACL Management at Google

•  Manual maintenance of
hundred
s
 of individual filters which were manually updated as needed
o  Often required duplication of large blocks of

netw
orks to multiple filters that had varying syntax and formats

o  Method was prone to human error and typos
o  Very time consuming to maintain
o  Extremely difficult to review and audit
o  Often required maintaining of

identi
c
al filters for multiple platforms (Juniper, Cisco, F10, etc.)‏

•  Several previous efforts helped simplify the process, but these
project
s were disjointed, awkward or too "need" or platform specific

E Unum Pluribus (Out of one, many)‏

•  What was needed was a
common language to describe
security policies and a
stan
d
ardized interconnect between the language and policy rules

•  The language should define
a policy and be clear and easy
to read, but
fle
x
ible enough to accommodate most common filtering formats

•  Policies should be able to share common objects and definitions (ASNs, hosts, networks,
grou
p
s of hosts and networks, services and service groups, etc.)‏

•  Automate as much of the process as possible to reduce potential for human error, speed

Initial Design Structure

•  IP Address library
o  ipaddr / nacaddr

•  Naming library
•  Policy library
•  Generator libraries

o  Juniper
o  Iptables
o  Cisco standard
o  Cisco extended
o  Cisco named
o  others

•  Compiler (aclgen)
•  Unit tests

The system was designed in
a modular fashion to allow us
to independently develop and
test the various components
and allow for reuse in later
tools.

ACL Generation Process Flow

policy

naming nacaddr

juniper
generator

cisco
generator

iptables
generator

Definition
Files

Policy
Files

Generated
ACL Filter

Overview of Libraries

The following slides provide a brief overview of the various
libraries and components used in the ACL generation system.

The system is command line based, but designed such that it will easily
allow overlay of various Web or other GUI interfaces

Release early, release often

The system we use in-house has several key differences:
•  perforce integration for revision control and reviews
•  iptables system with custom deployment and loader
•  integration with other internal systems and processes
•  more

IP Address Library

What it provides:
•  lightweight, fast IP address manipulation.

To define an IP address object:
 import nacaddr
 ip = nacaddr.IP('10.1.1.0/24', 'text comment', 'token name')

The text comment and token name are optional, and provide
extensions to the base IPaddr library that allow us to carry
comments from the naming definitions to the final output.

Next, lets examine the methods available to the 'ip' object.

IP Address Library

ip.version -> numeric value, 4 or 6
ip.text -> value of text comment
ip.token -> value of naming library token
ip.parent_token -> value of naming parent token, if nested
ip.prefixlen -> numeric prefix length of IP object (24)‏
ip.numhosts -> number of addresses within prefix (256)‏

ip.ip_ext -> IP address 10.1.1.0
ip.netmask_ext -> netmask of address 255.255.255.0
ip.hostmask_ext -> hostmask of address 0.0.0.255
ip.broadcast_ext -> broadcast address 10.1.1.255
ip.network_ext -> network address 10.1.1.0

* Non _ext methods also exist, that provide integer values.

Naming Library

The naming library provides an easy way to lookup addresses
and services based on token names, which we refer to as
definitions. We store definitions in a directory containing an
arbitrary number of files. Files can be used to separate
definitions based on roles or function, but this filename
distinction does not carry into the object usage.

Network defintions files must end in '.net'
Service definitions files must end in '.svc'

Multiple groups can maintain individual .net or .svc files
Definitions can then be easily used by other tools or teams

*creating a naming standard is always encouraged

Naming Network Definitions Format

RFC1918 = 10.0.0.0/8 # non-public
 172.16.0.0/12 # non-public
 192.168.0.0/16 # non-public

INTERNAL = RFC1918

LOOPBACK = 127.0.0.1/32 # loopback
 ::1/128 # ipv6 loopback

NYC_OFFICE = 100.1.1.0/24 # new york office
SFO_OFFICE = 100.2.2.0/24 # san francisco office
CHI_OFFICE = 100.3.3.0/24 # chicago office

OFFICES = NYC_OFFICE SFO_OFFICE
 CHI_OFFICE

Naming Service Definitions Format

WHOIS = 43/udp

SSH = 22/tcp

TELNET = 23/tcp

SMTP = 25/tcp

MAIL_SERVICES = SMTP
 ESMTP
 SMTP_SSL
 POP_SSL
DNS = 53/tcp 53/udp

Naming Library Usage

>>> import naming
>>> definitions = naming.Naming('/my/definitions/directory')‏
>>> dir(definitions)
['GetIpParents', 'GetNet', 'GetNetAddr', 'GetService',
'GetServiceB
yProto', 'GetServiceParents', 'ParseNetworkList', 'ParseServiceList', ...]

>>> definitions.GetNet('INTERNAL')
[IPv4('10.0.0.0/8'), IPv4('172.16.0.0/12'), IPv4('192.168.0.0/16')]
*note that this returns NacAddr objects, allowing easy IP address manipulation.

>>> definitions.GetService('DNS')
['53/tcp', '53/udp']

>>> definitions.GetServiceByProto('DNS','tcp')
['53']

Policy Library

•  The policy library is intended to read and interpret high-level
network policy files

•  Uses the naming library to convert tokens to networks and
services

•  Creates an object that is suitable for passing to any of the
output generators

•  Each policy definition file contains 1 or more filters, each
with 1 or more terms
o  Header sections - defines the filter attributes
o  Term sections - defines the rules to be implemented

•  There is no support for NAT at this time
o  You can add support and submit patches

•  Policy language has both required and optionally supported
keyword - generators must support required keywords

Policy Definition Format

header {
 comment:: "edge input filter for sample network."
 target:: juniper edge-inbound
}
term discard-spoofs {
 source-adress:: RFC1918
 action:: deny
}
term permit-ipsec-access {
 source-address:: REMOTE_OFFICES
 destination-address:: VPN_HUB
 protocol:: 50
 action:: accept
}
....

Generator Libraries

There are current 3 generator libraries, more are desired
•  Juniper
•  Cisco
•  Iptables

Juniper can generate 3 output formats:
•  IPv4
•  IPv6
•  Bridge

Cisco can generate 3 output formats:
•  extended
•  standard
•  object-object (extended with object-groups)‏

Iptables can generate 2 output formats:
•  IPv4
•  IPv6

Cisco Generator

•  Renders policy objects into Cisco network ACL filters

•  Defaults to generating "extended" ACL filters

•  Supports several output formats:
o  Extended
o  Standard
o  Object-Group

•  Does not currently support IPv6 filter generation
•  Output text begins with "no ip access-list...", then defines

replacement with "ip access-list..."
o  Provides for easy cut-paste deployment

•  Each policy term is identified in remark text

Cisco Generator

header {
 comment:: "cisco filter header"
 target:: cisco [filter name] {extended|standard|object-group}
}

Defining Cisco output in the Policy "header" section:

For standard ACLs, the format is:
header {
 comment:: "cisco filter header"
 target:: cisco [number] standard
}

Juniper Generator

The most fully featured generator, since Google has a long
history as a Juniper partner

Supports most "optional" policy definition keywords:
•  destination-prefix:: currently only supported by the juniper generator
•  ether-type:: currently on used by juniper generator to specify arp packets
•  fragement-offset:: currently only used by juniper generator to specify a fragment

offset of a fragmented packet
•  icmp-type:: [echo-reply|echo-request|port-unreachable]
•  logging:: specify that this packet should be logged
•  loss-priority:: juniper only, specify loss priority
•  packet-length:: juniper only, specify packet length
•  policer:: juniper only, specify which policer to apply to matching packets
•  precedence:: juniper only, specify precendence
•  qos:: apply quality of service classification to matching packets
•  routing-instance:: juniper only, specify routing instance for matching packets
•  source-prefix:: juniper only, specify source-prefix matching
•  traffic-type:: juniper only, specify traffic-type

o  [broadcast|multicast|unknown_unicast]

Juniper Generator

header {
 comment:: "juniper filter header"
 target:: juniper [filter name] {inet|inet6|bridge}
}

Defining Juniper output in the Policy "header" section:

Iptables Generator

•  Used within Google as component of a host based
security system.

•  The current output format is not suitable for 'iptables-
restore'
o  This is planned for the open-source version shortly
o  Until then, each line can be passed to /sbin/iptables
o  Internally, Google uses its own specialized loader (speedway)

•  Supports both IPv4 and IPv6 filter generation

•  Terms are rendered as jumps in the base filters
o  Optimization algorithm desirable, especially for large filters

•  Permits setting of default policy on filters

Iptables Generator

header {
 comment:: "iptables filter header"
 target:: iptables [INPUT|OUTPUT|FORWARD] {ACCEPT|DROP} {inet|inet6}
}

Defining Iptables output in the Policy "header" section:

Internally, we generate multiple smaller Iptables filters that
each provide a specific function, then chain then together for
create policies.

For example: we have a base policy that is always applied,
and may include one or more additional 'modules' to enable
functionality such as web-services, mail-services, etc.

Compiler (AclGen)

Located in parent directory: aclgen.py

Arguments:
 -d [definitions]
 -p [policy source file]
 -o [output directory]
 --poldir [policy source directory]
 --help -h

The -p option is generates output for a single policy source file

The --poldir option allows you to generate ACLs for an entire
directory of source policies

Assurance / Validation Development

The following slides provide a brief overview of the various
libraries and components used in our ACL assurance and
validation processes.

These tools are essential parts of the ACL process at Google.

We do not want our customers to suffer an outage due to an
error or accident in our ACL management.

Assurance / Validation Development

•  AclCheck library
o  NacParser libary
o  AclTrace library

•  Netflow validation
o  aka "snackle"

•  Netscaler validation
o  aka "crackle"

•  Policy Reader library
•  Term Occlusion library
•  Iptables assurance

o  aka "Pole Position"

Once the initial system was
built, it allowed us to easily do
things that were previously
very difficult or impossible.

Regular reports are now
generated advising us of
potential problems or issues.

Other code and projects have
also integrated components of
our system into their own
code, such as naming library
& definitions.

AclCheck Libary

•  Having all the various flavors of ACLs in a single policy
format allows us the ability to easily analyze filters

•  Allow verification of specific packets against a policy to
determine what matches will occur

•  Pass in policy, src, dst, dport, sport, proto and it returns and
aclcheck object

•  Methods:
o  ActionMatch(action) - matched terms for this exact action
o  DescribeMatches() - text descriptions of matches
o  ExactMatches() - excludes 'next' actions
o  Matches() - list of matched terms

•  AclCheck is the basis for most of our ACL validation tools
that we describe in the following slides

Netflow Validation (aka Snackle)

•  We cannot tolerate accidental outages due to ACL errors

•  "Snackle" compares huge amounts of previous netflow data
against proposed ACL changes

•  Alerts us whenever a new ACL is built, but before it is
pushed out if a possible conflict is detected

•  Allows us to detect errors before they might affect our users
o  accidentally blocking POP3 to gmail servers for example

•  Obviously, it cannot identify problems that result from "new"
services that did not exist in previous netflow sessions

*This tool is not being released at this time

Netflow Validation (aka Snackle)

deny->accept
id=1003,64.81.47.74:34609,216.73.86.153:80(global-discard-reserved)(global-accept-gtransit-customer-af4)
id=1035232,98.171.189.17:52555,209.62.189.11:80(global-discard-reserved)(global-accept-gtransit-customer-af4)
id=1036450,66.74.106.59:1989,209.62.176.153:80(global-discard-reserved)(global-accept-gtransit-customer-af4)
...

accept->deny
id=1003,64.81.47.74:34609,216.73.86.153:80(global-accept-gtransit-customer-af4)(global-discard-reserved)
id=1035232,98.171.189.17:52555,209.62.189.11:80(global-accept-gtransit-customer-af4)(global-discard-reserved)
id=1036450,66.74.106.59:1989,209.62.176.153:80(global-accept-gtransit-customer-af4)(global-discard-reserved)
...

Or

Example Snackle Report Text:

VIP Validation (aka Crackle)

•  We cannot tolerate accidental outages due to ACL errors

•  "Crackle" parses configurations of our public VIPs to
determine what IPs and services should be available

•  Alerts us whenever a new ACL is built, but before it is
pushed out, if a possible conflict is detected

•  Allows us to detect errors before they might affect our users
o  inadvertently blocking POP3 to Gmail servers for example

•  Also identifies stale or misconfigured load balancers
•  This has saved us from inadvertent outages on several

occasions

*This tool is not being released at this time

In this example, we see
that 25/tcp is being
blocked to a public IP
that was configured to
receive SMTP.

The "details" dropdown
advises us which
service tokens contain
25/tcp, and which
network tokens contain
the public IP.

Then it shows us likely
related ACL terms.

Iptables Assurance - aka Pole Position

•  Adds deployment tracking to Google "Speedway"
deployments

•  All deployment report back to central collector at regular
intervals
o  install hash, current hash, role, modules, interface stats

•  Collector performs variety of functions on data
o  validates reports
o  stores valid data in database
o  analyzes data for issues
o  reports in real-time though Web UI

 all hosts
 per role reports

*This tool is not being released at this time

Simple search
box allows us to
find hosts by DNS
or IP matching.

The "Recent
Alerts" (closed)
shows only the
hosts reporting
errors.

The "Recent
Reports" shows
all hosts in the
selected role.

Policy Reader library

•  The policy reader library is a recent addition that allows other
code to easily examine policy source files

•  The policy library only reads policies for the purpose of
rendering objects for passing to generators

•  For some tools, we needed to be able to easily examine the
various filters and terms for programatically
o  where certain tokens are used
o  where specific options are used
o  etc.

•  Policy reader renders simple objects that allow us to do this
•  Handy for a variety of tools, such as rendering policies in a

Web UI for example

Term Occlusion library

Another library built onto this system examines complex ACLs
to identify when a term will block or overlap subsequent terms

This library helps us to identify common errors such as:
•  overly broad terms
•  mismatched QoS accepts (more specific before more

general terms)

*This is not being released at this time

Summary - Do Know Evil!

•  ACLs are highly prone to human error
•  Manually auditing and reviewing large and complex ACLs is

very difficult and time consuming
•  Keeping large blocks of networks in sync between large

numbers of ACLs is time consuming and error prone
•  Automating these tasks reduces manual labor, helps

eliminate typos, and helps identify logical errors

Without this system, we would be overwhelmed today due to
the size, complexity and large number of ACLs in the Google
environment.

We have open sourced much of this code hoping
to help other large and small business.

Core Code Released to the Public

We have open-sourced software under the Apache2 license

http://code.google.com/p/capirca/

** Detailed help and documentation is available on the wiki **

If you use it and modify it, please contribute your patches back.

The name, "capirca", was intended to be "caprica" from BattleStar galactica (the
"new world"). I registered the misspelling, then later noticed the error, but the
correct spelling was already taken.

So, for efficiency(?) we have kept the name Capirca.

