
Copyright © 2009 Hitachi Software Engineering Co., Ltd.

Yuichi Nakamura, Yoshiki Sameshima
 Hitachi Software, Japan

 {ynakam,same}@hitachisoft.jp

Toshihiro Tabata
Okayama University, Japan
tabata@cs.okayama-u.ac.jp

SEEdit: SELinux Security Policy Configuration SEEdit: SELinux Security Policy Configuration
System with Higher Level LanguageSystem with Higher Level Language

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

2

1.1. IntroductionIntroduction

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

3What is SELinux?What is SELinux?

• Security-Enhanced Linux
– Developed by NSA (http://www.nsa.gov/selinux)
– Security enhancement in the Linux kernel layer

• Confine behavior of attackers by access control feature
– Least privilege (Type Enforcement:TE)
– Mandatory Access Control (MAC)

• No one　(including root) can avoid

• Widely used for servers
– Enabled on Redhat, CentOS by default at installation time
– Also useful for embedded devices

• Small enough for CE Linux devices, low overhead

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

4TE (Type Enforcement):TE (Type Enforcement): The Access Control Model The Access Control Model

File：/var/www
Type:web_contents_t

httpd
Domain:httpd_t

Process Resource
read
request

• Label based access control
– Domain labels are assigned to processes
– Type labels are assigned to resources

• The “security policy”
– Set of access rules are written by SELinux policy language

• Domain is not allowed nothing by default, only accesses permitted in the security policy are permitted
– Security policy must be created to use SELinux

allow httpd_t web_contents_t file:{ read };

Domain Type Permission

Security
Policy

SELinux

Check read permission　
between domain and type

read

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

5The purpose of our researchThe purpose of our research

• Bad reputation of SELinux: SELinux is difficult, unusable
– SELinux is included in major Linux distros, but

sysadmins/engineers are often recommended to disable SELinux

• Why? : Security policy configuration is difficult
– Fine grained permissions (more than 700), label configurations

(often more than 1,000), access rules (often more than 100,000)
– Hard to write, understand

• What we want to do
– make it easy to write, understand the security policy

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

6

2. Problems in the existing method2. Problems in the existing method

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

7Existing method against the difficulty of security policyExisting method against the difficulty of security policy

• Refpolicy : the most popular
– Developed by the SELinux community
– Security policies are usually created using refpolicy

• The approach of refpolicy
– Sample configurations

• Prepare as many configurations as possible by the power of SELinux community
• Configurations for most applications in Fedora and Cent OS are covered

– Macros
• For the convenience of policy writers, macros are defined to write commonly used

sentences in short expressions

• Refpolicy works very well if system is used as expected by
refpolicy developers

• E.g. If we use Cent OS as default configuration, we do not have to do almost
nothing for SELinux.

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

8Limitations of refpolicyLimitations of refpolicy

• Preparing sample configurations for everything is impossible
– Customizing refpolicy is necessary in systems that are not expected

by refpolicy developers
• E.g. Commercial applications, embedded system

• To customize, we have to write and understand refpolicy
configurations
– Understanding is also important because people often do not want to

use what they can not understand.

• However, writing/understanding refpolicy configurations for is
difficult

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

9Why writing/understanding refpolicy is difficult?Why writing/understanding refpolicy is difficult?

• #1 Amount of configuration lines
– More than 100,000 configuration lines

• To support as many use cases as possible, configurations for
many applications, conditional rules are included

– Size is also a problem for resource constrained embedded devices
• #2 Number of configuration elements

– More than 700 Permissions, 1,000 types, 1,000 macros..
• #3 Type configuration

– Sysadmins have been identifying resources as “file name”, so not
familiar with types

* Example:
 apache_content_template(sys)
  A macro. To understand what is configured we have to look for the definition,
 sometimes definition is nested.

 /var/www(/.*)? gen_context(system_u:object_r:httpd_sys_content_t,s0)
  Type configuration to assign httpd_sys_content_t type under /var/www

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

10

3. SEEdit (SELinux Policy Editor)3. SEEdit (SELinux Policy Editor)

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

11Our Approach against the security policy problemOur Approach against the security policy problem

• We propose tool “SEEdit”
– SEEdit = SPDL + SPDL Tools

• DIY Tool to create the security policy

– SPDL (Simplified Policy Description Language)
• Higher level language
• Reduce number of permissions
• Hide type configurations

– SPDL tools
• Help to write configurations with SPDL

• Write only necessary configurations from zero by
SEEdit(without reusing refpolicy), so number of configuration
lines and size are expected to be reduced

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

12The Architecture of SEEditThe Architecture of SEEdit

Simplified Policy The Security
Policy

Configurations written in SPDL
domain httpd_t;
allow /var/www/** r,s;

Configurations written in SELinux Policy
Language
domain httpd_t,domain;
type var_www_t;
allow httpd_t var_www_t:file r_file_perms;
/var/www(/.*) system_u:object_r:var_www_t

SPDL Converter

SPDL Tools

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

13The SPDLThe SPDL

• Type configurations are hidden
– Identify resources with names not types

• Number of permissions are reduced by Integrated
permission
– Integrated permission “r” for file grants 14 SELinux

permissions related to read files

* Example: Granting httpd_t domain read access to files and port 80

domain httpd_t;

program /usr/sbin/httpd

allow /var/www/** r;

allownet –protocol tcp –port 80 server;

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

14Converting SPDL to SELinux Policy LanguageConverting SPDL to SELinux Policy Language

SPDL
domain httpd_t;
allow /var/www/** r,s;

SELinux Policy Language
type httpd_t, domain;
role system_r types httpd_t;
type var_www_t,file_type;
allow httpd_t var_www_t:file { read ioctl lock };
allow httpd_t var_www_t:dir { read ioctl lock search};
allow httpd_t var_www_t:lnk_file { read ioctl lock};
/var/www(/.*)? system_u:object_r:var_www_t

Generates
– type labels from resource names
– allow statements
– relationship between types and files

SPDL converter

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

15SPDL ToolsSPDL Tools

(1) Assign domain

(2) Run application

(3) Describe configurations to
allow access using logs

(4) Run correctly?

start

No

Yes

End

Typical process of writing the security policy

Template generator

Allow generator

SPDL Tools

• SPDL tools aim to help writing security policy

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

16Template generatorTemplate generator

• Generate typical configuration
– Daemon? Desktop application?

• Input knowledge about the target application
– What file does it access?
– What port does it use?

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

17Allow generatorAllow generator

• Generate policy by audit2allow’s approach
• Generate configurations from access logs

– E.g
• Log : httpd_t domain read accessed /var/www
• Generated SPDL: in httpd_t, allow /var/www r;

• Do not have to write configurations by hand

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

18

4. Evaluation4. Evaluation

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

19Experimental setup

• Created policy for PC server system and embedded system

• PC
– Linux: Cent OS5
– Running Services:

• auditd,avahidaemon,crond,cupsd,dhclient,gdm,httpd,klogd,mc-
stransd,named,ntpd,portmap,samba,send-mail,sshd,syslogd

 Configured 16 domains in the security policy
• Embedded System

– Hardware:
• CPU: SH7751R@240Mhz, RAM:64MB, FlashRom:64MB

– Linux: Hand-maid Linux (Linux distribution is not used)
– Running Services:

• httpd,vsftpd,syslogd,klogd,portmap

 Configured 5 domains in the security policy

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

20Writing configurationsWriting configurations

• The amount of lines
– 401 lines for PC system
– 174 lines for embedded system
 Does not take so much time to describe such amount

• Number of configuration elements
– Permissions: 700(before) -> 76(SPDL)
– Macros: 2,000over(before) -> about 10 statements(SPDL)
– Type configurations: Necessary(before) -> not necessary (SPDL)

• Template Generator
– Assuming the tool user knows path of application’s config files, log

files, port number, 50% configurations are described by the tool.

• Allow Generator
– Most of configurations generated by the tool could be used without

modification

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

21Understanding configurationsUnderstanding configurations

Assign httpd_t domain to http daemon

1 type httpd_t;

2 type httpd_exec_t;

3 role system_r types httpd_t;

4 init_daemon_domain(httpd_t,httpd_exec_t)

5 /usr/sbin/httpd -- gen_context(system_u:object_r:httpd_exec_t,s0)

Permit httpd_t to read /var/www

6 apache_content_template(sys)

7 /var/www(/.*)? gen_context(system_u:object_r:httpd_sys_content_t,s0)

8 allow httpd_t httpd_sys_content_t:dir list_dir_perms;

9 read_files_pattern(httpd_t,httpd_sys_content_t,httpd_sys_content_t)

10 read_lnk_files_pattern(httpd_t,httpd_sys_content_t,httpd_sys_content_t)

Permit httpd_t to wait connection on tcp port 80

11 corenet_all_recvfrom_unlabeled(httpd_t)

12 corenet_all_recvfrom_netlabel(httpd_t)

13 corenet_tcp_sendrecv_all_if(httpd_t)

14 corenet_udp_sendrecv_all_if(httpd_t)

15 corenet_tcp_sendrecv_all_nodes(httpd_t)

16 corenet_udp_sendrecv_all_nodes(httpd_t)

17 corenet_tcp_sendrecv_all_ports(httpd_t)

18 corenet_udp_sendrecv_all_ports(httpd_t)

19 corenet_tcp_bind_all_nodes(httpd_t)

20 corenet_tcp_bind_http_port(httpd_t)

21 gen_context(system_u:object_r:http_port_t,s0)

Assign httpd_t domain to http daemon

1 domain httpd_t;

2 program /usr/sbin/httpd;

Permit httpd_t to read /var/www

3 allow /var/www/** s,r;

Permit httpd_t to wait connection on tcp port 80

4 allowcom -protocol tcp -port 80 server;

Configurations by SPDL
(allow httpd to read /var/www and port 80)

Similar configurations in refpolicy

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

22SizeSize

• In embedded system, size is very important
• Refpolicy based security policies are 2-5MB

• The footprint of created policy for the embedded system
– File size : 71KB
– RAM Usage : 465KB
 Not significant problem

• The size is small because unnecessary configurations are
not included, only necessary configurations were
described

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

23Usability-Security TradeoffsUsability-Security Tradeoffs

• Integrated permissions
– Multiple SELinux permissions are merged to one integrated

permission, so granularity is reduced.
– Ex: Integrated permission “r”

• read permissions to file,symbolic link are merged
• To allow access to symbolic link not normal file is impossible

– To solve this, we have to support new SPDL syntax to allow
single SELinux permission.

• Audit2allow approach in allow generator
– Unnecessary accesses may be allowed, if we use generated

configurations blindly.
– Example:

• If there is a bug in a target application, and the application accesses
/etc/shadow by mistake.  Rules allowing access to /etc/shadow is
generated

– We have to check output of allow generator.
• Some tool to check mistake may be useful

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

24

5. Summary5. Summary

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

25Summary and future worksSummary and future works

• Conclusion
– SEEdit makes it easy to write, understand security polcy configurations

with SPDL and SPDL tools.
• SPDL simplifies syntax to describe security policy configurations
• SPDL tools help to write configurations by using knowledge of users and access logs.

• Future works
– Current SEEdit can not be used for refpolicy based security policy

• Refpolicy can not be reused because SPDL converter can not generate configurations
compatible with refpolicy

– Have to improve SPDL converter to generate configurations
appendable to existing refpolicy configurations

• Availability
– Available at http://seedit.sourceforge.net/
– Last update of web page is 2008, but code is still updated in 2009.

Latest code is available in subversion
• svn co https://seedit.svn.sourceforge.net/svnroot/seedit/trunk

http://seedit.sourceforge.net/

Copyright © 2009 Hitachi Software Engineering Co., Ltd.

26

Linux is a registered trademark of Linus Torvalds in the U.S. and other countries..

 All other trademarks or registered trademarks are the property of their respective owners.

