
The Water Fountain vs. the Fire Hose: An Examination and
Comparison of Two Large Enterprise Mail Service Migrations

Craig Stacey, Max Trefonides, Tim Kendall, Brian Finley
Argonne National Laboratory

Abstract

Mail administrators will inevitably face a situation where they will need to migrate their users from one server to
another, not infrequently migrating to a different service altogether. In 2008, two divisions of Argonne National
Laboratory found themselves needing to migrate their users from disparate divisional mail servers to a central, insti-
tutional Zimbra Collaboration Server. Each group approached the situation from a different direction, driven by
different motivations, timelines, and external forces; each ultimately achieved its goal, one more smoothly than the
other. The first migration was driven by a high sense of urgency resulting in a “fire hose” approach, an en masse
move followed by a grand switchover; the second migration was a more measured “water fountain” approach, taking
in lessons learned during the first migration. Examining the processes, decisions, and tools used in each conversion
yields a roadmap of successes and pitfalls that should prove useful to any systems administrators facing a similar
task, regardless of the timeline within which they must work.

1. Overview

Argonne National Laboratory is served by a central IT
services division, the Computing and Information Sys-
tems (CIS) division. As well, many of the program-
matic divisions have their own IT staffs of varying
sizes. This paper focuses on the work of the IT support
groups from two of those divisions, the Mathematics
and Computer Science division (MCS) and the Materi-
als Science Division (MSD).

CIS offers services, including e-mail, to any of the divi-
sions at Argonne. Until 2008, this e-mail service was
provided solely as Microsoft Exchange. In mid-2008,
Argonne began offering a choice between Exchange
and Zimbra Collaboration Suite.

Prior to this migration project, both MCS and MSD ran
their own e-mail services rather than using the central
mail services for varying reasons that will be detailed
below. MCS and MSD each maintains its own IT sup-
port groups, providing a number of services besides e-
mail. Diagrams detailing the flow of mail to these divi-
sions both before and after this migration are included
in the appendices.

MCS consists of nearly 200 researchers, programmers,
students, and visitors, with another 250 external col-
laborators. The division is home to several hundred
workstations, three large clusters, and other high-
performance computing resources. Aside from manag-
ing this diverse group of resources, the group also pro-
vides standard IT services such as web, mail, data stor-

age, backup, and networking services. Management of
these resources and services is handled by a single IT
organization, the MCS Systems team, comprising 10
individuals with varying skill sets and specialties, as
well as anywhere from 1 to 4 undergraduate students
each summer, depending on workload and availability
of interesting projects.

MSD is the focal point for research in materials science
at Argonne National Laboratory and consists of over
200 researchers, students and staff. The MSD IT Op-
erations group supports this division, providing support
for over 200 workstation and several small clusters.
MSD IT Operations also provides standard IT services
similar to those provided by the MCS Systems team.
The IT Operations team comprises 3 full time employ-
ees and 2 part time co-op students.

2. Mathematics and Computer Science Di-
vision (The Fire Hose)

MCS ran its own mail services, with user mailboxes
provided by Cyrus IMAP on an AIX server with 6 TB
(available) of fibre channel attached storage, an installa-
tion that was set up in 1998. Approximately 500 user
mailboxes were active at the time of this migration,
with another 200 lying dormant as their owners for-
warded their mail elsewhere, totaling approximately
450 GB of mailbox data.

In this section, the process is described from the per-
spective of the MCS Systems team, with a summary of
the CIS perspective at the end.

2.1. MCS Decision Process

The existing mail system was showing its age. In 2006,
MCS began the process of evaluating an upgrade path
for mail services. Ultimately, we decided to go with the
same approach we'd been using for the past 8 years;
mailbox services provided by Cyrus, though instead
using a Linux server since our AIX expertise was lack-
ing.

While we try to avoid these situations, an extended pe-
riod of limited funding, staffing changes, and an over-
committed IT staff resulted in systems and services
getting replaced only when they broke or failed to meet
the existing need. As this server was generally rock
solid, it was often overlooked, and its replacement was
not considered an urgent matter.

While testing and implementation plans were being put
into place, we became aware of a growing desire within
our user community for shared calendaring and other
collaboration tools. We entered into a joint trial of the
Zimbra Collaboration Server (ZCS) with CIS, with
MCS's focus being the calendaring component.

Several months later, the mail upgrade project was
stalled as a result of other emergencies; however, the
Zimbra pilot was going well. Realizing that the ZCS
service inherently provides mailbox services, we re-
evaluated our mail server upgrade plan.

Our decision to continue to provide our own mail serv-
ices was driven by a number of factors, but one of the
main motivators was that we needed to be in control of
the data and service. When something goes wrong, our
users expect us to be able to fix it, and fix it quickly.
The prospect of outsourcing our mail services and leav-
ing our IT staff unable to directly support it did not ap-
peal to either the IT staff or management. To an out-
sider, this may seem simply territorial, and there is cer-
tainly some truth to be found in that thinking.
However, historically, the relationship between the or-
ganizations that would become MCS and CIS had its
rough patches. MCS management preferred a nimble
set of services focused solely on advancing its research,
and many saw CIS as slow, bureaucratic, and control-
ling. Overcoming this prejudice was not an easy task,
but this seemed an opportune time to try.

By virtue of the fact that the Zimbra experiment in CIS
was in its pilot stage, coupled with the fact that MCS
was its largest user base, MCS systems administrators
were given administrative access to the service. After
confirming that this access would be continued in the

production-level service, we decided to make Zimbra
the mailbox service for the division.

We note that the scope of this migration was limited
specifically to user mailboxes. MCS was not going to
cease providing mail services; we still ran Majordomo-
based mailing lists (which would be converted to mail-
man lists later in the year), as well as trouble ticket sys-
tems for ourselves and other groups, and virtual domain
services. Therefore our solution needed to be able to
support our remaining the primary Mail Exchanger for
the domains we controlled, sending user-bound mail to
the central service. This Zimbra solution fit the bill
nicely.

Work on the conversion began in earnest as our mail
server was continuing to show its age. For instance, the
release of Mac OS 10.5 brought with it a new version of
Mail, which many of our users use. This new version
handled offline IMAP actions in a slightly different
fashion from previous versions, and it was a way that
seemed to cause our version of Cyrus IMAP to choke.
This resulted in repeated error messages to the users
and an ever-growing list of queued actions, as each
failure caused a new copy of the offline action to be
queued. As one can imagine, this situation got less and
less bearable as time went on. Additionally, large mail-
ings could bring the service to a crawl, and we were
entering into a time of year when drafts of proposals
would regularly be sent to large distribution lists.
While it may not be the most efficient way of collabo-
rating on a document, e-mailing Word and PowerPoint
documents is certainly the most prevalent method
among our users. Most significantly, as errors would
occur and failures became increasingly frequent with
the advancing age of the server, we felt we were in-
creasingly in danger of losing mail.

2.2. MCS Migration Plan and Implementa-
tion

Problems with our existing server notwithstanding, we
had what was fundamentally a simple problem – find a
way to move messages from one IMAP server to an-
other. We did a fair amount of research to locate the
existing tools that could accomplish this move, since
something of our own construction would likely be too
much effort for what should fundamentally be a solved
problem. Based on this web research, consensus in the
community seemed to be that using imapsync [Lamiral]
would be the most reliable method of accomplishing
this migration. Likewise, Zimbra’s own recommenda-
tions in migrating to a new server recommended this

path of action [Zimbra]. In using this tool, however, we
had to consider the limitations of our setup:

• The old mail server (cliff) was being pushed to
its limits already; therefore our migration
could not be too aggressive on the server.

• Because imapsync uses the IMAP protocol, it
requires us to know the users’ passwords on
both systems. While we could set their pass-
words on the new Zimbra server, since they
were not yet using it, we could not know their
passwords on the existing IMAP server, as it
was NIS-bound and using their regular work-
station passwords.

We circumvented the first problem by limiting our-
selves to two concurrent syncs – testing indicated this
was an acceptable load. The password problem was
more complex, but our situation allowed us to employ a
creative workaround. Because our mail server was NIS-
bound, we attempted to use a local /etc/passwd entry on
the machine, allowing us to login with our system
password, and allowing the users to login with their
NIS passwords as a fallback. Alas, this did not work on
our version of AIX, but it did give us the idea that
solved the problem. We could create entries for a
“ghost” user on the mail server with the same UID and
path as the real user that used our system password. At
the same time, our script would modify the flat mail-
boxes file that Cyrus used to map mailboxes.

After testing confirmed our scripts were doing the right
things, we ran the migration process day and night over
a period of weeks. Various pitfalls were encountered
along the way because of a number of situations our
testing did not predict, such as disks filling up, net-
works going down, and previously undetected corrup-
tion in mailboxes.

Throughout the entire migration process, this corruption
in mailboxes posed a significant challenge, as there was
no predictable method to discover the corruption until
we tried traversing the mailbox structure and reading
individual messages; indeed, the messages appeared to
be normal in any index of a mailbox, and the problems
appeared only when the messages would be read. The
most common corruption seemed to be in the oldest
mailboxes; indeed, some employees had mail archives
dating back into the late 1990s. While this in and of
itself should not have caused a problem, the errors
seemed to be caused by the varied (and no doubt inter-
esting) lives these messages led. Some originated on
the precursor to the mail system we were replacing

(Sun OS 4.1.4’s Mail with Sendmail and qpopper).
These messages were stored in a monolithic mbox file,
POPped off the server by the user into their e-mail cli-
ent of choice, then later reimported into the Cyrus
server via IMAP. Our most plausible theory is that
changes in header format and attachment handling is
what caused Cyrus to fail on loading these messages, as
almost all of the corrupt messages were messages from
Exchange users with attachments. These messages
would have to be removed from the inbox by hand.
Happily, while the IMAP clients seemed to fail on
transferring or reading the messages, they were gener-
ally capable of deleting the messages; only a small
handful of messages required a file-level delete and
mailbox reindex.

Ultimately, it became clear that the IMAP-only method
of syncing was not going to solve this problem; it was
simply too slow. Connections were timing out on large
mailboxes, resulting in incomplete data syncs. Also, the
problems on cliff were steadily getting worse, and it
became clear we needed an aggressive schedule for the
migration. We came to the realization that our beloved-
yet-overworked “little engine that could” was on the
verge of switching from “I think I can” to “I think I’m
done.” As such, the slow-and-steady approach was
beginning to look like it was a bigger risk than charging
forward. It was the end of February, and an organiza-
tion-wide maintenance window was scheduled for the
weekend of April 26 and 27. We chose this weekend
for the migration as most services would be down al-
ready, and users would expect a loss of service over
that weekend.

Our second pass at moving the data involved getting the
raw mailbox data onto the new server via rsync, using
Zimbra’s command line tools on the server to import
the data into user mailboxes, and then using imapsync
to synchronize the flags on the mailboxes with their
counterparts on the old server.

To ensure we did not bring the main Zimbra server’s
network to a crawl during our data sync, we synced to a
development server with the intention of mounting the
disk on the production server for the import. As is be-
coming evident to the reader, things rarely worked out
the way we planned them, and this was no exception.
The initial sync of the data took an excruciatingly long
time, though we were hopeful the import into the pro-
duction server would be a much quicker operation,
since the slowness of cliff would be out of the equation.
Alas, the nature of the SAN defeated us; it turned out
both the rsync and the mailbox import were I/O bound,

and our development server’s SAN was not as robust as
the primary storage on the production server.

Our self-imposed April 26 deadline was fast approach-
ing, and our progress was indicating we would probably
finish the initial data sync the day before we were to
switch over. The IMAP syncs were alphabetical by user
name, and this estimate was based on progress through-
out the alphabetical list of usernames. Astute readers
should be able to predict the next pitfall we hit – our
largest mailbox was one of the last ones alphabetically.
On average, our user mailboxes were several hundred
megabytes, with users rarely crossing into the gigabyte
range. This particular user had a mailbox of over 20
GB. We realized we would have to handle this mailbox
out of band if we were to meet our deadline, and we
started syncing it and other large mailboxes concur-
rently, outside the automated process.

On the morning of April 26, it was evident that the sync
would not be finished. Because the outage window had
already been announced, we plowed ahead and at-
tempted to finish the migration, figuring a day for the
heavy work and all of Sunday to finish and tie up loose
ends.

We turned off all incoming mail and started the final
sync of user mailboxes with imapsync, which would
capture any messages that arrived since the initial sync,
along with setting the message flags for the users. This
script ran throughout the day as we set up the new rules
on our SMTP relays to direct mail to the correct serv-
ers. Because the old mail server would still be process-
ing Majordomo mailing lists, we had to detect whether
mail was for a user or mailing list and route it accord-
ingly. By Saturday night, things seemed to be progress-
ing well, and our spot checks on mailboxes looked
okay, except message flags did not seem to be getting
set correctly.

On Sunday, it became clear what was going wrong; the
“ghost” user on the old server had full access to the
user’s mailboxes but did not share the message flags,
and all messages were seen as “new”. (We later sur-
mised that even though there was a single copy of each
Cyrus indexing file per mailbox, that file was storing a
set of flags for each username that accessed the mail-
box, as opposed to each UID; thus, all messages were
“New” to the ghost user.) Because the mail system was
now down, we uncoupled cliff from NIS and used only
the local /etc/passwd file, allowing us to use the user’s
real mailbox with our system password. This strategy
solved the message flag issue, but we became aware of
another issue. The script calling imapsync was sup-

posed to be nondestructive; messages deleted on the old
server should not be deleted on the new server. Because
of a misreading of the configuration, however, this was
not the case, and messages were being purged from the
new mailboxes in some cases. In theory, such purging
should not have mattered. However, perceptive readers
will remember we flipped the switch on delivery of new
messages on Saturday morning. Hence, any new mail
delivered to the new mailbox was being deleted as soon
as that user’s sync was run.

Also, because of mailbox corruption on the old server, a
handful of users had their mailboxes emptied on the
new server. We needed to reconstruct these mailboxes
from backups, or in some “friendly user” cases (i.e.,
fellow sysadmins), the users restored their own mail-
boxes from their local backups.

The migration was not yet complete, but users were
getting anxious. By 7:00 Sunday evening, users whose
accounts we had deemed to be fully migrated were al-
lowed into their new mailboxes. Surprisingly, this did
not go poorly. In fact, the feedback we received during
this “early access” period helped us in later diagnoses.
From what we were hearing, we could determine that in
most cases, where the user’s mailboxes were small, the
migration was a success. However, for users with large
or complexly organized mailboxes, it became apparent
rather quickly that the migration was not complete. En-
tire years’ worth of mail were missing from the mail-
boxes of some users who kept large archives.

By Monday morning, it was clear we had much more
work to do to finish the migration. We announced to
the users that we had reason to suspect the migrated
mailboxes were not complete and that we would instead
implement an approach whereby new mail continued
arriving at the new mail server, and users would mi-
grate their own mail via their mail clients, with help
from the IT support staff where required.

This manual user-initiated sync took place over the next
two months in a gradual process, with most users being
completely migrated by mid-May. In part we were able
to accomplish this migration by announcing that the old
server would be shut down at the end of May. As
someone wise beyond his years once said, “Announce
the demise of the old [system] well in advance of really
discontinuing it” [Evard94].

In the cases of users with large or deeply nested folder
hierarchies, we engaged in a great deal of “hand-
holding” to guide them through the process. Unfortu-
nately, these users tended to be among the less technical

savvy in the division, and as such the workload in that
handholding was significant. Also, as outlined below,
some mailboxes could not be migrated at all without
some server-side tweaks.

We emphasize that the MCS users were marvelously
patient throughout this process. Indeed, a key in main-
taining this level of patience was proper communica-
tion. As noted in Tom Limoncelli’s AT&T Network
migration, a high level of communication and status
updates will make the users feel more a part of the
process (and less a victim of it) [Limoncelli97].

2.3. MCS Pitfalls and Lessons Learned

With each approach we devised, the plan seemed fool-
proof on paper, and at each step of the way, something
popped up proving us wrong. The list of things that
went wrong reads like a proof of “Murphy’s law.”

The combination of imapsync and our aging mail server
were incapable of moving the mailboxes. In fact,
IMAP itself had great difficulty in handing some of the
user mailboxes. Often, users would archive mail into
folders they would never again look at. As these fold-
ers grew in the number of messages contained therein,
some reached a size that would make it impossible to
access them over an IMAP client; as the old mail server
struggled to stat the files, the connection would time
out. To get around this situation, we would manually
break up the mailboxes into smaller folders, reindex the
folder, and begin anew.

The rsync of the mailbox data was restarted numerous
times because of failing disks, high CPU loads, and
network outages. In some cases these syncs had been
running uninterrupted for days before crashing. With
each restart, we lost precious time as file systems were
compared.

The misconfiguration of imapsync in our migration
script was a significant pitfall. By using imapsync in-
correctly and losing messages, we undid a significant
portion of the work that was accomplished. Human
error is going to happen in any venture driven by hu-
mans and can be easily compounded by late, stress-
filled nights that follow long, stress-filled days. In
short, a simple typo of a flag was a devastating blow to
both our progress and morale. A second set of eyes on
these scripts would have gone a long way toward solv-
ing this problem.

Numerous restarts in various parts of this project
plagued us. In the period between January 3 and April

25, we started from “square one” five times after a pre-
vious plan of action proved unworkable. Instead of hav-
ing 4 months to migrate, we effectively had 2 weeks.
This time constraint ramped up our stress levels, know-
ing that delaying the move could only exacerbate the
situation, living in fear of the old mail server falling
over.

All of the work we did to move the data from the old
server to the new server was ultimately abandoned.
This was, perhaps, the hardest blow to our collective
psyche. The “brass ring” throughout this process was
our knowing we’d done all the heavy lifting for our
users, and they’d not have to deal with the migration
themselves. Instead, not only did we go through a tre-
mendous effort, but it was for naught.

Because a significant source of angst in this process
was the lack of documentation, we continue to ensure
we do not run into this in the future. Much of the old
system was simply undocumented, existing only in the
head of the previous mail administrator – clearly not a
sustainable method of operating. We have ramped up
our efforts in documenting processes and configura-
tions, and we’ve ensured that more administrators are
involved in the operation and configuration of the serv-
ers, avoiding the single-point-of-knowledge problem
we typically faced.

The biggest contributing factor to our problems with
this migration was related to the age of the hardware,
operating system, and software of our production mail
server. Combined with poor documentation, this left us
with an aging mail system that for years had generally
performed well with little intervention, and nothing but
fading institutional memory on how to repair or tweak
it. And, as is the case with any stable rock in a dy-
namic ecosystem, it had acquired roots and tendrils
embedded in it that we are to this day still trying to dis-
engage.

As noted in Section 2.1, the root cause of the age of this
system was its generally working as expected during a
period of time where only “squeaky wheels” got the oil.
Economizing on hardware by holding off upgrades can
often seem prudent, and sometimes unavoidable, but it
almost certainly leads to an inflated TCO in the longer
run. Tallying the amount of work hours involved in
extricating a long used and encrusted system from a
reasonably complex environment would be an interest-
ing exercise. Following a long-term plan for regular
retirement and refreshing of hardware would have gone
a long way toward mitigating much of our problems.

A technical factor in this process was the Cyrus IMAP
mailbox database. This monolithic flat text, single-file
database used by the version of Cyrus IMAP that we
were running proved to both hamper and help our mi-
gration. We were hampered because the file was frag-
ile, had a rigid format dependent on tabs, spaces, and
sorting (requiring a different sorting than provided by
AIX’s sort command), and was prone to corrupt the
mail stream when things went wrong. It helped because
we had an easily scriptable way to insert the systems
users in order to be able to get access to the users' mail-
boxes, by ensuring the “ghost user” was either the first
or last alphabetically (i.e. “aaaaaaaa” and “zzzzzzzz”).

In Section 2, we mentioned that we had 500 active ac-
counts and an additional 200 that were later determined
to be dormant, resulting in our moving 40% more users
than we needed to. We gave thought to indentifying the
unused mailboxes prior to migration, so as to avoid the
work of moving users who no longer existed. A small
amount of effort was put to this task, but we soon called
it off as we discovered most of these users had very
small mailboxes, and weeding them out from the proc-
ess would be more work than simply migrating every-
one wholesale. With a slower approach, it’s more
likely we would have taken the time to cull these un-
used accounts prior to a move – it was largely a deci-
sion based on the time left and the level of effort avail-
able.

We point out that, over time, our account and resource
expiration policies have been disabling and deleting
these mailboxes, and almost all have been removed
with little work on our behalf.

The next time we have to perform a migration of mail-
boxes, we’ll be far more likely to employ the process
we ended up using after all other plans failed. We
would choose a cutover date when all new mail will be
delivered to the new server, and allow users to migrate
their own mail with help from IT support before an
announced deadline wherein the old mail server would
be shut off.

While we certainly engaged in testing, we failed to
properly identify the edge cases. In some cases we
chose what we expected to be difficult mailboxes on
which to audition new migration methods, yet we had a
knack for choosing examples that, while certainly large
and well aged, were problem free. A better sampling
for our testing would have gone a long way to identify-
ing many of the pitfalls in advance of our migration
deadline.

When coming up with our migration plan, CIS recom-
mended we employ a more staged rollout. We opted to
go “all-in” as we did not feel we had the luxury of the
time required to engage in such a migration. Of course,
the irony of this situation is the mail server we were
convinced was going to fall over at any moment stayed
up through the manual migration process. In fact, it
was finally retired in August of 2009.

It’s also important to consider that our group tries to
make things as seamless for our users as possible, and
all of our research indicated we would be able to ac-
complish this migration with little to no user impact.
Aside from updating their mail client configurations,
the only change our users were supposed to notice was
a faster and more reliable mail service. We have cer-
tainly learned that this was too lofty a goal in the given
circumstances.

2.4. CIS Challenges and Participation in the
MCS Migration

From the CIS perspective, Zimbra had been very suc-
cessful as a pilot service, but we had no true experience
running Zimbra as a production service, or with any
significant data or user load. Going from a dozen giga-
bytes of mail to trying to appropriately scale the system
to instantly take on roughly half a terabyte of mail data
and 500 users was a cause of some concern, and a bit of
a challenge.

Zimbra allows for separation of disk volumes for per-
formance and cost reasons. CIS provisioned the pro-
duction system with separate volumes for redo logs,
primary mail store, and secondary mail store, among
others. Mail flow into the system, including messages
added via IMAP, first land in the redo logs, then the
primary mail store. A weekly scheduled Zimbra HSM
process then migrates old mail from the primary mail
store to the larger secondary mail store on lower-
performance, less expensive disk.

One unanticipated effect of the “fire hose” approach
was the need to closely monitor volume consumption
on these separate volumes; in particular the redo log
and primary mail store volumes, neither of which was
intended to be able to completely contain the amount of
data being transferred during the MCS migration.

As the redo log volume filled up, it was necessary to
manually invoke an incremental backup using Zimbra's
self-backup facility. The Zimbra self-backup facility
allows for atomic point in time restores, and does so by
replaying appropriate bits from the redo-logs, which it

copies to a backup volume during incremental backups.
As the primary mail store filled up, it was necessary to
preemptively invoke the Zimbra HSM facility. Fortu-
nately, message age persisted in the migrated mail,
therefore allowing this process to work.

The HSM process, as the solution to the primary mail
store filling up, was fairly easy to identify. It just made
sense, we already understood how it worked, and had
intended it for this purpose, just not on this schedule.
On the other hand, we had no prior experience with the
redo logs growing out of hand. Previously, the already
scheduled daily incremental backups automatically
handled them, so we had no prior need to pay them any
notice – it just worked. This is a good example of the
challenges of accurately modeling behavior of a system
at scale in a small or simulated environment.

CIS wasn't too concerned about high load placed on the
Zimbra server during the MCS migration, as they were
the first production user base to migrate. In other
words, if the migration caused performance issues, they
would be affecting only themselves. This was a luxury
that future groups making the migration would not be
able to have.

3. Materials Science Division (The Water
Fountain)

MSD ran an iPlanet mail server on a Sun server with
approximately 120 mailboxes including service ac-
counts. A majority of the mailboxes were active at the
time of migration, as MSD had been doing some house
cleaning to keep adequate free space. At the start of
migration there were over 190 GB of mail.

In this section, the migration process is described from
the perspective of the MSD IT Operation group.

3.1. MSD Decision Process

The current MSD IT operations staff had inherited an
aging Sun e-mail server that was getting more costly to
maintain. Maintenance contracts and the cost of adding
additional storage were cost prohibitive because of the
age of the server. Additionally, as the existing server
had been installed and operated by administrators no
longer with the division, there was a lack of expertise
with this install.

MSD IT Operations was relatively new department to
MSD, as IT support had been handled by an Argonne
division that had been dissolved. Despite having a new
IT staff, the division had inherited an aging IT infra-

structure built and maintained by another group. Be-
cause of this older infrastructure MSD wanted to ex-
plore the possibility of using the CIS e-mail systems,
yet we were apprehensive about relinquishing control.
The division is accustomed to having its services run by
a support group whose only responsibility is their own
division. Bearing this in mind, we did give some con-
sideration to bringing a new e-mail server online. But
since we had so many other infrastructure problems to
deal with, we felt the benefit far outweighed the conse-
quences of migrating e-mail services to CIS. Addition-
ally, using CIS e-mail gave us the advantage of using
Argonne’s central Active Directory authentication, as
MSD users were tired of having several different
authentication methods.

Since MSD had a large Mac OS user base, moving to
CIS Exchange servers was not our first choice because
of the various issues Mac OS users can have with con-
necting to Exchange. (Historically, the laboratory’s
Exchange server did not interact well with Entourage.
This problem was solved after our migration was fin-
ished.) At this time we became aware of the CIS Zim-
bra pilot project and started a dialog with CIS and MCS
regarding migrating to Zimbra. After MSD completed
initial testing and conversations with both the Zimbra
lead and the MCS lead, MSD joined MCS on the Zim-
bra pilot test. This was in the early spring of 2008, but
unfortunately several other more urgent projects needed
attention, delaying the start of planning of the migration
until late July 2008. It was during this pilot test that
MCS performed its migration. After the process was
complete, the MSD administrators met with our MCS
colleagues to discuss their process.

Since other commitments by IT staff had delayed work
on the migration, we, too, started to feel a sense of ur-
gency. We had two factors influencing our deadline;
our maintenance contract on the Sun server was expir-
ing in late 2008, and our SSL certificate would expire
shortly after that. MSD did not want to incur the cost
of renewing either of them, knowing the service was
bound for decommissioning. Also, during a recent di-
visional review, there were many large e-mail attach-
ments going back and forth among the users, resulting
in one weekend where mail delivery came to a near
standstill because of lack of storage space. Even after
the review, it was a struggle to keep 10 GB free on the
mail store.

Because divisional administrative support staff and
senior management need to collaborate with others in
the laboratory, a decision was made to migrate these

users to the central Exchange server. Otherwise, all
MSD users were to be migrated to the Zimbra server.

3.2. The Plan and the Pitfalls

Once we decided to use Zimbra as our primary server,
new employees received accounts on the Zimbra serv-
ice. Initially this was limited to postdocs, since Ar-
gonne’s Zimbra service was still technically in the pilot
phase. With the installation of ZCS 5.0, it was officially
moved to production status, and we started adding all
new employees’ mailboxes to the Zimbra server. This
relieved some of the storage issues on the current MSD
mail server, allowing MSD IT operations to work out
the remainder of the migration planning without quite
so much urgency.

MSD looked at using imapsync; but after meeting with
MCS and discussing the problems they had with it, do-
ing an all-at-once approach was ruled out. Among the
several reasons not to use imapsync was the need to
know the user’s password; MSD would not have access
to user’s AD account password for the Zimbra e-mail
accounts. Furthermore, from a general customer satis-
faction perspective, doing one user at a time was far
more appealing, as we could start with a few users and
test the migration process, hammering out any issues.
Other reasons included the experience of some of our
IT staff with e-mail migrations from previous positions
at other organizations that employed expensive third
party tools to perform a behind the scenes migration.
Based on this experience, MSD IT knew we would
most likely end up touching every workstation anyway.

The process we settled on was a new feature available
in Zimbra, the import component of the web interface.
We used this tool because it off‐loaded the migration
from the client to the server. Thus, the migration proc-
ess did not tie up the user’s workstation during the
move, which was especially beneficial when dealing
with older machines or a large mailbox migration.
Since the Zimbra Web Client (ZWC) allowed users to
add and check external POP and IMAP accounts, we
had the user log into the ZWC and add the user’s old
MSD account. This approach caused the Zimbra server
to import all the user’s mail completely as a server‐side
action, regardless of whether the user is logged in on
the ZWC. During the mail import MSD changed the
primary e-mail alias to point to the Zimbra server. Once
the account had fully loaded in the web interface, we
then moved and arranged the folders or contents of
folders to the Zimbra account’s mailbox tree to mirror
the old MSD folder structure. Once completed, we de-

leted the old account from the ZWC and set up the
user’s e-mail client to access the new account.

During the migration MSD encountered some users that
were off-site a vast majority of the time. To assist these
users, MSD wrote up documentation on how to do their
own migration. Additionally, some users preferred to
do their own migration because it provided an opportu-
nity to cleanup their e-mail.

After MSD started doing several migrations a day, the
Zimbra server started to slow tremendously, affecting
other division as well. Migrations were halted while the
Zimbra team investigated. After finding the root cause
was Zimbra’s indexing of attachments, we decided to
turn off this feature for the time being. With attachment
indexing off, migrations were much faster, even with
heavy e-mail users (5 GB+ mail boxes), and there was
no impact on other users’ experience with the system.
This issue did not arise during the MCS migration, be-
cause no other users were interactively using the service
during their migration, so the high machine load was
not noticed.

Rather than simply moving alphabetically through the
mailboxes, scheduling was done with some considera-
tion to the user’s mailbox size: we started with the
smaller mailboxes to make sure the process was work-
ing. Once the process was established and server con-
cerns were addressed, we based the schedule primarily
on the user’s convenience. We scheduled it in batches
and tried to get as many done in one batch as possible.

With any migration like this, one must address setting
user expectations accurately on access to the old data.
MSD established a policy that a user’s old e-mail ac-
count would remain accessible for 7 days after the mi-
gration but only through the web interface. After 7 days
the password on the mail account was changed; after 30
days the account was deleted from the server. This pol-
icy was largely adhered to except in some instances
requiring us to set up access to an old MSD mailbox
because something was not migrated or we missed
changing an e-mail alias.

Another hurdle was some users were having e-mail
addressed to the fully qualified divisional e-mail ad-
dress (user@division.anl.gov) instead of the main Ar-
gonne alias (user@anl.gov). In the setup that existed at
the time, any mail sent to user@msd.anl.gov would be
directed to Argonne’s mail gateway, then handed off to
our own mail server; and as long as that server was still
in the migration process, that setup had to be main-
tained. Since migrated users simply had their @anl.gov

alias directed to their new Zimbra mailbox, they would
not experience this problem, but these users who had
distributed their internal MSD address needed their old
e-mail account kept active longer while they alerted
their senders and mailing lists. Other difficulties were
the occasionally corrupted e-mail message on the old
MSD mail server, as this would stop the Zimbra mail
import. Once the corrupted e-mail message was deleted,
the mail import would function as expected.

As a side-benefit of this migration, it allowed us to per-
form some account cleanup. MSD identified users who
had retired but were still using their MSD mail account,
as well as users who were forwarding their mail to out-
side services, a discouraged-but-within-policy practice.

We used the mail migration as an opportune time to
update many systems to the latest versions of their e-
mail client and web browser. For consistency purposes
we used the Firefox web browser to perform the migra-
tion, but in this process we found some users still were
using Firefox 1.0, a long-outdated version.

3.3. MSD Pitfalls and Lessons Leaned

MSD IT, with the insight gained by the MCS migration
experience, was able to create a more controlled migra-
tion process. Our biggest hurdle was sticking to the
plan: specifically, scheduling each user, keeping track
of migrations, and following through with all users.
Adhering to this last step proved problematic, because,
once we had all but a few the users migrated, we let
other issues take priority and the last of the migrations
took a back seat. Unlike MCS, we thought our e-mail
server running with a light load would last awhile. De-
spite our migration going generally smoother than
MCS’s, we were not immune to the assumption that
would be proven quite demonstrably wrong.

Of this handful of accounts on the old server, most were
service accounts, not used by any particular user.
However, we did have two user accounts left. One was
a former division director who proved difficult to
schedule. Since he was moving to Exchange, his migra-
tion required more coordination with CIS, as their Ex-
change administrators would need to assist in the mi-
gration. We also had a user we thought had been mi-
grated to another division’s e-mail server because he
had been transferred to that division, but who turned out
to still be using our old server. At the time we were
getting ready to start migrating these account, our aging
(and now unsupported) Sun server crashed in spring
2009. Since another division was involved, we com-
bined efforts to bring the server back up. But the server

had experienced nearly catastrophic failure; the data
drives were intact, but we had no access to them with-
out spending considerable time and money.

Fortunately, the former division director had a local
cached copy of most of his e-mail, and we were able to
use this for the migration. Unfortunately, the other user
accidently deleted his locally cached copy, and we were
unable to recover all of his older e-mail. We are still
exploring our options for recovery, but the server is still
offline. We quickly recreated most of the service ac-
counts, but we are still finding some as we continue to
review mail logs.

We’ve learned to follow through on our tasks and see
them to completion. Also, we will do a better job con-
firming that work we think is done actually is done.
Moreover, documentation can be improved, and prop-
erly documenting which service accounts we’ve created
and what they’re used for will help us a great deal down
the road.

3.4. CIS Challenges and Participation in the
MSD Migration

From the CIS perspective, the MSD migration was
much more straightforward than the MCS migration.
MSD engaged CIS early in their process. Based on ex-
perience gained from the MCS migration, and new fea-
tures available in Zimbra that MCS helped explore and
test, CIS was able to work with MSD to create a migra-
tion plan that worked well for them and minimized the
impact on the Zimbra service and on MSD by spreading
the migration out over time.

Both MCS and MSD handled their own migrations,
engaging CIS when necessary. After the initial planning
phases, the MSD migration was much more hands off
for CIS. The one exception was the attachment index-
ing issue mentioned above.

CIS imposes no limits on mailboxes in our Exchange
and Zimbra services and allows individual messages as
large as 100 MB. Some of the components of mail sys-
tems work well with smallish messages but exhibit
strain when processing large messages. At the time of
the MSD migration, the attachment indexing process
was a multithreaded Java process that had issues han-
dling large attachment sizes. The net result was a dra-
matic increase in load on the system, both for CPU and
disk, resulting in the Zimbra server being so slow it was
almost unusable. Upon identifying the offending proc-
ess, we disabled attachment indexing via a simple
check box in the Zimbra admin GUI, and migrations

were able to resume. We note, for Zimbra's sake, that
there is a new facility that can be selected for attach-
ment indexing that is proving to better handle large
attachments, and is resulting in a consistently lower
system load.

4. Conclusions

Hindsight is, of course, 20/20, and one can easily look
at both migrations and conclude that it’s obvious what
to do and what to avoid. Of course, every situation is
different, and a careful examination of what went
wrong and why can often lead to insights on how to
avoid similar pitfalls when one is pushed down a simi-
lar path. In this section, we look at what each of the
divisions took away from the process, having seen the
results from each other’s migration.

4.1. MCS

In many ways, performing an e-mail migration like this
is not unlike performing a number of other types of
migrations in the IT world, whether it’s physically
moving a datacenter, or implementing a new network
topology, or deploying a new authentication scheme. In
other ways, however, they can be vastly different, and
it’s in recognizing these differences that we can make
better choices. Outside influences, customer demands,
and occasionally the laws of physics can get in the way
of how we expect things to play out.

MCS would obviously opt for a more measured ap-
proach in future migrations. The plan employed by
MSD holds great appeal; however, two important fac-
tors exist. First, this option was not available on the
version of Zimbra the lab was running at the time of our
migration. Second, testing on our old mail server indi-
cated that this implementation would not have worked
for much the same reason imapsync failed; an aging
server combined with enormous mailboxes results in
timeouts and dropped connections.

Instead, time permitting, a well-documented and user-
driven migration would be our likely course of action
when undertaking a migration of this size. As in the
prior-cited Tenwen paper, we would build the new sys-
tem separate from the old one, move the users’ delivery
to the new system, and help them move their old data to
it on their own schedule, within the constraints of our
ability to maintain and run that old system. After a
well-publicized and finite period of time, we would
decommission the old system [Evard94].

As a service organization, it is always an admirable
goal to inconvenience one’s users as little as possible,
but there are situations, such as this, where it’s simply
not attainable. A side benefit of a user-driven migration
is an increased likelihood that users will be more selec-
tive as to which data must be maintained – our users
can be notoriously bad at pruning unneeded data, result-
ing in just the sort of bloat that led to some of the issues
we faced.

However, time is not always flexible, and when faced
with an immovable deadline, one sometimes has no
alternative but to jump in with both feet and try to solve
the problem to the best of one’s ability. If one abso-
lutely had to do a migration like this, our implementa-
tion plan could have worked with better parameters,
though it would by no means be the preferred solution.
Certainly, a longer outage window and fewer false
starts would have helped, but significant user input
would still be required because of the corruption in the
data being moved. Aggressive scanning of the mail-
boxes using IMAP tools could have identified these
problems well in advance and allowed us to repair or
remove the troublesome data well in advance. Like-
wise, we could have front-loaded the heavy work by
migrating the heaviest users first, rather than the easily
scriptable alphabetical method. Indeed, when it became
evident that certain users had disproportionately large
mailboxes, we hand-started syncs on their mailboxes
outside the automated process.

We note that in no way were the pitfalls and encum-
brances the fault of the targeted mail server software or
the server itself. We believe we would have faced these
challenges regardless of the chosen path, largely be-
cause of the age of the existing mail server, and its in-
ability to handle the volume of mail we were moving.

4.2. MSD

MSD’s biggest issue was with actually completing the
project. This left us with several loose ends we needed
to deal with in crisis mode when the Sun server
crashed, as opposed to a controlled shutdown of the old
server.

The server crash notwithstanding, MSD would defi-
nitely use the same basic method again if faced with
another similar migration, albeit with better follow-
through. This user-centric migration allowed a lot of
buy-in from the most important IT customer – the end
user. It reduced the potential lost productivity of the
scientist if a one-shot migration had been done. It was
labor intensive for MSD IT Operations, but the benefit

of reaching out to the user on an individual basis re-
duced call volume and follow-up issues. Also, we were
able to resolve most issues in a timely manner, instead
of trying to deal with several dozen users at once.

4.3. Avoiding Disaster

Many papers have been written describing IT moves,
including the already cited [Evard94, Limoncelli97], as
well as [Schimmel93, Cha98], dealing with moves and
migrations both physical and virtual. Every move is
different; each comes with its own pitfalls. Every time a
group undertakes a project of such magnitude, there
exists the opportunity to achieve both fantastic suc-
cesses and extraordinary failures. The right steps taken
beforehand can tip the scales more in favor of the for-
mer. Included in the appendices is the premigration
checklist that we can now construct from our experi-
ences, and would have dearly loved to have read prior
to beginning the project.

Author Biographies

Craig Stacey is a full time computer geek, part time
stand-up comic, aspiring photographer and writer, pas-
sionate beer enthusiast, and frequent wearer of pants.
He is also the IT manager for the Mathematics and
Computer Science Division at Argonne National Labo-
ratory and longs to spend more time doing system ad-
ministration and less time doing paperwork. His e-mail
address is stace@mcs.anl.gov, and he is fond of mon-
keys and robots.

Adam Max Trefonides has been a UNIX Systems Ad-
ministrator for many years. Prior to holding his current
position as a senior systems administrator in the
Mathematics and Computer Science Division at Ar-
gonne National Lab he was responsible for the team
that, among many other duties, took care of the central
e-mail systems at the University of Chicago, (in other
words e-mail was his fault). Prior to working for the
computers he was a cross-country trucker, carpenter,
welder, sculptor and unemployment recipient. He main-
tains his trucker license for when the Internet fad ends.
His e-mail address is maxadam@mcs.anl.gov.

Tim Kendall is a systems administrator and the primary
Mac specialist in the Materials Science Division at Ar-
gonne National Laboratory. He loves Science Fiction of
all types and was a professional photographer for 18
years before switching to IT. He helps run the Two

Way Street Coffee House that has been in operation
since 1970 presenting live folk music every Friday
night. His e-mail address is tkendall@anl.gov.

Brian Elliott Finley is the deputy manager of Unix,
storage, and operations for the Computing and Informa-
tion Systems division at Argonne National Laboratory
and is the lead on the Argonne Zimbra project. He
holds a number of technical certifications and has cre-
ated, maintained, or otherwise contributed to several
open source software projects, including SystemImager
and WiFi Radar. Mr. Finley lives in Naperville, IL, US
with his wife, four children, one large dog, and a toad.
He can be reached at finley@anl.gov.

Acknowledgments

This work was supported by the Office of Advanced
Scientific Computing Research, Office of Science, U.S.
Department of Energy, under Contract DE-AC02-
06CH11357.

References

[Cha98] Lloyd Cha et al., “What to Do When the Lease
Expires: A Moving Experience,” in Proceedings of the
Twelfth Systems Administration Conference (LISA
’98), pp. 168-174, Boston, MA, 1998

[Evard94] Rémy Evard, “Tenwen: The Re-engineering
of a Computing Environment,” in 1994 LISA Proceed-
ings, pp. 37-46, San Diego, CA, 1994

[Lamiral] imapsync, Gilles Lamiral (developer),
http://www.linux-france.org/prj/imapsync/

[Limoncelli97] Tom Limoncelli, “Creating a Network
for Lucent Bell Labs Research South,” in 11th Systems
Administration Conference (LISA '97) Proceedings, pp.
123-140, San Diego, CA, 1997

[Schimmel93] John Schimmel, “A Case Study on
Moves and Mergers”, in Seventh System Administra-
tion Conference (LISA ’93), pp. 93-98, Monteray, CA,
1993

[Zimbra] Zimbra Wiki, “Mail Migration instructions,”
http://wiki.zimbra.com/index.php?title=Mail_Migration

Appendix: Suggested Premigration checklist

As noted in Section 4.3, this is the checklist MCS should have used, constructed from the experi-
ences gained from not using such a checklist.

Two months prior to migration

1. Inform users of the migration plan. Encourage data clean-up. Make clear and obvious the
date the new service will begin.

2. Ensure user mailboxes are free of corruption. Aggressively scan mailboxes for errors us-
ing IMAP protocols. Instruct users on methods to test for problem mailboxes, including
deleting problem messages.

3. Archive inactive mailboxes, and take them offline.
4. Compare list of active mailboxes with log files to identify users who are not logging in to

check mail. Flag potentially inactive accounts, attempt to notify owners.
5. Identify exceptionally large mailboxes and work with owners to identify actual user

needs and expectations – perhaps the mail client is configured to never empty the trash,
for example.

One month prior to migration

6. Repeat items 1 through 5.
7. Go over potentially inactive account list from step 4, identify those actually inactive (eg,

owner unreachable), and archive them.
8. Identify all accounts to be migrated, and create them on new server.
9. Ensure new account creation process is creating mailboxes on existing server and new

server.
10. Hold training session with users demonstrating migration procedure.

One week prior to migration

11. Repeat items 1 through 5.
12. Ensure all accounts to be migrated are ready for service.
13. Hold another training session demonstrating migration procedure.
14. Ensure adequate availability for IT staff on migration day and the days that follow.
15. Post mail client configuration instructions so users can be ready for the switch. Adjust

centrally managed mail client configurations.

One day prior to migration

16. Reiterate new service date very publicly. Post signs, and website announcements, send e-
mails.

17. Ensure configuration instructions for mail clients are trivially available, trivially locat-
able, and correct.

18. Re-ensure IT staff availability.

Migration day

19. Buy lunch for the IT staff.
20. Implement migration plan.

Appendix: MCS Migration Scripts and Configuration Files

imapsyncbatch.sh - used to launch imap sync sessions between cliff and Zimbra, this file lived
on a third host named “owney” as cliff’s SSL implementation was too old to open encrypted
IMAP sessions to the Zimbra server. This is the version that contains the errant “-- delete2” that
resulted in deletions from the Zimbra folders. stage1.mcs.anl.gov was the temporary hostname
for the Zimbra mailboxes during migration.

#!/bin/bash

USER1="zzzzzzzz"

USER2=$1@stage1.mcs.anl.gov

HOST1=cliff.mcs.anl.gov

HOST2=zimbra.anl.gov

DATE=`date "+%Y-%m-%d_%H:%M:%S"`

EXCLUDE="Trash|Viral"

SPLIT1=20

PASS1=/root/migration_scripts/cpass

PASS2=/root/migration_scripts/zpass

logfile=/sandbox/zzzzzzzz/log/$1-imapsync.log

userlog=/sandbox/zzzzzzzz/log/imapsync.log

cd /sandbox/zzzzzzzz/tmp

echo `pwd` >> $logfile

Begin IMAPSync

echo "" >> $logfile

echo "------------------------------------" >> $logfile

echo "IMAPSync started for $1 $DATE" >> $logfile

echo "" >> $userlog

echo "------------------------------------" >> $userlog

echo "IMAPSync started for $1 $DATE" >> $userlog

echo "Settings: Excluding: $EXCLUDE, $SPLIT1 messages per" >> $logfile

echo "" >> $logfile

 echo "Starting $USER2 at $DATE" >> $logfile

echo "" >> $logfile

 imapsync \

 --nosyncacls --syncinternaldates \

 --nofoldersizes \

 --split1 $SPLIT1 \

 --exclude $EXCLUDE \

 --host1 $HOST1 \

 --user1 $USER1 \

 --passfile1 $PASS1 \

 --port1 993 \

 --host2 $HOST2 \

 --user2 $USER2 \

 --passfile2 $PASS2 \

 --port2 993 \

 --ssl1 \

 --ssl2 \

 --noauthmd5 \

 --delete2 \

 --buffersize 8192000 \

 --regextrans2 's/^Journal$/Journal-old/i' \

 --regextrans2 's/^Briefcase$/Briefcase-old/i' \

 --regextrans2 's/^Calendar$/Calendar-old/i' \

 --regextrans2 's/^Contacts$/Contacts-old/i' \

 --regextrans2 's/^Notes$/Notes-old/i' \

 >> $logfile

 echo "$DATE Finished $USER2" >> $logfile

 echo "" >> $logfile

need some sanity checks here?

echo "" >> $logfile

echo "IMAPSync Finished for $1 $DATE" >> $logfile

echo "------------------------------------" >> $logfile

echo "" >> $userlog

echo "------------------------------------" >> $userlog

echo "IMAPSync Finished for $1 $DATE" >> $userlog

linker-forward.sh - used to create /var/imap/mailboxes file on cliff with ghost users. This ver-
sion traverses the alphabet from a to z, linking the user being synced with the ghost user
“aaaaaaaa.” The script needed to maintain the sorting and whitespaces contained within the
existing file. As noted at the bottom, this script directly calls the above “imapsyncbatch.sh” on
owney via an SSH session. The end of that SSH session allows this script to increment to the next
user. A similar script, linker-reverse.sh, performed a similar job, albeit from z to a, linking the
user being synced to the “zzzzzzzz” ghost user.

#!/bin/ksh -x

/root/migration_scripts/linker-forward.sh

created by maxadam@mcs.anl.gov 3/2008

modified by stace@mcs.anl.gov 4/2008

with input from many quarters

This script prepares cliff for migrating a user to zimbra.

It is designed to work in tandem with linker-reverse.sh,

to add parallelprocessing.

What it does:

Generates the userlist

Moves a link to a commented version of /etc/inetd.conf in

place and refreshes imapd in order to halt any new imap

connections.

Cleans the aaaaaaaa user out of the /var/imap/mailboxes file

and copies the file to a working copy

Creates the symlink for the aaaaaaaa user that points to the

mail directory

Backs up the mailboxes file, appending the current username

Copies the modified mailboxes file into place

Re-enables imap

Runs imapsyncbatch on owney with $user as the single argument

over ssh

log=/var/log/linker-forward.log

lock=/root/migration_scripts/locked

if [! -f $log]; then

 touch $log

fi

 for i in `grep user /var/imap/mailboxes | awk '{print $1}' | awk -F . '{print $2}'| sort -u |

egrep -v ^aaaaaaaa | egrep -v ^zzzzzzzz` ; do

 while [-f $lock]; do

 sleep 20

 done

 touch $lock

 inetdpid=`ps -ef | grep '[i]netd' | awk '{ print $2 }'`

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Linking mailboxes for user ${i} to zzzzzzzz" >> $log

 if [! -f "/etc/inetd.conf.off"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -f "/etc/inetd.conf.on"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -L "/etc/inetd.conf"] 2>&1 >> $log; then

 echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log

 exit 2

 else echo "`date "+%Y-%h-%d@%H:%M:%S"` Halting imapd" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.off /etc/inetd.conf

 kill -HUP $inetdpid

 echo "`date "+%Y-%h-%d@%H:%M:%S"` imapd halted" >> $log

 cp /var/imap/mailboxes /var/imap/mailboxes.backup-forward

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Making links for ${i}" >> $log

 egrep -v ^user.zzzzzzzz /var/imap/mailboxes > /var/imap/mailboxes-f.${i}

 egrep "default ${i} " /var/imap/mailboxes | \

 sed s/^user.${i}/user.zzzzzzzz/ | \

 sed s/"default ${i} "/"default zzzzzzzz "/ >> /var/imap/mailboxes-f.${i}

 if [! -s /var/imap/mailboxes-f.${i}] ; then

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, empty mailboxes file" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 3

 fi

 rm -f /var/spool/imap/user/zzzzzzzz

 ln -sf /var/spool/imap/user/${i} \

 /var/spool/imap/user/zzzzzzzz

 if ! /bin/ls -l /var/spool/imap/user/zzzzzzzz | grep ${i} 2>&1 >> $log ; then

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, link bad" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 4

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Links made" >> $log

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Copying mailboxes-f.${i} to mailboxes" >> $log

 if [-s /var/imap/mailboxes-f.${i}] ; then

 cp /var/imap/mailboxes-f.${i} /var/imap/mailboxes

 else

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Abort, empty mailboxes file" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 exit 5

 fi

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Attempting to restart imapd" >> $log

 if [! -f "/etc/inetd.conf.off"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.off does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -f "/etc/inetd.conf.on"] 2>&1 >> $log; then

 echo "/etc/inetd.conf.on does not exist or is not an ordinary file! exiting." >> $log

 exit 1

 elif [! -L "/etc/inetd.conf"] 2>&1 >> $log; then

 echo "/etc/inetd.conf is not a symlink or does not exist! Exiting." >> $log

 exit 2

 else echo "`date "+%Y-%h-%d@%H:%M:%S"` Restarting imapd" >> $log

 rm /etc/inetd.conf

 ln -sf /etc/inetd.conf.on /etc/inetd.conf

 kill -HUP $inetdpid

 echo "`date "+%Y-%h-%d@%H:%M:%S"` imapd restarted" >> $log

 fi

 sleep 1

 echo "`date "+%Y-%h-%d@%H:%M:%S"` Starting imapsyncbatch for ${i} on owney" >> $log

 rm $lock

 ssh -t zzzzzzzz@owney.mcs.anl.gov /root/migration_scripts/imapsyncbatch.sh ${i}

done

/var/imap/mailboxes snippet - head and tail of the /var/imap/mailboxes generated by the scripts
above. Recall that, at the filesystem level, the ghost users’ spool directories would be symlinks to
the actual users’ directories.

user.aaaaaaaa default aaaaaaaa lrswipcda

user.aaaaaaaa.Quarantine default aaaaaaaa lrswipcda

user.aaaaaaaa.SPAM default aaaaaaaa lrswipcda

user.aaaaaaaa.Viral default aaaaaaaa lrswipcda

user.aaaaaaaa.sent-mail default aaaaaaaa lrswipcda

user.aammar default aammar lrswipcda

user.aammar.Drafts default aammar lrswipcda

[…]

user.zzhang default zzhang lrswipcda

user.zzhang.Drafts default zzhang lrswipcda

user.zzhang.Quarantine default zzhang lrswipcda

user.zzhang.SPAM default zzhang lrswipcda

user.zzhang.Trash default zzhang lrswipcda

user.zzhang.Viral default zzhang lrswipcda

user.zzhang.sent-mail default zzhang lrswipcda

user.zzzzzzzz default zzzzzzzz lrswipcda

user.zzzzzzzz.Quarantine default zzzzzzzz lrswipcda

user.zzzzzzzz.SPAM default zzzzzzzz lrswipcda

user.zzzzzzzz.Viral default zzzzzzzz lrswipcda

user.zzzzzzzz.sent-mail default zzzzzzzz lrswipcda

Appendix: Mail Routing Diagrams

Figure 1 - Mail flow before migration project

Figure 2 - Mail flow after migration project

Disclaimer – Non printing

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.

