SEEdit: SELinux Security Policy Configuration
System with Higher Level Language

Yuichi Nakamura, Yoshiki Sameshima

Hitachi Software, Japan
{ynakam,same}@hitachisoft.jp

Toshihiro Tabata

Okayama University, Japan
tabata@cs.okayama-u.ac.jp

HitachiSoft
P s, 25, H<

-

1. Introduction

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

l What is SELinux? 3

* Security-Enhanced Linux
— Developed by NSA (http://www.nsa.gov/selinux)
— Security enhancement in the Linux kernel layer

* Confine behavior of attackers by access control feature
— Least privilege (Type Enforcement:TE)
— Mandatory Access Control (MAC)

* No one (including root) can avoid

* Widely used for servers
— Enabled on Redhat, CentOS by default at installation time

— Also useful for embedded devices
* Small enough for CE Linux devices, low overhead

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

TE (Type Enforcement): The Access Control Model 4

Process Resource

read

t , read File : /var/www
"o —— @ Type:web contents t
Domain:httpd t ‘ ype.web_ 2

Check read permission
between domain and type

SecurityJ

Policy

* Label based access control
— Domain labels are assigned to processes
— Type labels are assigned to resources

* The “security policy”

— Set of access rules are written by SELinux policy language
Domain is not allowed nothing by default, only accesses permitted in the security policy are permitted

— Security policy must be created to use SELinux

allow httpd_t web_contents _t file:{ read };

T

Domain Type Permission

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

l The purpose of our research 5

* Bad reputation of SELinux: SELinux is difficult, unusable

— SELinux is included in major Linux distros, but

sysadmins/engineers are often recommended to disable SELinux
W, A \rs Ué AN

selinux

selinux disabled
selinux tutorial
selinux howto

* Why? : Security policy configuration is difficult

— Fine grained permissions (more than 700), label configurations
(often more than 1,000), access rules (often more than 100,000)

— Hard to write, understand

* What we want to do
— make it easy to write, understand the security policy

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

-

2. Problems in the existing method

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Existing method against the difficulty of security policy

* Refpolicy : the most popular
— Developed by the SELinux community
— Security policies are usually created using refpolicy

* The approach of refpolicy

— Sample configurations
* Prepare as many configurations as possible by the power of SELinux community
* Configurations for most applications in Fedora and Cent OS are covered

— Macros

* For the convenience of policy writers, macros are defined to write commonly used
sentences in short expressions

* Refpolicy works very well if system is used as expected by

refpolicy developers

* E.g. If we use Cent OS as default configuration, we do not have to do almost
nothing for SELinux.

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

l Limitations of refpolicy 8

* Preparing sample configurations for everything is impossible

— Customizing refpolicy is necessary in systems that are not expected
by refpolicy developers

* E.g. Commercial applications, embedded system

* To customize, we have to write and understand refpolicy
configurations

— Understanding is also important because people often do not want to
use what they can not understand.

* However, writing/understanding refpolicy configurations for is
difficult

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Why writing/understanding refpolicy is difficult? 9

* #1 Amount of configuration lines
— More than 100,000 configuration lines

* To support as many use cases as possible, configurations for
many applications, conditional rules are included

— Size is also a problem for resource constrained embedded devices
* #2 Number of configuration elements
— More than 700 Permissions, 1,000 types, 1,000 macros..

* #3 Type configuration
— Sysadmins have been identifying resources as “file name”, so not

familiar with types
* Example:

apache_content_template(sys)
- A macro. To understand what is configured we have to look for the definition,
sometimes definition is nested.

Ivar/lwww(/.*)? gen_context(system_u:object_r:httpd _sys content_t,s0O)

- Type configuration to assign httpd_sys content_t type under /var/www

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

-1 1

3. SEEdit (SELinux Policy Editor)

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

l Our Approach against the security policy problem 11

* We propose tool “SEEdit”
— SEEdit = SPDL + SPDL Tools

* DIY Tool to create the security policy
— SPDL (Simplified Policy Description Language)
* Higher level language

* Reduce number of permissions
* Hide type configurations

— SPDL tools

* Help to write configurations with SPDL

* Write only necessary configurations from zero by
SEEdit(without reusing refpolicy), so number of configuration
lines and size are expected to be reduced

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

_—

Configurations written in SPDL

T

domain httpd _t;
allow /var/www/** r.s;

7

W “system_u:object_rivar www _t
Simplified Policy [>(SPDL Converter), > ThePSo?ig;rity

SEDL Tools

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

The Architecture of SEEdit 12

— N

Configurations written in SELinux Policy
Language

domain httpd_t,domain;

type var_www_t;

allow htfpd_t var www_t:file r_file_perms;

The SPDL 13

* Type configurations are hidden
— ldentify resources with names not types

* Number of permissions are reduced by Integrated
permission

— Integrated permission “r” for file grants 14 SELinux
permissions related to read files

* Example: Granting httpd_t domain read access to files and port 80

/domain httpd_t; \
program /usr/sbin/httpd

allow /var/www/** r;

\allownet —protocol tcp —port 80 server;/

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

Converting SPDL to SELinux Policy Language 14

SPDL
domain httpd _t;
allow /var/www/** r.s;

Generates \

— type labels from resource names
— allow statements
— relationship between types and files

-

SPDL converter

/" SELinux Policy Language N
type httpd_t, domain;

role system_r types httpd t;

type var_ www _t.file type;

allow httpd_t var_ www _t:file { read ioctl lock };

allow httpd_t var_ www_t:dir {read ioctl lock search};

allow httpd_t var_www_t:Ink_file { read ioctl lock};

K/\/ar/www(*)? system_u:object_rivar www_t
Copyright © 2009 Hitachi Software Engineering Co., Ltd. —

SPDL Tools 15

* SPDL tools aim to help writing security policy

Typical process of writing the security policy SPDL Tools
(1) Assign domain < Template generator
<

(2) Run application

' No
(3) Describe configurations to
allow access using logs < Allow generator

4) Run correctly?

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Template generator

seedit Domain/Role Manager E]@E]

. . . =
* Generate typical configuration ..
—_ Daemon? Desktop application? Create Domain‘DeIete Domainl

Domain information

Program you want to confine: [fusrfsbinfvsftpd l lBrowse]
MNarme of domain: [vsftpd_t

[» Optional

Daemon program? @& Yes (O No

Authentication pregram? () Yes (@) No

Desktop application? () Yes (& No

Create Template

* Input knowledge about the target application
— What file does it access? |= inaefaliey [=JBilx]

Wh q _ o File | Network |

at port 0es It use : File/Dir name:[a’varffm HBrmuse]
) Itself) All files in directory @ All files in directory,subdirectories
Permissoins

s(Search)] rfRead) [x(eXecute)
(] wiWrite) [* Detailed write Permission

4r Add | | X Close
Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

Allow generator

* Generate policy by audit2allow’s approach
* Generate configurations from access logs
- E.g

* Log : httpd_t domain read accessed /var/www
* Generated SPDL.: in httpd_t, allow /var/www r;

* Do not have to write configurations by hand
] seedit policy generator EI@E

Generation configuration | Result

Result

Save Domain| Policy Log

type=AVC
L[] wsftpd_t allownet -protocol tcp -port 1024- serv... 2:;]':_ 4?
sconte:

type=AVC n

L] wsftpd_t allow /etc/vsftpd/vsftpd.conf r,s; ;Lc_ 4;

sconte:

type=AVC m

) _ avc, o
(1 wsftpd_t allowpriv cap_sys_chroot; pid=43]

sconte:

4| [+)

Copyright © 2009 Hitachi Software

18

4. Evaluation

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Experimental setup

* Created policy for PC server system and embedded system

 PC
— Linux: Cent OS5

— Running Services:

* auditd,avahidaemon,crond,cupsd,dhclient,gdm,httpd,klogd,mc-
stransd,named,ntpd,portmap,samba,send-mail,sshd,syslogd

S Configured 16 domains in the security policy

* Embedded System

— Hardware:
« CPU: SH7751R@240Mhz, RAM:64MB, FlashRom:64MB

— Linux: Hand-maid Linux (Linux distribution is not used)

— Running Services:
* httpd,vsftpd,syslogd,klogd,portmap

"> Configured 5 domains in the security policy

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

Writing configurations 20

* The amount of lines
— 401 lines for PC system
— 174 lines for embedded system
"> Does not take so much time to describe such amount

* Number of configuration elements
— Permissions: 700(before) -> 76(SPDL)
— Macros: 2,0000ver(before) -> about 10 statements(SPDL)
— Type configurations: Necessary(before) -> not necessary (SPDL)

* Template Generator

— Assuming the tool user knows path of application’s config files, log
files, port number, 50% configurations are described by the tool.

 Allow Generator

— Most of configurations generated by the tool could be used without
modification

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

Understanding configurations

Configurations by SPDL

(allow httpd to read /var/www and port 80)
Assign httpd_t domain to http daemon

1 domain httpd_t;

2 program /usr/sbin/httpd;

Permit httpd_t to read /var/www

3 allow /var/www/** s,r;

Permit httpd_t to wait connection on tcp port 80

4 allowcom -protocol tcp -port 80 server;

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Similar configurations in refpolicy

Assign httpd_t domain to http daemon

1 type httpd_t;

2 type httpd_exec t;

3 role system_r types httpd_t;

4 init_daemon_domain(httpd_t,httpd_exec_t)

5 Jusr/sbin/httpd -- gen_context(system_u:object_r:httpd_exec_t,s0)

Permit httpd_t to read /var/www

6 apache_content_template(sys)

7 Ivar/www(/.*)? gen_context(system_u:object_r:httpd_sys_content_t,s0)
8 allow httpd_t httpd_sys_content_t:dir list_dir_perms;

9 read_files_pattern(httpd_t,httpd_sys_content_t,httpd_sys_content_t)
10 read_Ink_files_pattern(httpd_t,httpd_sys_content_t,httpd_sys_content _t)
Permit httpd_t to wait connection on tcp port 80

11 corenet_all_recvfrom_unlabeled(httpd_t)

12 corenet_all_recvfrom_netlabel(httpd_t)

13 corenet_tcp_sendrecv_all_if(httpd_t)

14 corenet_udp_sendrecv_all_if(httpd_t)

15 corenet_tcp_sendrecv_all_nodes(httpd_t)

16 corenet_udp_sendrecv_all_nodes(httpd_t)

17 corenet_tcp_sendrecv_all_ports(httpd_t)

18 corenet_udp_sendrecv_all_ports(httpd_t)

19 corenet_tcp_bind_all_nodes(httpd_t)

20 corenet._tcp.bind. http.
21 gen_context(system_u:obj

Size 22

* In embedded system, size is very important
* Refpolicy based security policies are 2-5MB

* The footprint of created policy for the embedded system
— File size : 71KB
— RAM Usage : 465KB
—> Not significant problem

* The size is small because unnecessary configurations are
not included, only necessary configurations were
described

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Usability-Security Tradeoffs

* Integrated permissions

— Multiple SELinux permissions are merged to one integrated
permission, so granularity is reduced.

(13}

— EX: Integrated permission “r
* read permissions to file,symbolic link are merged
* To allow access to symbolic link not normal file is impossible

— To solve this, we have to support new SPDL syntax to allow
single SELinux permission.

* Audit2allow approach in allow generator

— Unnecessary accesses may be allowed, if we use generated
configurations blindly.

— Example:

* If there is a bug in a target application, and the application accesses
/letc/shadow by mistake. - Rules allowing access to /etc/shadow is
generated

— We have to check output of allow generator.
* Some tool to check mistake may be useful

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

24

5. Summary

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Summary and future works

 (Conclusion

— SEEdit makes it easy to write, understand security polcy configurations
with SPDL and SPDL tools.

* SPDL simplifies syntax to describe security policy configurations
* SPDL tools help to write configurations by using knowledge of users and access logs.

* Future works

— Current SEEdit can not be used for refpolicy based security policy

* Refpolicy can not be reused because SPDL converter can not generate configurations
compatible with refpolicy

— Have to improve SPDL converter to generate configurations
appendable to existing refpolicy configurations

* Availability
— Available at

— Last update of web page is 2008, but code is still updated in 2009.
Latest code is available in subversion
* svn co https.//seedit.svn.sourceforge.net/svnroot/seedit/trunk

Copyright © 2009 Hitachi Software Engineering Co., Ltd. _

http://seedit.sourceforge.net/

26

HitachiSoft
P s £25. &<

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries..

All other trademarks or registered trademarks are the property of their respective owners.

