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Overview

Green Datacenter market drivers and trends
-

 

Inefficient air cooled data centers: Waste of energy and exergy

Thinking global about carbon footprint and energy usage
-

 

Role of IT to tackle climate change
-

 

Economic and political interest  

Thermal packaging and liquid cooling
-

 

Improved thermal conductivity and heat transfer
-

 

Water cooling and refrigerant cooling
-

 

Hotspot cooling 
-

 

History of liquid cooling: Cold –

 

Warm -

 

Hot
-

 

Future interlayer cooling of 3D stacked chips

Energy re-use in liquid cooled data centers
-

 

Reduction of carbon footprint with 
efficiency increase and community heating

-

 

Value of heating and cooling in different climates 
-

 

Joint project with ETH: Aquasar

Main messages and next steps
-

 

Efficiency investments have a short payback time
-

 

Concentrated photovoltaics

 

with energy recovery 
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Green Datacenter Market Drivers and Trends
Increased green consciousness, and rising cost of power

IT demand outpaces technology improvements 
-

 

Server energy use doubled 2000-2005; expected to increase15%/year
-

 

15 % power growth per year is not sustainable 
-

 

Koomey

 

Study: Server use 1.2% of U.S. energy

ICT industries consume 2% ww energy
-

 

Carbon dioxide emission like global aviation

Source IDC 2006, Document# 201722, "The impact of Power and 
Cooling on Datacenter Infrastructure, John Humphreys, Jed Scaramella"

Brouillard, APC, 2006

, 

Future datacenters dominated by energy cost; 
half energy spent on cooling

Real Actions Needed
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Data Center Cooling

Chillers
(Refrigeration)

Evaporative Tower Fans

Condensor

Chilled 
Water 
CRAC/

 

CRAHs

Racks & Fans

Electronic
Power

Datacenter: Cooling Infrastructure
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What’s Driving Demand
Mobility – cell/pda, broadband services, security, merchandising 
(13.6% CAGR from IT Mobile Tracker)

Digital Media – streaming, iptv, music, Radiology, Visualization 
(200% CAGR from e-week Jan 2005)

24x7 global e-commerce: financial 
& manufacturing sectors (26% CAGR 
Source: United States Department of Commerce, 11/ 22/05)

HPC: BioMed – Pharma, genetic research, 
Oil & Gas, Virtualization in structural 
dynamics, Weather (10.5% CAGR Source: IDC)

Real time BI: Walmart, Amazon, 
Yahoo/Google/MSN (Google 
Growth 79% Source: Wall Street Journal 4/21/06)

Compliance – Hippa, Sox – ILM 
(“SOX may be your biggest information-
technology expenditure this decade” source: e-week 8/1/03). 

http://www.census.gov/mrts/www/data/html/05Q3.html
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From the Individual Transistor to the Globe

- Thermal/power issues propagate up to the world climate

- Global length-

 

and decade-long time-scales involved 

- A truly holistic view is required to solve these problems

- IT efficiency improves more than 15% per year

IT to become part of the solution!
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Energy Consumption of Transistor (Leakage Current)
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Rethink: Green Datacenter Metric

New ranking list for supercomputers: Green 500
Ranking of supercomputers which are listed in Top 500
Energy needed for one floating point operation: MFLOPS / Watt
Rank 1 to 20: PowerXCell, BlueGene, and MD GRAPE Accelerator

Roadrunner 2008
PowerXCell 3.2GHz
Linpack: 1100 TFlops
Peak power: 2.5MW
445  MFlops/Watt
No. 1 Top500, No.4 Green500

Earth Simulator 2002

Linpack: 40.9 TFlops
Peak power: 11.9MW
3.4 MFlops/Watt

27x computing performance, 1/5 power consumption, but harder to program

New metric needed that 
includes the site & 
facility energy 
consumption
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Historic Heat Flux Trends

Module and Chip Heat Flux 
Explosion

Number of transistors 
doubles every 18 month

CMOS scaling was power 
density invariant 1980 –
1995 reduction of Vdd

Energy per operation still 
shrinks

Challenge: 
Transistor leakage

2

2
1

ddsw VfCP ⋅⋅=
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Thermal Packaging History

Pentium III
Forced convection
50x50x40 mm3

Pentium IV
Forced convection
80x80x70 mm3

Apple G5
Liquid cooling
170x170x170 mm3

Time line

Increase 10x in volume, 10x in cost, 10x in complexity

8088
Natural convection
bare die
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History of Water Cooling at IBM

Thermal conduction module for 3090 
water cooled systems

Used conventional water cooling for 
power densities up to 100 W/cm2
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Motivation for Packaging Research
Scaling beyond 22 nm decreases performance
~30% per generation 
-

 

Needs to be compensated by new technologies

 
like high k dielectrics, air gap, multicore

-

 

Will get more difficult with every generation

ITRS reports “Acceleration of pace in assembly 
and packaging” and extensively revised 
roadmap in 2008 upgrade

Packaging compensates for slower chip efficiency improvements

2002           2007/08         2010

System Performance
Moore’s law

Transition from chip
to packaging dominated
development 2008

?

Chip scaling
3D packaging

Slow down
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Why Thermal Packaging?

Performance 
Increased mobility at lower temperatures
Leakage current depends exponentially on temperature

Reliability
Most failure mechanisms are accelerated with temperature
Catastrophic failure can occur due to thermo-mechanical stress

Typical processor package
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Packaging and Thermal Interfaces

Interfaces are large portion of total resistance
-

 

Thermal interface materials TIM 1 and TIM 2 cause 
almost half the overall thermal resistance in a high 
performance processor package

Particle filled materials have cost benefit
-

 

Easier processing, no metallization,

 
flexibility for many applications

Conductivity increase with higher particle loading
-

 

Viscosity and shear strength also increase
-

 

If bondline thickness increases –

 

No Gain!

Assembly loads cannot be too high
-

 

C4 crushing, chip cracking
-

 

Substrates bend trapping thick TIM

Hierarchical Nested Channel (HNC) creates
thinner bondlines with
higher conductivity materials using
low assembly forces…

TIM1

TIM2

Surface Channels
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High Performance Thermal Interface Technology 

 

bifurcation lines  
(flow separation) HNC micro channels 

IEEE Harvey Rosten Award for Excellence in Thermal Sciences 
2008 R. Linderman, T. Brunschwiler, U. Kloter, H. Toy and B. Michel 

Directed self-assembly
Fluid-shear driven self-assembly
Control of stacking with channel pattern

High performance thermal interface 
Increased particle density
High performance with matched paste Rth (<5 mm2K/W)
Quick integration into products possible
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Motivation for Liquid Cooling

-

 

Increase in heat removal performance:                           
Superior thermal properties of liquids compared to air 

-

 

Design flexibility: Sensible heat transport 
to locations with available space

-

 

Centralized secondary heat exchanger

-

 

Efficient water-water heat exchanger

Limited heat transport due to

 

fin efficiencyLong distance transport possible 

Thermal conductivity

 

[W/(m*K)]
Volumetric

 

heat

 

capacity

 

[kJ/(m3*K)]

Air 0.0245 1.27

H2

 

O 0.6 4176

Transport

Primary

Secondary

Disadvantage: Increased complexity
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Chip Scale Liquid Cooling 

A

A’

A-A’

Arrayed jets, distributed return

SEM cross-section of two-level 
jet plate with diameter of 35µm

Biological vascular systems are optimized for 
the mass transport at low pressure

Direct Liquid Jet-Impingement Cooling with Micron-Sized 
Nozzle Array and Distributed Return Architecture, T. 
Brunschwiler et al., ITHERM 2006

Cooling of up to 350 W/cm2
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Ultra Thin High Efficiency Heat Sinks

30
m

m

2m
m

Motivation: Find the best coolant and the best structure 
for ultra-compact heatsinks (thickness < 2 mm)

Nanofluid thermal properties explained by effective medium 
theory which means they cannot ‘magically’ improve heat transfer

Water provides the best combination of material properties

Flat heatsinks reduce the board pitch of future systems from >30 mm (1U) to 3 mm (1/10 U)

Optimum design provides a total thermal resistance of 0.09 cm2K/W @ V =1.3 l/min, Δp = 0.22 bar

maximum power density > 700 W/cm2 for ΔT = 65 K

Increasing inlet temperature to 70ºC (190 F) 
enhances the heat sink efficiency >40% 
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Manifold Micro-Channel Heat sink

W. Escher, T. Brunschwiler, B. Michel and D. Poulikakos,  ‘Experimental Investigation of an Ultra-thin 
Manifold Micro-channel Heat Sink for Liquid-Cooled Chips’, ASME Journal of Heat Transfer, 2009.

W. Escher, B. Michel 
and D. Poulikakos,  ‘A 
novel high performance, 
ultra thin heat sink for 
electronics’, 
International Journal of 
Heat and Mass 
Transfer, 2009.
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Schematic operation of fluid pumping 
and temperature oscillations

RADIally OScillating Flow Hybrid Cooling System - RADIOS

Self-contained, thin form factor

Spreader plates in base of air heat sinks

Basic principle:
-

 

Cold plate on the chip (Heat Absorber, HA) 
-

 

Heat transport to larger area

-

 

Cold plates in periphery (Heat Dissipator, HD)

Keep chip area free, heat transfer to air at 
unpopulated area

Heat shuttling via fluidic branches (N) 

Displacement actuator with membranes
-

 

Periodic phase difference (φ

 

= 2π/N) 

Fluid periodically dispensed in all directions

At the center:
-

 

Constant flow speed with radially oscillating 
direction
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October 26, 2009 22D-MAVT/IET/LTNT

Oscillating Flow Liquid Cooling

Unit cell stack

Hybrid cooling: internal fluid external air
Intermediate step – does not require 
external fluid connection 
Hermetically sealed, low risk
Displacement pumps, low fluid volume
Multiple pumping schemes
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Hot Spots are Everywhere

Power map of a dual core microprocessor Temperature map of a data center

Current thermal management infrastructure is over-dimensioned

 
to keep hot spots cool

Improved efficiency:
Thermal aware chip and datacenter design reduced hot spot peak heat flux
Hot spot adapted cooling architectures minimal pumping power and thermal mixing

Hot spot heat flux 4x higher then mean
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SiO2

H2

 

O

Si–H

Phonon Transport Engineering 

SiO2

H2

 

O

Si–OH

Silicon substrate

Gate
Si

Buried oxide

SiO2

Si
SiO2

Si
SiO2

Si
SiO2

Silicon substrate

Transistor

phonons

Low: σ, moderate: κ

t 
Si / SiO2

t Si

Silicon substrate

Gate
Si

Buried oxide

Silicon substrate

Gate
Si

Buried oxide

SiO2

Si
SiO2

Si
SiO2

Si
SiO2

Silicon substrate

Transistor

phonons

SiO2

Si
SiO2

Si
SiO2

Si
SiO2

Silicon substrate

Transistor

phonons

Low: σ, moderate: κ

t 
Si / SiO2

t Si

Solid to fluid phonon transport engineering:

Si
O
Si
O

Investigation:
Phonon relaxation times in channels
Vibrational matching at interfaces
Phonon tunneling in superlattice structures

Molecular Dynamics Modeling: 
Phonon transport considered, no electrons valid in dielectrics

Silanol:
hydrophilic

Silane: 
hydrophobic

Hot spot mitigation in SOI channel:

Improved phonon coupling at hydrophilic interfaces
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Slip Flow Induced Pressure Drop Reduction
Super-hydrophobicity: 

Micron / nano-sized topography with low surface free energy
Water droplet contact angle close to 180°C
Pressure stability: according to Laplace pressure P ~ 1/r

Pressure drop reduction:
Slip length as a result of finite velocity at fluid-air interface 
If slip length 1/10 of the hydraulic diameter 

60% reduction in pressure drop

(Ou

 

04)
Slip length

Lotus-Effect

Three-phase Cassi-state
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Flow-Boiling Loop

Cooling with dielectric refrigerants R236fa and R245fa
-

 

Remove same chip heat flux 
-

 

Eliminates risk for electronics

More complex and more expensive to build and run
-

 

High system pressure (> 2 bar / 28 psi)
-

 

Many more control points needed

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
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64 x
Off Chip 
Memory

1 x
Off Chip 
Memory

8 x Off Chip 
Memory

Multi-Core Architecture: Communication Bandwidth Limit

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

64k 256k 1024k 4096k

Misses

Cores share constant off-chip bandwidth
Core proportional system performance 
demands cubic cache size scaling 
Total chip area increase

signal delay in wires
lithographic limit reached (~4cm2)

Wilfried

 

Haensch

 

08

A /1   ≈M

Cache – core balancing at constant off-chip bandwidth Cache miss behavior:

Solution: Vertical integration
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Limits of Traditional Back-Side Heat Removal

Guidelines from a thermal perspective:
MPU as close as possible to the cold plate 
-

 

Lower peak temperature high heat flux is conducted through minimum number of layers
-

 

Memory can handle 15K higher junction temperatures
Non-identical hot spot locations

Unacceptable:
Two identical MPU’s with overlapping hot spot
More then two MPU layers

Heat removal limit constrains 
electrical design 
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Interlayer Thermal Management

Interconnect compatible heat transfer structures

Anna Topol 06 

Convective interlayer heat removal 
scales with the number of stacked tiers

Interconnect density
Pitch optimum: electrical 1 -

 

100µm, cooling 50-200µm

Microchannel
Pin fin

A
re

a 
ef

fic
ie

nc
y

Interlayer cooled chip stack

Hydraulic diameter: 25-100µm
Flow rate 1/10 of traditional cold plates
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Scalable Heat Removal by 3D Interlayer Cooling
3D integration will require interlayer cooling for stacked logic chips 
Bonding scheme to isolate electrical interconnects from coolant
Heat removal scales with the number of dies

sealing

electrical
Thermo-
mechanical

Solder functionality

Cool between logical layers with optimal vias
-

 

Best performance with 200 μm pin fins
-

 

Through-silicon via height limit, typically 150µm 
-

 

Microchannel, pin fins staggered/in line, 
drop shape

Interlayer cooling of 3D stacked chips
-

 

Remove 180 W/cm2

 

per layer or 
-

 

Remove 7.2 KW from 10 layers with 4 cm2

Interlayer cooling with lateral feed manifold

Through silicon via with bonding scheme

Interconnect compatible heat transfer structures

Microchannel
Pin fin inline / staggered
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Electro-Thermal Co-Design

Efficient heat removal
Heat transfer structure

Modulation of heat transfer structure

Increase in local hot spot flow rat
Fluid focusing

Chip design Heat Transfer Building Blocks Heat Transfer Structure Design

Power map

Electrical interconnects

Power map

Interconnects

Pressure

Flow rate

Fluid

Geometry

Temp. map

Pumping power

O
pt

im
iz

at
io

n

Feedback
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Experimental Validation: Pyramid Chip Stack

Pyramid chip stack

Random power map

Thermal Demonstrator:
Three active tiers, cooled with four cavities
Polyimide bonding represents wiring levels
Multi-scale modeling accuracy validated (+/-10%)

Realistic Product Style Stack:
Aligned hot-spot heat flux of 250W/cm2 possible

Interlayer cooled chip stack



IBM Zurich Research Laboratory  |  6-Nov-09 © IBM Research 200933

Advanced Thermal Packaging

Zero-Emission Data Centers
High-performance chip-level cooling
improves energy efficiency AND 
reduces carbon emission:
-

 

Cool chip with ΔT = 20ºC

 

(previously 75ºC)
-

 

and cool datacenter with T > 60ºC (170 F) 
hot water;  no chillers

 

are required anymore
-

 

Re-use waste energy

 

in moderate climate, 
e.g., heat 700 homes with waste heat from    
10 MW datacenter

Necessity for carbon footprint reduction
-

 

EU, IPCC, Stern report targets

Note: 
-

 

Chillers use ~50% of datacenter energy 
-

 

Space heating ~30% of carbon footprint

T. Brunschwiler, B. Smith, E. Ruetsche, and B. Michel, 
“Toward zero-emission datacenters through direct 
reuse of thermal energy”, IBM JRD 53(3), paper 11.

>35 kW racks 
need water 
cooling Inlet >60ºC

Outlet >65ºC

Water cools the chip 
through micro-channels or 
micro-jets

Heat exchanger 
for transfer to 
district heating

Floor heating
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Thermal Energy Re-Use

Zero-emission concept 
valuable in all climates

-

 

Cold and moderate climates: 
energy savings

 

(no chiller required) 
and energy re-use

 
(for >60ºC outlet, district heating) 

-

 

Hot climates: energy savings

 

“only”

 
(no chiller required) 

Europe: 5000 district heating systems
-

 

Distribute 6% of total thermal demand
-

 

Thermal energy from datacenters easily absorbed
-

 

Largest sustainable energy source
-

 

Thermal re-use: 3X (wind + solar)
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Power Station

Energy and Emission Conventional Data Centers

$$$

Heat wasted:
to air

Heat wasted:
to air

CO2

High-grade heat 

Low-grade heat Chiller

CO2
Net Emission: 100%
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Conventional Data Centers with Energy Re-Use

Power Station

CO2

Heat wasted:
to airHigh-grade heat 

Heat re-used:
district heating, etc.

CO2

$$$$

Medium-grade heat 

$

Chiller

CO2
Net Emission: 70%
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Zero – Emission Data Centers

Power & Heat Station

Heat re-used:
district heating, etc.

Heat re-used:
Industry, etc.

CO2

High-grade heat 

$
$$

Medium-grade heat 

$

CO2

CO2

CO2

Net Emission: <15%
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Evolution of Liquid Cooled Systems

Water slowly 
approaches chips…..
Water cooled CRACs / CRAHs in Datacenters
Rear door coolers, intercoolers etc. in Racks
The closer water comes the hotter it can be while having 
the same cooling performance

Left: Rear door 
cooler removing 
heat from air with 
cold water

Right: P575 with cold
water processor 

cooling
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The QPACE Project

QPACE = Quantum Chromodynamics PArallel computing on CEll
Research collaboration of IBM Development and European universities 
and research institutes 
Goal to build a prototype of a cell processor-based supercomputer.

Funded by the German Research Foundation (DFG – Deutsche 
Forschungsgemeinschaft) as part of a Collaborative Research Center 
(SFB – Sonderforschungsbereich [TR55]).
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The QPACE System

Contribution of IBM: Node Card & Cooling



IBM Zurich Research Laboratory  |  6-Nov-09 © IBM Research 200941

Advanced Thermal Packaging

Warmwater Cooled System

Root Card

Cold Plate

Rack
Node

Backplane

56 coldplates/backplanes (8 per rack)
32*56 = 1792 nodecards

100% energy recovery with warm water
operaration 35ºC (100 F)
Medium thermal resistance

Gottfried Goldrian, Michael Malms, Juergen
Marschall, and Harald Pross
IBM Research & Development, Boeblingen, GER
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First Prototype at IBM Rüschlikon

Reduce cooling energy  by tailored water cooling system
-

 

Cooling the chip with “hot”

 

water (up to 60°C / 170 F)
-

 

Free cooling: no energy-intensive chillers needed

Reuse waste heat for remote heating 
-

 

The prototype reuses 75% of the energy for remote heating 
-

 

Obtain recyclable heat (60°C) for remote heating.
-

 

Best in a cold climate with dense population

Prototype
-

 

Similar Power of CPU and main board for 
air / liquid 60°C cooled version

-

 

Large fan power reduction
-

 

Liquid pump much more efficient and can 
vary flow at the rack level

Direct attached / integrated micro-

 

channel  cold plate with one interface 

Experimental validation: Inlet temperatures up to 60°C / 170 F
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Technical Objectives for Aquasar System

1.

 

QS/HS22 Blades with

 
fluid-loop

2.

 

Fully

 

populated

 

BladeCenter®

 
servers

 

with

 

manifold

3.

 

Populated

 

Rack

 
with

 

Blade Center®

 
servers

 

and pumps

4.

 

Connection

 

to heat

 

distribution

 
system

 

of ETH for

 

50-60ºC hot water

System uses a mixed population of 
11QS22 IBM PowerXCell

 

8i and 
3  H22 Intel Nehalem Blades per 
Blade Center®

 

server.

Two Blade Center®

 

servers are liquid cooled and one is air cooled 
for reference. The rack also holds communication equipment and 
a storage server. The closed cooling loop holds 10 liters of water, 
the coolant flow is 30 liters per minute.
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Aquasar: Objectives and Deliverables

Objectives
Use high-performance “hot”-water cooling to allow 2x energy cost reduction 
and large reduction of carbon emission
Show that “zero”-emission datacenter operation is possible & profitable
Validate concept and accelerate path to commercialization

Deliverables and Next Steps
Zero-emission datacenter prototype (2 hot water cooled blade centers in a rack)
Deploy system with 33 QS22 Cell blades + 9 HS22 Intel Nehalem blades at ETH
Joint IBM-ETH-EPFL CCEM project to started August 2009 
3-year CCEM project to optimize system for 100% energy recovery at > 60ºC / 170 F
Optimize efficiency and carbon footprint with different loads and clock speeds

Use experience to create future standards and best practices for datacenter operation with 
Green Grid
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Aquasar: Milestones and Status
Current Status

Cooling loops for blades and blade centers designed and 
conversion to hot water cooling pending 
ETH location is being prepared to connect system to water cooling system

Milestones
December 2009: Hot water cooled components assembled (blade center and rack) 
April 2010: Hybrid Cell/Nehalem System operative and initial parameters study 
completed and system connected to ETH energy re-use.

Target 
Reach world record in performance (MFlops/W) 
and low emission (MFlop/gCO2)
Lead standardization for future datacenters
PUEreuse less than 1

This FOAK will deliver an innovative 
solution to run future datacenters

Blade with

 

fluid-

 

loopHS22 (Intel) 
and QS22 (Cell)

BladeCenter

 

with

 

manifold

Populated

 

rack

 

with

 

pump and metrology
Connection

 

to ETH

All components require hardware modification, firmware software changes and metrology
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Going Green Impact Tool

Assess a clients data center 
with two basic scenarios: 

(A) Status quo and no green 
solutions are implemented 

(B) Green solutions are 
implemented

Assess energy efficiency and financial 
impact of scenario A and B 

Simplified) total cost of ownership (TCO) 
analysis

Run a ROI analysis of a project

Contact: Hannes Engelstaedter
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Summary

Thinking global about energy usage
-

 

Total cost of ownership perspective
-

 

Demand and supply of sensible heat 
-

 

Thermal energy re-use

Energy re-use in liquid cooled data centers
-

 

Reduction of thermal resistance from 
junction to coolant by chip water cooling

-

 

Optimization of exergy efficiency

Aquasar low-emission demonstrator 
-

 

Cooling chips with “hot”

 

water to obtain recyclable heat (65°C / 178 F) for remote heating
-

 

Best in a cold climate with dense population
-

 

Free cooling in all climates: No energy-intensive chillers needed

Aquasar specifications 
-

 

Saves 40% of energy
-

 

Reduces emission by 85% through heat re-use on ETH campus



IBM Zurich Research Laboratory  |  6-Nov-09 © IBM Research 200948

Advanced Thermal Packaging

Main Messages and Next Steps

Key Component for Future Datacenters
-

 

Chip cooling technology exists but needs 
to be combined with current computers

-

 

Centralized computing more efficient and emission 
free

Roadmap for large efficiency increase in 10 years 
-

 

3D interlayer cooling and electrical-thermal co-

 
design

Next Steps
Optimization of coolant temperature as function of 
demand and supply

Scale up to full size HPC and business data 
centers: We are ready are you ready as well?

Thermal energy re-use in solar collectors
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Thermal Packaging Leverage in Concentrated Photovoltaic

Liquid-cooled CPV-unit:
high-performance thermal management
enables 1000x sun concentration

Potential for cost reduction

Concentrated photovoltaic
Expensive triple junction cells with 41% peak cell-efficiency
Chip cost leverage by sun concentration (today 50 to 200x)
Concentration limited by junction temperature (efficiency, reliability)

Heat flux (@1000x): 100W/cm2



IBM Zurich Research Laboratory  |  6-Nov-09 © IBM Research 200950

Advanced Thermal Packaging

Re-Use: Concentrated Photovoltaic serves Desalination
Worldwide socio-ecological challenge of the 21th century

Energy demand
Fresh water supply

CPV-array

Multi-effect boiling (MEB)

heat
electricity

Power grid

Locations with high sun irradiation and scarce fresh water resources coincide

System-efficiency: CPV with MEB 
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Business Week, March 31, 2008, pp. 60–63.
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