
Federated Access Control and Workflow Enforcement

in Systems Configuration

Bart Vanbrabant, Thomas Delaet and Wouter Joosen

{bart.vanbrabant, thomas.delaet, wouter.joosen}@cs.kuleuven.be

DistriNet, Dept. of Computer Science,

K.U.Leuven, Belgium

Abstract

Every organization with more than a few system administrators has policies in place. These policies define who is

allowed to change what aspects of the configuration of a computer infrastructure. Althoughmany system configuration

tools are available for automating configuration changes in an infrastructure, very little work has been done to enforce

the policies dealing with access control and workflow of configuration changes. In this paper, we present ACHEL.

ACHEL makes it possible to integrate fine-grained access control into existing configuration tools and to enforce an

organization’s configuration changes workflow. In addition, we prototype ACHEL on a popular configuration tool and

demonstrate its capabilities in two case studies.

1 Introduction

Because the scale of modern computer infrastructure

keeps increasing, so automation has become a crucial

part of system configuration. Tools are important in sys-

tem configuration for increasing the automation and au-

tonomy of computer infrastructures. These tools have

contributed to successfully scaling infrastructures with-

out a linear growth in manual system administration [11].

A typical system configuration tool [9] translates a

configuration specification to a per-system profile. Such

a profile describes the desired state of a managed sys-

tem. A local component of the system configuration

tool checks whether the current state of the target sys-

tem matches the intended profile and makes adjustments

if necessary [10, 14, 19, 25, 32]. This local component

is called the deployment engine of a system configura-

tion tool. The configuration specification for the con-

figuration tool is often retrieved from a central version-

controlled repository [9, 21, 22, 33] such as CVS or Sub-

version. Such a repository provides a full history of the

infrastructure’s configuration. All configuration changes

are directly checked into this central configuration spec-

ification repository.

Managing an infrastructure based on a centrally avail-

able configuration specification comes at a price. Be-

cause the central specification controls all aspects of all

managed systems, control over the specification means

Figure 1: Conceptual overview of systems configuration

without and with ACHEL.

control over all managed systems in the infrastructure.

From a security perspective, the configuration specifica-

tion repository requires very strict access control. Unfor-

tunately, most existing tools do not provide any access

control mechanisms, but rather reuse the access control

available in the revision control repository [10, 14, 17,

19, 25, 32]. The access control systems of these revision

control repositories default to allowing or denying full

access based on the credentials of the user.

Although the hardware and the software in all infras-

tructures is quite comparable, the organization of sys-

tem administration varies between different infrastruc-

tures [9, 22]. These differences can be attributed to sys-

tem administration being organized either in a central or

in a federated manner, as well as to the existence of dif-

ferent policies: certain infrastructures integrate changes

directly into the configuration specification, others re-

quire changes to be approved by management, and yet

others require rigorous quality control before a change

is deployed. It is very hard to support these workflows

in existing systems because of the limited workflow en-

forcement supportthat these systems provide [6, 16, 28].

In this paper we present ACHEL, a framework that en-

ables the integration of fine-grained access control into

existing configuration tools and enforces configuration

change workflows in federated infrastructures. Figure 1

shows a conceptual overview of the process of updat-

ing a configuration specification, both with and with-

out ACHEL. To improve the expressiveness of the ac-

cess control rules, these rules are defined at the same ab-

straction level as the configuration specification language

supported by the system configuration tool. ACHEL

achieves this by taking the structure and the mean-

ing of the configuration specification into account when

generating semantically meaningful changes, instead of

identifying changes line by line, such as the common

diff-algorithm used in source code management does.

ACHEL uses these semantically meaningful changes and

the author history of each configuration statement to de-

fine fine-grained per user access control rules. Because a

large portion of ACHEL is language agnostic, support for

new configuration specification languages can be added

with limited effort, as we did in our prototype.

ACHEL’s second contribution is that it enforces work-

flow on configuration specification changes between

repositories. We define a workflow as a set of rules that

defines what steps a change should go through before it

can be deployed on the managed infrastructure. ACHEL

provides flexible workflows for centralized and federated

infrastructures by building on a distributed version con-

trol system [2] and combining it with our fine-grained ac-

cess control rules. A service or user signals its approval

of a change by digitally signing the globally unique re-

vision identifier that each distributed version control sys-

tem provides. Access control rules are extended to en-

able them to require a signature before changes are al-

lowed for inclusion. For example, ACHEL can enforce

a company policy that requires changes to be signed off

by a manager or an automated validation service before

they are deployed.

The remainder of the paper is structured as follows:

First, we discuss related work in section 2. Next, we

discuss our design and how access control and workflow

enforcement is applied. In section 4 we discuss the pro-

totype we have developed, and in section 5 we evaluate

our prototype.

2 Related Work

In the state of the art of system configuration tools, vari-

ous levels of integrationwith version control systems and

granularity of access control are available [10,14,18,19,

24,32]. But only very limited work on workflow enforce-

ment of changes seems to be available [14, 25]. Using

version control in configuration specification repositories

is an idea that is used or recommended by most existing

tools. Access control on these repositories is usually en-

forced by authenticating users, and it allows either full

access or limited access to directories per user in a man-

ner similar to that of a file system in an operating system.

Some tools [16,18,24] are able to do a more fine-grained

access control on a higher abstraction level, but none of

them include any provisions for enforcing a workflow on

configuration specification updates.

• BCFG2 [19] includes basic integration with ver-

sion control repositories through a plug-in that gets

the configuration specification from a SVN or Git

[3] repository. BCFG2 uses the revision from the

repository in reports about the configuration pro-

cess, but does not provide any access control and

relies fully on what the repository provides. Direct-

ing Change Using BCFG2 [21] details an approach

to deploy complex configuration changes. These

changes are split into steps, each of which needs

to be deployed before the next can be executed. A

script checks the BCFG2 reports for successful de-

ployments before the next step is deployed.

• LCFG [10] does not integrate with version control

systems, but the LCFG guide [8] does refer to using

a CVS repository as the configuration database.

• Cfengine [13, 14] also recommends using version

control systems as a configuration repository. [28]

suggests using branches or tags to create different

staging environments, for example for testing, pro-

duction, and development, but no tools seem to be

2

available to enforce a workflow between these envi-

ronments.

• Like most other tools, Puppet [25] suggests using

version control repositories as a best practice on

their wiki. It also contains examples for adding

syntax validation before a change is accepted in the

version controlled repository [4]. Additionally, the

Puppet wiki suggests different branches for differ-

ent environments, such as testing and production

[5, 6].

• DACS [32] includes tight integration with CVS or

subversion. It hooks into the version control system

to do basic checks such as syntax validation before

a change is accepted.

• DevolvedManagement of Distributed Infrastructure

with Quattor [16] describes how several European

grid infrastructures manage large distributed infras-

tructures with sites under different administrative

domains. They all use Quattor, a system configu-

ration tool that uses the Pan configuration language

[17]. In their workflow they include Subversion

as version control repository. One of the problems

with their current implementation is the inability to

enforce fine-grained authorization. They handle this

problem by modularizing the configuration specifi-

cation using namespaces that the compiler enforces

in the file name. This allows Subversion to enforce

access control on file names, but the specification in

one namespace can still access other namespaces,

thus bypassing the Subversion access control.

• Machination [24] provides fine-grained access con-

trol based on manipulation primitives of the XML

input language. Although at a higher level than

providing access based on the file names, there is

still an abstraction gap between the configuration

specification and the access control. The manipula-

tion primitives express what can be changed in the

XML input and do not directly express what can be

changed in the input specification, thus causing an

abstraction gap between the access control rules and

the input specification.

• PoDIM [18] includes rules to filter statements be-

fore they are applied to the network. These rules are

specified at the same abstraction level as the source

and apply directly to the statements in the source

specification. However, there are no facilities to en-

force a workflow: the specification becomes invalid

and cannot be deployed if a change is added that

depends on a change that is not approved.

Most tools rely on the coarse-grained access control

available in version control repositories. Some tools,

such as Machination [24], provide very fine-grained ac-

cess control based on the configuration specification, but

at a lower abstraction level than the specification a sysad-

min writes. PoDIM [18] offers filtering of statements at

the same abstraction level as the specification but lacks

integration with workflow enforcement, thus making it

hard to use. Cfengine [14] and Puppet [25] do include

provisions to use different branches of version control

repository for different stages in deployment in the same

configuration server, but cannot enforce workflows be-

tween these stages. ACHEL solves these problems by

performing access control based on semantically mean-

ingful changes and it adds flexible workflow enforce-

ment.

3 Design of ACHEL

ACHEL provides fine-grained access control which is

applied on the semantics of configuration specification

changes, as well as version tracking and workflow en-

forcement. Figure 2 shows a possible workflow and the

access rules that can be enforced with ACHEL. This fig-

ure also provides an architectural overview of the dis-

tributed components of ACHEL. Each agent involved

in the configuration of an infrastructure has his own

ACHEL repository that is based on a distributed version

control repository. The agents are not only system ad-

ministrators or the system configuration tool, but can also

be automated review or other validation services that are

required by the company policy for deploying configura-

tion updates. Section 3.1 explains the concepts and the

operation of distributed version control systems.

Access control is applied on each of the repositories in

Figure 2. Section 3.2 describes how this fine-grained se-

mantic access control is implemented by analyzing the

changes between versions at the language level. Fi-

nally, section 3.3 details how flexible workflows between

the DVCS repositories in Figure 2 are enforced through

combining features of distributed version control sys-

tems, digital signatures and fine-grained access control.

3.1 Distributed version control

ACHEL builds on a distributed version control system

to provide flexible workflows [2] for updating a config-

uration specification. In contrast with traditional version

control systems, where a central repository keeps track of

all history, distributed version control systems (DVCS)

use a different architecture. Instead of having to interact

with a central repository to examine the history, com-

mit changes or use branches, each user has his own lo-

cal repository. This local repository not only contains a

copy of the version he is working on, but also a complete

3

Figure 2: A possible workflow that ACHEL can enforce for the purpose of including a change in the configuration

specification repository.

project history, branches, etc. All familiar version con-

trol operations such as examining the history, switching

to other branches and even committing changes are local

operations in a DVCS.

A DVCS enables flexible workflows because it can

easily share information such as committed changes or

new branches between individual repositories. Informa-

tion is exchanged via push and pull operations. A push

transfers local information to a remote repository, and

a pull copies remote information to the local repository.

When distributed repositories are used, there is no cen-

tral repository, so a repository is only authoritative by

convention. Another consequence of having distributed

repositories is that a DVCS cannot use sequential revi-

sion identifiers as traditional version control systems do.

Instead, DVCSs use a different mechanism to ensure that

revision identifiers are globally unique. However, if two

revisions in different repositories have the same history

and introduce the same change, then the identifier needs

to be equal. For example, Git [3] andMercurial [27] both

use SHA-1 hashes to identify revisions in the repository.

The hash is based on the data in the files, on revision

metadata and on the parent revisions. One useful conse-

quence of this fact is that a revision identifier identifies

and proves the integrity of a revision and all previous re-

visions. This hash is called the revision identifier.

ACHEL provides a sysadmin with flexible develop-

ment workflows. ACHEL inherits these workflows from

the DVCS it is built on. For example, a sysadmin can

commit without interfering with changes from others.

With authentication and authorization in the mix, flex-

ible workflows become even more important: a user

can commit changes that require authorization, without

blocking the deployment of other consecutive changes

that have already been approved. A DVCS can also be

used in a more traditional manner whereby each sysad-

min synchronizes his repository with a central authori-

tative repository, which in ACHEL is the repository the

system configuration tool uses. In larger federated infras-

tructures a hierarchy of repositories can be used. Using a

DVCS also enables sysadmins to share work with others

directly. For example, two sysadmins who are preparing

a new configuration for some service, share a common

branch and share changes independently of the author-

itative repository. Once their work is ready, it can be

pushed to the authoritative repository for deployment.

3.2 Access Control

ACHEL enables fine-grained access control based on the

semantics of the changes in the configuration specifica-

tion. In contrast, most existing tools rely on the access

control provided by the operating system or version con-

trol system. Access rules can be expressed as a function

of three things: 1. the contents of a change, using seman-

tically meaningful changes; 2. the owner of the configu-

4

ration statement that has been changed; 3. the author of

the change. To perform access control based on semanti-

cally meaningful changes, the access control component

of ACHEL needs to understand what the statements in a

configuration specification are. The changes to which the

access control rules are applied are generated by analyz-

ing the differences between two statements and generat-

ing meaningful changes from these differences. In this

section the access control approach used is explained;

the next section elaborates on the workflow enforcement.

The application of access control rules is split up into

several steps, as shown in Figure 3.

Figure 3: Architecture of the access control component

that checks whether a new revision violates any access

rules.

All version control systems use diff-like algorithms

[30] that operate on flat files to generate changes between

two versions of a file. These algorithms create what is

called an edit script, which transforms the previous ver-

sion of a file into the current version. Diff algorithms

detect changed lines and create an edit script contain-

ing insert and remove line operations. Although this edit

script is easy to generate and reapply again, it is impossi-

ble to define reasonable access control rules on the insert

and remove operations. The abstraction level of these

changes is too low because they are expressed in terms

of adding and removing lines in a file, while the configu-

ration specification is expressed in configuration related

terms. In Listing 3, a diff generated edit script is dis-

played. The script transforms version 1 of the program

in Listing 1 into version 2, which is listed in Listing 2.

Listing 1: Code example: version 1

1 var1 = 6

2 var2 = 6

3 prnt(var1 * var2)

Listing 2: Code example: version 2

1 var1 = 6

2 print(var1 * 7)

Listing 3: Edit script between version 1 and 2 generated

the diff algorithm

1 @@ -1,3 +1,2 @@

2 var1 = 6

3 -var2 = 6

4 -prnt(var1 * var2)

5 +print(var1 * 7)

To generate semantically meaningful changes from the

configuration specification, ACHEL uses an algorithm

that analyses the abstract syntax tree of the configuration

specification. System configuration tools build an ab-

stract syntax tree of the configuration specification dur-

ing compilation. An abstract syntax tree is a tree repre-

sentation of the abstract syntax [29] of a file. The ab-

stract syntax separates the syntax from the semantics of

the specification.

An example of the abstract syntax trees of the program in

Listings 1 and 2 is shown in Figure 4. The differences be-

tween two versions of a tree are used to generate changes

at the right abstraction level, because the abstract syn-

tax tree contains the structure and meaning of each state-

ment, and the composing parts out of which the state-

ment is built. Meaningful Change Detection in Struc-

tured Data [15] proposes an algorithm to generate these

semantically meaningful changes. Several systems have

been developed based on similar algorithms that calcu-

late an edit script from unordered trees. For example,

these algorithms analyze changes in source code [23],

XML [7, 34], UML [31, 35], and HTML [26].

=

var1 6 var2 6 *

100

101 102 103

104 105 106 107 108

var1 var2
109 110

200

var1 6

201

203 204

*

202

205

var1 7
206 207

matches = {(100,200),(101,201),(104,203),(105,204),(103,202),(108,205),(109,206)}

Figure 4: Matching the nodes in the abstract syntax tree

of the two versions in Listing 1 and 2.

5

Listing 4: The edit script for transforming the first tree

into the second tree in Figure 4.

add = {node(text="7",parent=205)}

delete = {node(id=102),node(id=106),

node(id=107),node(id=110)}

update = {node(id=103,text="print")}

ACHELmatches the nodes in two abstract syntax trees

and generates a tree edit script to transform one tree into

the other. It does this by parsing each revision of a con-

figuration specification and generating an abstract syntax

tree from it. Each revision of a tree is matched with its

previous revision. Figure 4 shows the set (matches) of

matched nodes obtained by applying algorithm [23] on

these two trees. From these matched trees, an edit script

is generated that contains a list of add, update and delete

node instructions to transform the tree of revision X into

the tree of revision X + 1. In Listing 4 the edit script

of the abstract syntax trees in Figure 4 is shown. The al-

gorithms used to generate an edit script from an abstract

syntax tree are language agnostic, as shown in Figure 3.

The approach ACHEL takes until the generation of

the edit script is similar to Machination [24]. ACHEL’s

edit script is comparable to the XML edit instructions of

Machination, except that ACHEL can generate an edit

script for any arbitrarily complex language. In contrast

to Machination, ACHEL translates the edit script into se-

mantically meaningful changes performed on the config-

uration specification. ACHEL then applies access con-

trol on these semantic changes instead of applying them

on the edit script, which is of a lower abstraction level.

An edit script is expressed in terms of operations on

nodes in a tree, while a configuration specification is ex-

pressed in configuration related terms. Although an edit

script can be generated for any tree, generation of the

semantic changes is specific for each language. In sec-

tion 4 we apply ACHEL’s access control on a configu-

ration specification language. The same access control

system was used during prototyping to enforce access

control on simple configuration files with parameters and

sections, sometimes called .ini files.

ACHEL allows rules to be specified depending on the

current owner of a statement in the configuration specifi-

cation. Because all operations in an edit script are made

by the same user, and this user is known to ACHEL

through the DVCS repository, the owner of each state-

ment can be determined. ACHEL determines the owner

of each statement by starting at the tree of the first revi-

sion and applying the user information and the edit script

until the last revision. Every time a node is added or

modified, the user that made the change is used as the

new owner of that node in the tree. For example, user A

creates the first revision of the left tree in Figure 4, so A

owns all nodes in that tree. User B makes the changes

that result in the right tree in that figure. He removes

nodes 102, 106, 107 and 110, updates node 103, and adds

node 207. The algorithm will mark B as the owner of the

new node and of the updated node 202.

The per node owner information in the abstract syntax

tree is not very useful when access control rules are ap-

plied on semantic changes. The user information in the

abstract syntax tree needs to be mapped onto the gen-

erated semantic meaningful changes. The owner infor-

mation for each node from which a semantic meaningful

change is built is used to determine the owner of a mean-

ingful change. For example, in the multiplication state-

ment that consists of node 205, 206 and 207, node 207

is owned by user B in Figure 4, but nodes 205 and 206

are still owned by user A. Depending on the meaning of

the statement, ACHEL determines who the owner of the

full statement is. In the multiplication from the example,

the result of the multiplication will be different because

of the change user B made, so he will be the owner of

the statement. Because the author of a changeset is used

to determine all ownership information, and the owner-

ship and author are used in the access rules, the author

information needs to be secure. ACHEL uses digital sig-

natures and a PKI to ensure that all user information in

the repository is authenticated.

An important step in developing an access control rule

language is identifying the possible statements and their

syntax in the configuration language input. Statements

include for example assigning a value to a variable, call-

ing a function or creating a new instance of a class or

structure. On the statements, access control will be ap-

plied. To keep the structure of the needed patterns in the

access control language simple, it is important to unify as

many statements as possible in order to keep the gram-

mar of the access control language limited. For exam-

ple, the assign and multiplication statement in Listing 1

and in the abstract syntax tree in Figure 4 can be unified

with a <lhs> <op> <rhs> structure. In this struc-

ture an operation (op) is performed on the left-hand side

(lhs) using the argument on the right-hand side (rhs).

Changes to a statement are split up into attributes. These

attributes are the action performed (add, remove, modify,

. . .) on the statement, the type of unified statement that

it is, and possibly additional attributes of a statement. In

our prototype we developed an access control language

for the configuration specification language we added to

ACHEL.

3.3 Workflow

Each infrastructure has its own policy that defines work-

flows for deploying changes in the production configu-

ration. For example, changes need to be tested in a test

infrastructure before they are deployed in the production

6

configuration. Current configuration management tools

cannot enforce these policies. ACHEL achieves this with

a combination of the proposed access control system and

the flexible workflows that DVCS’s provide. To integrate

the two, we extend the access control rules with a clause

that requires authorization before a change is allowed.

This new clause specifies the number of authorizations

required and a list of users that can authorize a change to

be allowed in an ACHEL repository. A change is autho-

rized by digitally signing its unique revision identifier.

The identifier is signed with the user’s private key. This

key is also used by the author to sign information relat-

ing to a change. A signature on a revision signifies that

a revision is approved by the person or service that is as-

sociated with the key used. The reader may recall from

section 3.1 that the identifier in a DVCS is a hash that is

based on the content and the parent revisions, so a signa-

ture also authorizes the full history of the specification.

Authorizing a revision is as simple as adding a sig-

nature to the repository metadata and committing the

change. This approach generates a new revision in the

repository for each new signature. This new revision

can be fetched and merged by the user who requested

the authorization. When the requesting user has the re-

quired number of signatures, he merges his change and

the signature revisions into a new revision and pushes it

to the repository of the system configuration tool. We

rely on existing communication channels such as email

or instant messaging for ACHEL notifications. These no-

tifications are required when requests are sent out to au-

thorize changes or to notify other users that a review is

finished and a signature is available.

Workflows in ACHEL are based on exchanging

changes between the local DVCS repositories that each

user controls. ACHEL needs to enforce access control

rules on each repository, even though all repositories

could possibly have the same changes, because each user

has full control over his own repository. This has two im-

portant advantages: First, each repository can determine

who needs to approve changes before they are accepted.

Second, authorization clauses can be set to only warn a

user instead of denying access, because a repository re-

vision is required to get a change authorized, and this re-

vision is only available after a change has been included

in a repository.

Figure 2 shows an example of a possible workflow.

This workflow is similar to the one enforced in the ac-

cess control rules in Listing 5. In this figure, the manager

is a user named Alice, who is a member of the admin

group in Listing 5. Whenever the sysadmin named Bob

makes a change not related to variables named dhcp ∗,
he needs the authorization of a user in the admin group.

The system only warns about the authorization because

Bob needs to be able to commit his change, although he

does not yet have the authorization. After the change is

committed to Bob’s local repository, ACHEL enforces

the following workflow to include his change in the au-

thoritative repository:

• Bob cannot push his change to the system config-

uration tool repository, so he emails the users in

the admin group that he needs authorization for the

change with revision identifier 3d996986778d in

his repository at http://bugatti:8000.

• Alice, a user in the admin group, pulls change

3d996986778d from Bob’s repository into her

own repository at location http://ferrari:

8000.

• Alice reviews the change and signs

3d996986778d, thus creating a new revision

ce5b84ef04a7 in her repository.

• Bob pulls ce5b84ef04a7 from Alice’s reposi-

tory at http://ferrari:8000 into his own

repository.

• Bob creates a newmerge revisionacdd701f412c

that now satisfies all access rules.

• Bob pushes acdd701f412c to the system config-

uration tool repository for the purpose of scheduling

it for deployment onto the infrastructure.

Whenever a user pushes his specification changesets

to another repository, other changesets that possibly con-

flict could have been included. When this occurs, these

changesets need to be merged. During merging, two sce-

narios can occur. These scenarios are illustrated in Fig-

ure 5. If the changesets do not conflict with each other,

a merge changeset can be created that does not intro-

duce any additional changes. If all changesets prior to

the merge satisfy all access rules, then the merge change-

set can be accepted by ACHEL. Whether this changeset

should be accepted is highly dependent on the configura-

tion specification language to which ACHEL is applied.

If the configuration language is fully declarative, then

the order of configuration statements does not matter and

changes can be applied in any order, as long as they do

not conflict. If the order in which changes are applied

does matter, then a special merge permission should be

introduced so that only users with this permission can

merge changesets.

In a second scenario some changesets can conflict, so

the merge changeset needs to include additional changes

to resolve the conflicting changesets. If this occurs, then

these new changes need to satisfy all access control rules,

just like any other normal change. Such a merge change-

set can also include non-conflicting changesets, in which

case the same restrictions apply as in the other scenario.

7

...

..
.

Branch

Merge

commit

...

..
.

Branch

Merge

commit

Conflict

Figure 5: Merging branches of a configuration specifi-

cation repository. Left: a branch is merged without any

conflicts. Right: two changesets conflict and the merge

changeset contains additional changes to resolve the con-

flict.

Conflicting changesets should not occur very often in a

real infrastructure. Because responsibilities are mostly

non-overlapping,modularizing the configuration specifi-

cation in files that do not contain overlapping responsi-

bilities will prevent conflicting changes, insofar as this is

possible.

4 Prototype

This section describes a prototype configuration lan-

guage and compiler: Westmalle. Westmalle is a simple

configuration language that we extended with ACHEL

support.

The Westmalle configuration language design is in-

spired by the functionality provided by LCFG2. The

Westmalle configuration language is a declarative lan-

guage with only three operations. It can import configu-

ration directives from libraries, it can add values to lists

and it can assign values to a variable name. Because

of its declarative nature, variables can only be assigned

once. Various values can be assigned to these variables,

including string literals, functions that can interface with

other systems such as template systems, and structures

with named attributes.

Structures are an important part of Westmalle. Each

structure has a list of named attributes. Structures are not

declared and are created in the same way as classes are

instantiated in languages such as Python. Attributes are

added every time a value is assigned to an unknown at-

tribute. Westmalle does not type check these structures,

but therein lies its strength. Because classes are easily

created, a user can create specifications that match what,

for example, LCFG2 or BCFG2 require. When the com-

piler finishes resolving all variables in the specification,

then these structures and their attributes are used to gen-

erate the output. The compiler can be used in two ways:

1. As a BCFG2 plug-in that exposes the return values

of the BCFG2 client probes [20] as variables in the

configuration language. These probes are used in

BCFG2 to find information about the managed sys-

tem.

2. Generating XML output that conforms to the struc-

ture proposed in Configuration tools: Working to-

gether [12].

We added support for ACHEL to Westmalle. The ar-

chitecture of our prototype is shown in Figure 6. The

right box is the Westmalle compiler, the left box is the

ACHEL support infrastructure. The ACHEL support in-

frastructure contains a distributed version control reposi-

tory at the bottom and a set of allow/deny access control

rules. If a user wants to push a change to the repository,

that change has to pass the access control rules before

it is committed to the repository. Once the change is

committed, the Westmalle compiler generates XML or

BCFG2 specifications, which in turn can be used by a

deployment engine to enforce the specification.

Figure 6: An architectural overview of our ACHEL pro-

totype.

The access control rule enforcement is implement as

show in Figure 4. The access control language defines

pattern matching rules that match the attributes generated

from the semantic changes in the configuration specifi-

cation. Each rule contains an action that is taken if the

patterns from the rule match the attributes of a change.

Access control rules are evaluated in the order they are

declared in the source file. When a rule matches, evalua-

tion stops and the action of that rule is taken.

8

The rules in the access control language consist of two

different parts. The first is a generic part that specifies

the author, the owner, the required signatures and the

action taken when a rule matches. The second part is

language-specific and contains the structure the semanti-

cally meaningful edit instruction needs to match before

an action will be executed. In the access control lan-

guage, user groups can be defined and each user can be

included in multiple groups.

Listing 5: Access control rules and group definitions

1 # list of senior admins

2 define admins as

admin1@cs.kuleuven.be,

admin2@cs.kuleuven.be

3

4 # allow everyone to create dhcp

5 # configuration

6 allow to:

7 add import dhcp.*
8 * assign * to dhcp_*
9

10 # senior admins can do anything

11 allow admins to:

12 * *
13

14 # others can do anything if

15 # approved by a senior admin

16 allow to:

17 * *
18 authorised by 1 admins

Listing 5 shows an example of possible access control

rules.

• Line 2 defines a group of users. This group can be

used in the access control rules.

• Line 6 starts a new rule with two language spe-

cific rules on the next two lines. The rule allows

all changes that match one of the language specific

sub-rules on the next lines. The first sub-rule on

line 7 matches all changes that add an import state-

ment. This import statement is constrained to li-

braries matching the wildcard string dhcp.*. The

second sub-rule on line 8 matches changes that as-

sign any value (hence the second wildcard) to a vari-

able that matches the wildcard string dhcp *. The

first wildcard of this sub-rule signifies that these

changes can be added, modified or removed.

• The rule on line 11 allows changes that match any

of the sub-rules, if the author of the change is a

user from the admin group. The sub-rule on line 12

matches every change.

• The rule on line 16 allows any change (the two wild-

cards on line 17) by any author, if it is authorized

by one or more users from the administrator group

(line 18).

A set of rules such as in Listing 5 starts with a

generic header that expresses the action taken when a

rule matches and lists the possible authors of the change.

In the prototype, actions are limited to deny or allow the

change. The action of the first matching rule is used and

no other access control rules are checked. After the ac-

tion, an optional list of authors of a changeset can be

given, followed by the to keyword, a colon and a new-

line. The list of users is a comma separated list of email

addresses or group names to allow role based access con-

trol.

The body of the rule can contain multiple directives

that are divided into generic and language specific lines.

The generic lines start with the owned by and authorized

by keywords. The owned by clause specifies a list of

owners of the original statement required for this rule to

match. This list is identical to the author list described

in the previous paragraph. The authorized by clause is

followed by an optional number and a list of users. The

number indicates how many signatures are required for a

rule to match. If no number is provided, the number one

is assumed.

The other rules in the body are language specific rules.

These rules start with add, modify or remove, followed

by a pattern to match a meaningful change. The first key-

word specifies the changemade in the changeset required

for this rule to match. If multiple language specific rules

are present in the body of a rule, they are treated as sep-

arate rules with a common generic part. For example, in

Listing 5 for the rule on line 6, two rules with the same

header are created because of the two language specific

rules on the next lines. For each different structure in

the configuration language, a different language specific

rule syntax is required. The number of structures in a lan-

guage depends on how similar statements in the configu-

ration language are. Each rule syntax consists of match-

ing patterns that are applied to the matching attributes

of a semantic change. Each attribute is matched with a

literal value, a string that may contain wildcards, or a

regular expression.

For the simple configuration language we developed, we

are able to unify all statements within the same structure.

This means that we can match all statements in the con-

figuration specification with the same rule syntax. Rule

syntax contains at most three patterns to match the three

attributes of each change to the configuration specifica-

tion. These attributes are: the operation, the right-hand

9

side, and the left-hand side. The most important attribute

of the configuration language is the operation of a state-

ment. In the prototype there are only three available op-

erations: import, assign and add. After the operation, a

rule can also contain an optional right-hand side, as well

as an optional left-hand side pattern.

ACHEL uses hg (short for Mercurial [27]) as the ver-

sion control system in our prototype. It is a lightweight

DVCS written in Python. It has been adopted by very big

software projects such as OpenJDK and Mozilla. Like

other well known DVCS control systems such as Git [3]

and BitKeeper [1], hg uses content hashes as identifiers.

Mercurial was selected for our ACHEL prototype be-

cause it is open source, it is written in Python and it has

extensions for signing revisions.

ACHEL can merge changesets. A merge is handled

differently depending on the scenario:

• If changesets have beenmergedwithout conflict and

the merged branches introduce changes in different

files, no additional permissions are required.

• If changes are introduced in the same file, a user

that commits the merge changeset needs merge per-

missions. Merge permissions can be dependant on

authorization, so they can be forced to go through a

review process.

• If changesets conflict, then the new changes that

solve the conflict need to satisfy the access control

rules. The two previous rules apply to any non-

conflicting changes that are also merged.

Digital signatures are used to verify the users in the au-

thor, owner, and authorization constructions in the access

control rules. In the prototype, GPG is used to generate

these digital signatures. The email addresses linked with

the private key that is used to create digital signatures are

used in the access control rules to identify users. GPG

was chosen over x509 certificates for two reasons: First,

because Mercurial already has support for signing revi-

sions with GPG signatures. Second, because it is very

lightweight and works well in a federated environment.

To establish trust, GPG can be configured to only trust

signatures from keys within a certain trust level.

ACHEL can support other DVCS and infrastructures

for digital signatures. It uses the version control repos-

itory to report the email addresses of the users that cre-

ated or signed a changeset and it relies on the ability of

the repository to verify the user information on the basis

of digital signatures. This way there is no direct coupling

between the PKI used and ACHEL. Because the interface

between ACHEL and the DVCS is small, new distributed

version control systems are easy to add.

5 Evaluation

In this section we evaluate ACHEL in two case stud-

ies. The first case validates the improvements achieved

in ACHEL for environments where several administra-

tors manage the same infrastructure but are responsible

for different aspects of the infrastructure. This case fo-

cuses mainly on the access control features with limited

workflow enforcement. The second case validates the

use of ACHEL in federated infrastructures with a focus

on workflow, such as used in grid computing.

5.1 Case 1

This first case validates the prototype in an infrastructure

managed by several system administrators with varying

levels of seniority, each of whom has his own responsi-

bilities. The update policy of this infrastructure is:

• Sysadmins can only make changes to the aspects of

the infrastructure they are responsible for.

• Everyone can make any change if it is authorized by

a senior sysadmin.

• Senior sysadmins can change anything.

The access control rules use group names to identify

users, so users can be assigned according to their re-

sponsibilities. In Listing 6, an excerpt with access con-

trol rules is shown. The first rule on line 2 forces ev-

ery change to encode the type in the variable name. For

example, the variable with the configuration file for the

dhcp server should be called net file dhcpd conf.

Six rules are declared for each type that can be used with

the BCFG2 plug-in. If a variable does not match this

convention, the change will be denied. The second rule

on line 11 stipulates that every user in the senioradmin

group can do anything. Statements in a change will only

get to this rule if they conform to the previous rule. The

rule on line 15 authorizes any change from any user if it

has been approved by a user from the senioradmin group.

The next two rules are specific for users in the ne-

tadmins group. These users are only allowed to change

the network configuration related to files located in

/etc/network and services called network and

dhcpd. The rule on line 26 allows a netadmin to import

dhcp configuration libraries, to add entries to the global

list of dhcp clients and to declare variables that are pre-

fixed with net . The rule on line 20 limits this to the

files and services that are allowed. If none of the rules

above matches, the change is denied.

Listing 7 shows a possible configuration an ad-

min responsible for the network configuration

has written in our configuration language. This

code example creates a configuration file called

10

Listing 6: Case 1: Access control rules and group definitions

1 # enforce some conventions on everyone

2 deny to:

3 * assign File() to /ˆ[ˆ_]+_(?!file_)[\S]+$/

4 * assign Package() to /ˆ[ˆ_]+_(?!pkg_)[\S]+$/

5 * assign Service() to /ˆ[ˆ_]+_(?!service_)[\S]+$/

6 * assign Directory() to /ˆ[ˆ_]+_(?!dir_)[\S]+$/

7 * assign Symlink() to /ˆ[ˆ_]+_(?!ln_)[\S]+$/

8 * assign Permissions() to /ˆ[ˆ_]+_(?!perm_)[\S]+$/

9

10 # senior admins can do anything else

11 allow senioradmin to:

12 * * *
13

14 # allow admins to do everything if a senior admins approves

15 allow to:

16 * * *
17 authorised by 1 senioradmin

18

19 # network related configuration

20 deny netadmins to:

21 # deny files other then those in /etc/network

22 * assign /ˆ(?!\/etc\/network\/)\S+/ to /ˆnet_file_\w+\.name$/

23 # deny services other then dhcpd and network

24 * assign /ˆ(?!(dhcpd$|network$))\w+$/ to /ˆnet_service_\w+\.name$/

25

26 allow netadmins to:

27 * import /ˆdhcp/

28 # allow adding a list of values to the net_dhcp_clients list

29 * add /ˆ\[[ˆ\]]$/ to /ˆnet_dhcp_clients$/

30 # allow only variables prefixed with net (ignore rhs)

31 * assign * to /ˆ(?!net_)\S+$/

11

/etc/network/interfaces and enables the

network service. This is allowed by the access control

rules defined in Listing 6. The code starting from line 17

creates a /etc/hosts file. To do this, a user needs to

be either a senior admin himself or else he needs to have

the permissions of a senior admin.

A network administrator named Kris, who is not a

senior administrator, wants to include his configuration

specification in the main repository. To do this he needs

permission from a senior administrator named Jean. Kris

commits the change to his ACHEL repository and re-

ceives a warning that he needs permission from a mem-

ber of the senioradmin group to satisfy the access con-

trol rules enforced on the main repository. Kris emails

Jean and asks him to review the change with identifier

c8d8c7780069 in Kris’ repository, which is available

at http://alpha:8000. Jean pulls this change from

Kris’ repository and ACHEL warns Jean that the change

needs to be authorized. Jean reviews the change, signs

it and commits the signature to his repository. Jean then

emails Kris that he approves the change and that Kris can

pull the signature with identifier 3a526359364e from

his repository, which is available at http://beta:

8000.

Kris pulls Jean’s signature into his repository and

ACHEL now shows that all changes satisfy the access

control rules. Kris can now push his change and Jean’s

signature into the main repository in order to deploy it on

the infrastructure.

5.2 Case 2

Quattor is used in federated infrastructures composed

of multiple physical sites. Devolved Management of

Distributed Infrastructures [16] explains how Quattor is

used in a few different federated infrastructures. In

this case we apply ACHEL to the BEGrid infrastruc-

tures described in [16]. BEGrid uses a model of highly-

autonomous sites that loosely collaborate. Each site has

its own configuration servers, but it gets its configuration

from a central Subversion repository. In this repository,

both common and site-specific configuration specifica-

tions are stored.

In this case we will focus on the application of

ACHEL’s workflow enforcement features on a BEGrid-

like infrastructure. Each site configuration server uses its

own repository instead of getting its configuration spec-

ification from the central repository. Each site has its

own authoritative ACHEL repository fromwhich the site

configuration server gets its specification. The institu-

tion that coordinates the grid also maintains a repository

from which each site updates their common configura-

tion specification. In Figure 7 the flow of changes be-

tween repositories is shown. The workflow between the

repositories in Figure 7, is already supported by any nor-

mal DVCS.

Central repository

Site 1 Site 2 Site 3 Site 4

Figure 7: BEGrid repositories using ACHEL

In this case we will enforce policy rules on this work-

flow using ACHEL:

• Every site has its own ACHEL repository that is

used by the site’s configuration server.

• System administrators commit to the site repository,

possibly with extra policy rules specific for their

own site.

• Sysadmins can only change the configuration re-

lated to their own site.

• Changes by sysadmins from other sites have to be

approved by a manager of the affected site.

• Changes to the common templates have to be ap-

proved by at least three out of five managers.

Our configuration language does not match the PAN

[17] language used by Quattor in BEGrid, but this is not

an issue for demonstrating the workflow capabilities of

ACHEL. For the access control rules in Listing 8, we

assume that the site-specific and common configuration

can be identified by the first word in the variable name:

common or site . On lines 1-5 of the listing groups

are defined containing the sysadmins of each site and all

the managers. These groups are used in the access con-

trol rules we describe next.

The rules in Listing 8 implement the policy we de-

scribed earlier in this section. The first rule on line 7

stipulates that changes to the common configuration need

authorization from at least three users from the manage-

ment group. Lines 11-16 define the access rules for the

configuration of site 1. The first rule limits access to

users in the site1 group, and the second rule stipulates

that other users have access to site 1 configuration only

if they have authorization from the site1 manager. The

12

Listing 7: Case 1: Network configuration specification

1 import base

2

3 # configure network interfaces

4 net_file_interfaces = File()

5 net_file_interfaces.name = "/etc/network/interfaces"

6 net_file_interfaces.owner = "root"

7 net_file_interfaces.group = "root"

8 net_file_interfaces.perms = "0644"

9 net_file_interfaces.content = source("net/interfaces.$hostname")

10

11 # network service needs to be enabled

12 net_service_network = Service()

13 net_service_network.name = "network"

14 net_service_network.status = "on"

15

16 # use template for /etc/hosts with loopback and host ip

17 net_file_hosts = File()

18 net_file_hosts.name = "/etc/hosts"

19 net_file_hosts.owner = "root"

20 net_file_hosts.group = "root"

21 net_file_hosts.perms = "0644"

22 net_file_hosts.content = template("net/hosts.tmpl")

rules on lines 18-37 provide for similar rules for the other

three sites. Site 1 and site 2 are developing a new com-

mon feature defined under common new. The last rule

on line 39 allows users of both sites to work on it. This

rule stipulates that users from the groups site 1 and site 2

have access to all configurations under common new.

Each repository can have its own access control rules

in ACHEL. For example, the last rule on line 39 only

makes sense in the repositories of sites 1 and 2. This also

holds for other the site-specific rules, which only need to

exist at the site itself and at the main repository.

5.3 Limitations and Future Work

In this paper we have prototyped ACHEL on a sim-

ple configuration language. One area for future work

involves the need to add ACHEL support to existing

(more complex) configuration languages. Another area

involves the need to improve the usability of ACHEL by

adding support for processing authorization requests. A

third area involves the need to provide support for meta-

ACL’s: i.e. to provide access control rules for specifying

the access control rules.

Supporting existing configuration languagues

ACHEL itself is not a product, it is a generic framework

that can be reused in existing configuration languages.

The framework offers support for meaningful change de-

tection, and for the enforcement of access control rules

and workflow. To add support for ACHEL to an existing

configuration tool, it must:

1. either add access control constructs to its language

or use a separate access control language;

2. and provide ACHEL with an abstract syntax of its

configuration specification.

The complexity of an access control language is di-

rectly linked with the number of different semantically

meaningful change structures that need to be matched.

The reader will recall that in our prototype we were able

to unify all three language constructs within a single

structure, but this will no longer be possible for more

complex configuration languages. The expressions in

Listing 6 are very powerful because they use regular ex-

pressions, but they are complex to use. If ACHEL were

to be applied to more complex configuration languages

such as Cfengine [14] or Puppet [25], the current access

control language and matching model would probably

become needlessly complex. These languages are more

expressive and containmore than one structure that needs

to be matched.

To support more complex languages and make the ac-

cess control language easier, some enhancements are re-

quired. The first enhancement would be to use the type

system of the configuration language to enforce rules, so

that types and namespaces do not need to be encoded

in the names of the variables as in the first case. An-

other required enhancement of the access control lan-

13

Listing 8: Case 2: BEGrid example access control rules

1 define management as

director@begrid.be,

manager@site1.begrid.be,

manager@site2.begrid.be,

manager@site3.begrid.be,

manager@site4.begrid.be

2 define site1 as ...

3 define site2 as ...

4 define site3 as ...

5 define site4 as ...

6

7 allow to:

8 authorised by 3 management

9 * * * to /ˆcommon_/

10

11 allow site1 to:

12 * * * to /ˆsite1_/

13

14 allow to:

15 authorised by

manager@site1.begrid.be

16 * * * to /ˆsite1_/

17

18 allow site2 to:

19 * * * to /ˆsite2_/

20

21 allow to:

22 authorised by

manager@site2.begrid.be

23 * * * to /ˆsite2_/

24

25 allow site3 to:

26 * * * to /ˆsite3_/

27

28 allow to:

29 authorised by

manager@site3.begrid.be

30 * * * to /ˆsite3_/

31

32 allow site4 to:

33 * * * to /ˆsite4_/

34

35 allow to:

36 authorised by

manager@site4.begrid.be

37 * * * to /ˆsite4_/

38

39 allow site1, site2 to:

40 * * * to /ˆcommon_new_/

guage would be to include a mechanism for abstracting

certain details: for example, a mechanism for using tem-

plates to match certain structures and to hide the com-

plexity of the regular expressions used. A final enhance-

ment would make it possible to combine rules using dif-

ferent operators.

The second requirement for ACHEL integration is that

ACHEL should be provided with an abstract syntax tree.

If a configuration tool includes a formal grammar defi-

nition of its language, this grammar can be reused. An-

other option is to dump the internal abstract syntax tree

structures of a system configuration tool.

Supporting authorization request processing

Currently, ACHEL relies on existing communication for

notifications related to authorization requests and signa-

tures. To improve the usability of ACHEL in real in-

frastructures, a plug-in or tool is needed for automat-

ically processing authorization requests by pulling the

change, requesting a signature from the user, commit-

ting the signature and notifying the author of the signed

change. ACHEL should also support multiple DVCS’s

and digital signatures for real world deployment in order

to match existing practices and tools in an infrastructure.

Bugtracker tools could also be useful in real world ap-

plications, because some bugtrackers include DVCS in-

tegration.

Meta-ACL’s

Our prototype does not contain support to enforce access

control on the access control language itself. The ac-

cess control available in the underlying distributed ver-

sion control system can in most cases be reused, because

typically only a few users in an infrastructure are allowed

to define policy related rules. Technically it is possible to

apply the same change detection approach to the access

control language itself and provide a meta access control

language. This would also make it possible to implement

a mechanism for delegating permissions.

6 Conclusion

ACHEL provides integration of fine-grained access con-

trol with existing configuration tools and it can enforce

configuration change workflows in federated infrastruc-

tures. Moreover, ACHEL combines these capabilities

with distributed version tracking and cryptographic se-

cure authentication. It also makes access control rules

easier to write because they are defined at the same

abstraction level as the configuration specification lan-

guage. And finally, because large parts of ACHEL are

14

language agnostic, support for new configuration lan-

guages can be added with minimal effort.

7 Acknowledgments

We would like to thank Wouter De Borger and Stefan

Walraven for proofreading this paper. We also thank

Mark D. Roth for his work on shepherding this paper

this paper and the anonymous reviewers for their valu-

able feedback.

References

[1] BitKeeper Website. http://www.bitkeeper.com, 2007.

[2] Bazaar version control: Workflows. http://bazaar-vcs.

org/Workflows, 2008.

[3] Git Website. http://git-scm.com/, 2009.

[4] Keep your Puppet manifests under version control.

http://reductivelabs.com/trac/puppet/wiki/

VersionControlPuppet, 2009.

[5] Puppet Change Management. http://reductivelabs.

com/trac/puppet/wiki/ChangeManagement, 2009.

[6] Using Multiple Environments in Puppet. http:

//reductivelabs.com/trac/puppet/wiki/

UsingMultipleEnvironments, 2009.

[7] AL-EKRAM, R., ADMA, A., AND BAYSAL, O. diffX: an al-

gorithm to detect changes in multi-version XML documents. In

CASCON 05: Proceedings of the 2005 Conference of the Cen-

tre for Advanced Studies on Collaborative Research (2005), IBM

Press, pp. 1–11.

[8] ANDERSON, P. The Complete Guide to LCFG, 2003.

[9] ANDERSON, P. Short Topics in System Administration 14: Sys-

tem Configuration. Berkeley, CA, 2006.

[10] ANDERSON, P. LCFG: A large scale UNIX configuration sys-

tem. http://www.lcfg.org, 2008.

[11] ANDERSON, P., AND COUCH, A. What is this thing called Sys-

tem Configuration? LISA Invited Talk (November 2004).

[12] ANDERSON, P., AND SMITH, E. Configuration tools: Working

together. In Proceedings of the 19th Large Installations Systems

Administration (LISA) Conference (Berkeley, CA, USA, 2005),

USENIX Association, pp. 31–38.

[13] BURGESS, M. Cfengine: a site configuration engine. USENIX

Computing Systems 8, 3 (1995), 309–402.

[14] BURGESS, M. Cfengine Website. http://www.cfengine.

org, 2009.

[15] CHAWATHE, S. S., AND GARCIA-MOLINA, H. Meaning-

ful change detection in structured data. In Proceedings of the

1997 ACM SIGMOD International Conference on Management

of Data - SIGMOD 97 SIGMOD 97 (New York, NY, USA, 1997),

ACM, pp. 26–37.

[16] CHILDS, S., POLEGGI, M. E., LOOMIS, C., MEJAS, L. F. M.,

JOUVIN, M., STARINK, R., DE WEIRDT, S., AND MELI,

G. C. Devolved Management of Distributed Infrastructures With

Quattor. In Proceedings of the 22nd Large Installation System

Administration (LISA) Conference (Berkeley, CA, USA, 2008),

USENIX Association, p. 175189.

[17] CONS, L., AND POZNANSKI, P. Pan: A high-level configuration

language. In Proceedings of the 16th USENIX Conference on Sys-

tem Administration (LISA) (Berkeley, CA, USA, 2002), USENIX

Association, pp. 83–98.

[18] DELAET, T., AND JOOSEN, W. PoDIM: A language for

high–level configuration management. In Proceedings of the

21st Large Installation System Administration (LISA) Conference

(Berkeley, CA, USA, 2007), USENIX Association, pp. 1–13.

[19] DESAI, N. Bcfg2: A Pay as You Go Approach to Configuration

Complexity.

[20] DESAI, N., BRADSHAW, R., AND HAGEDORN, J. Bcfg2 Man-

ual, July 2006.

[21] DESAI, N., BRADSHAW, R., HAGEDORN, J., AND LUEN-

INGHOENER, C. Directing change using Bcfg2. In Proceed-

ings of the 20th Large Installation System Administration (LISA)

Conference (Berkeley, CA, USA, 2006), USENIX Association,

pp. 215–220.

[22] DESAI, N., BRADSHAW, R., MATOTT, S., BITTNER, S.,

COGHLAN, S., EVARD, R., LUENINGHOENER, C., LEGGETT,

T., NAVARRO, J.-P., RACKOW, G., STACEY, C., AND STACEY,

T. A case study in configuration management tool deployment.

In Proceedings of the 19th Large Installation System Adminis-

tration (LISA) Conference (Berkeley, CA, USA, 2005), USENIX

Association, pp. 39–46.

[23] FLURI, B., WUERSCH, M., PINZGER, M., AND GALL, H.

Change Distilling: Tree Differencing for Fine-Grained Source

Code Change Extraction. IEEE Transactions on Software En-

gineering 33, 11 (2007), 725–743.

[24] HIGGS, C. Authorisation and Delegation in the Machination

Configuration System. In Proceedings of the 22nd Large Instal-

lation System Administration (LISA) Conference (Berkeley, CA,

USA, 2008), USENIX Association, pp. 191–199.

[25] KANIES, L. Puppet Website. http://reductivelabs.

com/projects/puppet/, 2008.

[26] LIM, S.-J., AND NG, Y.-K. An Automated Change-Detection

Algorithm for HTML Documents Based on Semantic Hierar-

chies. Data Engineering 0 (2001).

[27] MACKALL, M. Towards a Better SCM: Revlog and Mercurial.

[28] MATES, J. Storing CFEngine configuration in CVS. http:

//sial.org/howto/cfengine/repository/, 2009.

[29] MCCARTHY, J. Towards a mathematical science of computation.

Information Processing 62 (1962), 21–28.

[30] MYERS, E. W. An O(ND) difference algorithm and its variations.

Algorithmica 1, 1 (1986), 251–266.

[31] OHST, D., WELLE, M., AND KELTER, U. Differences between

versions of UML diagrams. In Proceedings of the 9th Euro-

pean Software Engineering Conference, held jointly with 10th

ACM SIGSOFT International Symposium on Foundations of Soft-

ware Engineering - ESEC/FSE 03 ESEC/FSE 03 (New York, NY,

USA, 2003), ACM, pp. 227–236.

[32] ROUILLARD, J. Distribution and Configuration System. http:

//www.cs.umb.edu/˜rouilj/DACS/, 2009.

[33] TRAUGOTT, S., AND HUDDLESTON, J. Bootstrapping an Infras-

tructure. In Proceedings of the 12th USENIX Conference on Sys-

tem Administration (LISA) (Berkeley, CA, USA, 1998), USENIX

Association, pp. 181–196.

[34] WANG, Y. X-Diff: an effective change detection algorithm for

XML documents. In Proceedings 19th International Confer-

ence on Data Engineering (Cat No 03CH37405) ICDE-03 (Los

Alamitos, CA, USA, 2003), vol. 0, IEEE Computer Society,

p. 519.

[35] XING, Z., AND STROULIA, E. UMLDiff: an algorithm for

object-oriented design differencing. In ASE 05: Proceedings of

the 20th IEEE/ACM international Conference on Automated Soft-

ware Engineering (New York, NY, USA, 2005), ACM, pp. 54–65.

15

