
USENIX Association

Proceedings of the
2nd JavaTM Virtual Machine

Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Targeting Dynamic Compilation for Embedded Environments

Michael Chen and Kunle Olukotun
Computer Systems Lab

 Stanford University
mikey@hydra.stanford.edu, kunle@ogun.stanford.edu

Abstract

A generally held notion is that high quality code comes with high compilation cost. As a result, previous
efforts at minimizing dynamic compilation costs have focused on designing fast, lightweight compilers that sacrifice
code quality for compilation speed, and resource intensive approaches that combine multiple engines to limit
expensive optimizations to critical sections. In this paper, we show one possible way fast compilers can be
constructed to generate high quality code. We have implemented microJIT, a small and portable just-in-time (JIT)
compiler for Java that can produce high quality code 2.5x faster than a comparable dataflow-based compiler and
30% faster than a compiler that performs only limited optimizations. We use dataflow techniques, but speed up
compilation by minimizing the number of major compiler passes given the number of optimizations performed.
Architectural features of our compiler also allow it to perform instruction set dependent optimizations efficiently.
microJIT achieves these high compilation rates while still maintaining small static and dynamic memory
requirements. This compiler can be highly effective in an embedded system where computing and memory
resources are highly constrained and where multiple target platforms must be supported.

1. Introduction
Dynamic code generators differ from traditional

compilers because they must carefully consider their
impact on runtime performance. It is widely believed
that generating optimized code comes with high
compilation times. Two approaches to reducing
dynamic compilation overheads have been popularized.

The first approach uses techniques that focus
solely on generating code quickly [1][9]. This usually
involves focusing only on simple optimizations, or
relying on imprecise analysis or heuristics to speed up
compilation. This helps alleviate compilation times,
but penalizes long-run performance through poor code
quality.

The second approach is through lazy compilation.
A lazy compilation system usually combines a fast,
non-optimal compiler or interpreter with an expensive
compiler [10]. The key goal of this system is to
minimize expensive optimizations. Runtime profiling
selects which portions of code to interpret and which
portions to recompile and optimize aggressively.

In this paper, we show the gap between high
quality code and fast compilation may be bridged a
third way: by improving the compilation performance
of the dynamic compiler. We have implemented
microJIT, a small and portable dataflow compiler for
Java that produces optimized code 2.5x-10x faster than

comparable dataflow-based compilers and 30% faster
than a compiler that performs limited optimizations.
These compilation rates are achieved while maintaining
small static and dynamic memory requirements. The
major contributions of this paper are:

• Architecture and implementation of a fast,
portable, and small optimizing compiler.
Compilation speedup was achieved by minimizing
major compiler passes for the number of
optimizations performed: global and local code
optimizations are applied as intermediate
expressions are generated, registers are allocated
concurrent with code generation, and dataflow
information is efficiently communicated between
compiler passes. Our compiler also implements an
extension infrastructure to help support fast
machine dependent optimizations.

• Experimental results that show using this fast
compiler alone can compete against systems using
interpreters, lazy compilation, and fast compilers
on long and short run applications, with less total
system cost.

Our compiler can be highly effective in embedded
systems like PDAs, tablet PCs, and thin clients targeted
by Sun’s J2ME (Java 2 Micro Edition) platform, using
the CDC and CVM configuration
(http://java.sun.com/j2me/). These environments have
highly constrained computing (30Mhz – 200MHz) and

memory resources (2MB – 32MB RAM and ROM)
relative to modern desktop machines, and must support
many target platforms. The current standard for these
devices is to interpret bytecodes, which results in at
least 10x slowdown relative to native code. Our fast
compiler may alleviate tradeoffs that would otherwise
need to be made in this environment. Overheads for
expensive code optimization can be significant for
slower devices, and a fast, poorly optimizing compiler
ultimately sacrifices long run performance for code
generation time. Alternatively, using multiple
compilation and/or execution engines required for lazy
compilation add to code ROM size and require more
development effort to target different machine
platforms.

The rest of our paper is organized as follows. We
describe related dynamic compilers and fast
compilation techniques in Section 2. We outline the
major optimizations performed by our compiler in
Section 3 and discuss how they relate to traditional
dataflow implementations in Section 4. In Section 5,
we compare compilation times and code performance
with other dynamic compilers. Finally, we present our
conclusions in Section 0.

2. Related Work
The Sun Hotspot Java virtual machine (JVM) is the

most widely known system that implements lazy
compilation [10], although similar research and
commercial systems by Intel, IBM and SNU exist
[5][19][16]. We compare the performance of these
compilers to microJIT in Sections 4 and 5. An
interesting extension of lazy compilation is adaptive
optimization, implemented in the Jalapeño VM [2].
Written mostly in Java, this VM moves the Java / non-

Java boundary below the VM, providing more
opportunities for optimization.

A critical component of fast dynamic compilation
is fast register allocation. The Intel JIT compiler uses
lazy code selection in the context of on-the-fly register
allocation to speed up compilation [1]. Previously
encountered bytecode sequences that generated the
current value in a register are cached, as well as
possible bytecode aliases, so that future equivalent
sequences can simply be replaced by an instantiation of
the register. In linear scan register allocation [17][4], a
prepass computes lifetimes and lifetime holes and then
directs global allocation of registers with a simple
linear sweep over the program being compiled. The
LaTTe JIT compiler uses another potentially effective
fast register allocation scheme that requires a prepass
and two sweeps [19]. In Section 4.2, we discuss how
these allocators relate to the one implemented in
microJIT.

There are several well-known research projects
that use dynamic compilation. The SimOS project
includes the Embra execution engine that uses dynamic
translation to speed up architecture simulations [18].
`C (“tick-c”) implements language extensions to C to
support dynamic compilation of critical sections of
code [14][7][13]. The Digital FX!32 project uses
dynamic translation to run x86 binaries on the Alpha
architecture [15]. The Dynamo project optimizes and
recompiles binaries according to statistics collected
from runtime profiling [3].

3. Compiler Architecture
3.1 Overview

Our compiler only makes three major passes over

C
F

G
 c

o
n

st
ru

ct
io

n
D

F
G

g

en
er

at
io

n
C

o
d

e
g

en
er

at
io

n

C
om

pi
le

r
pa

ss

Machine
dependent (MD)

Optimization Collected information

md_prep()
register reservations

md_asm()
assembler macros
instruction delays

control flow graph
 (CFG)

data flow graph
 (DFG)

native code
machine idioms
instruction scheduler
register allocation

expression local & global
use count

basic block (BB) joins

Java locals & field
usage

loop identification

extended basic blocks (EBB)

loop invariant code motion
local & global copy

propagation
local & global constant

propagation
local & global CSE
algebraic simplification

Figure 1. Architectural overview of microJIT detailing flow of information through major components and passes.

the code: a fast scanning pass to build the control flow
graph (CFG), a major pass to generate the data flow
graph (DFG), and then the final pass to generate the
code. We found that organization represents a minimal
pass configuration that gathers enough good
information for the following pass to compile
effectively. Figure 1 graphically illustrates the high-
level architecture of our dynamic compiler, showing
specific work done by each pass, ISA specific
components, and flow of information between the
major blocks. The following sections (3.2 – 3.5) detail
the major compiler passes, and steps we take to
minimize compilation costs without sacrificing
generated code quality.

3.2 CFG Construction
We generate a CFG of basic blocks (BB) from a

single pass of the bytecode. In our compiler, a method
starts as one block representing all the bytecodes.
Blocks are split as branches and associated targets are
found. During a block split, appropriate control flow
arcs between blocks are added and adjusted. In this
fashion, we can generate the CFG without touching a
bytecode more than once.

This scan executes very quickly. Most bytecodes,
except for control flow instructions, are not decoded
during this scan, and most next pc and stack pointer
offsets can be found simply by indexing the bytecode
into a static lookup table. At the end of CFG
construction, arcs are also added to any defined
exception handlers for the BB.

From the CFG, we compute extended basic blocks
(EBB) and dominator blocks using standard algorithms
[12]. An EBB is a maximal sequence of BBs with one
entry and possible multiple exits. Subsequent passes
operate on EBBs in order to allow local optimizations

to be applied to the largest possible region.

Table 1. Example IR expressions.

Class Example
expression

bytecode
equivalent(s) Arguments

Load/
store

load getfield
getstatic

1
“

Unary op not not 1

Binary op add add 2

Branches
cbr_eq ifeq

if_icmpeq
if_acmpeq

2 + target
“
“

Auxiliary

call

prologue

invokevirtual
invokestatic
invokespecial

none

variable
“
“
0

Dominator block information is immediately used
to detect loops. Since goto statements with arbitrary
target labels are not allowed in the Java programming
language [8] (although it is not formally excluded from
the VM specification [11]), we can expect all loops to
have one entry point and be found with a natural loop
detector [12].

Basic load/store statistics on local (e.g. iload,
astore) and field (e.g. getfield, putstatic,
iaload, aastore) accesses are recorded for each
BB during CFG construction. The local and field
accesses for each BB in a loop are then merged to
compute their definitions and uses within the loop.
This is used in the next pass for global optimizations.

3.3 DFG Generation
3.3.1 Intermediate Representation

Within BBs, we use triples to represent IR
expressions. Triples are similar to quadruples used by
most compilers, except that results are not named
explicitly [12]. In our implementation of triples,
pointers are used to refer to source argument

Java bytecode Pointer assignments (@ bpc=16)

bpc
 0 aload_0
 1 getfield count
 4 newarray char
 6 astore_1
 7 getfield count
10 iconst_1
11 iadd
12 putfield count
15 aload 1
16 areturn

Intermediate representation

locals.in locals.out

stack

local0_p:
local1_p:

[L0]
null

[L0]
[5]

stack1_p:
stack0_p:

null
[5]

Key points:

stack_p

1

2

3

4

1

2

3

3

4

4

argument and return registers
are reserved by md_prep
for call expression (r:%x
refers to SPARC ISA
registers)

local1_p is assigned pointer to
call expression

CSE opt matches getfield
count @ pc=1 (safe to
match through newarray()
call since it is an internal
VM function)

load local 1 on stack to be
returned by this method;
return argument reg also
reserved

Equivalent C

L1 = new char[count];
count += 1;
return L1;

3
1

2

bpc eid
 [1] prologue
 0 [2] load @([L0]+16) r:%o1
 4 [3] const 5 r:%o0
 [4] const 0x48a9c
 [5] call newarray [4]
 ([3] [2])
 6 -> [L1] r:%o0
10 [6] const 1
11 [7] add [2] [6]
12 [8] store [7] @([L0]+16)
16 [9] returnarg [5] r:%i0

1

Figure 2. Example showing how bytecodes are translated to our intermediate representation

expressions. Basic expression classes of our IR are
listed in Table 1. Our IR expressions more closely
resemble basic machine instructions than Java
bytecodes to make mapping to machine code more
straightforward. Constants are represented as
individual expressions so they can be properly
manipulated on the Java stack as bytecodes are
processed. Because we implement triples, expressions
have no explicit destination.

3.3.2 Local Optimization

Our compiler is designed to perform local
optimizations quickly. This is important because
bytecodes sequences often reoccur, a side effect of
using a stack to hold temporaries, and of complex
bytecodes such as array accesses that hide repeated
computations.

EXPR_add(expr * e, basic_block * bb)
{
 // CONSTANT OPTIMIZATION
 if(constant_arguments(e)){
 e->const_opt();
 }
 // ALGEBRAIC SIMPLICIATION
 else{
 e->algebraic_opt();
 }
 // LOOP OPTIMIZATION
 if(in_loop){
 (success, match_e) = bb->loop_opt(e);
 if(success){
 return match_e;
 }
 }
 // CONSTANT SUBEXPRESSION ELIMINATION
 (success, match_e) = bb->cse_opt(e);
 if(success){
 return match_e;
 }
 else{
 (success, match_e)
 = bb->global_cse_opt(e);
 if(success){
 return match_e;
 }
 }
 // SETUP MACHINE DEPENDENT INFO
 e->md_prep();
 // ADD TO BASIC BLOCK
 bb->add(e);
}

Figure 3. EXPR_add() pseudo code (simplified code).

Figure 2 illustrates an example of how bytecodes
are translated into expressions in our IR. A local
expression pointer array and a stack pointer array are
maintained as we interpret bytecodes in a BB. Java
locals and stack assignments simply move expressions
between these two arrays and update the stack pointer.
Using pointer assignments to mimic the VM stack and
locals effective performs copy propagation as no
intermediate copy expressions are generated for these
operations. Expressions that are assigned to Java locals

on BB entry and exit are listed in expressions pointer
arrays for each BB (locals.in[] and
locals.out[]).

Only when we actually encounter a true operation
is an expression generated for it. When an expression
is created, it is submitted to the function EXPR_add()
(see Figure 3), which checks the expression for
possible optimizations before adding it to the
expression list for the BB. Basic optimizations
performed include constant propagation, and algebraic
simplifications and reductions. Assuming a non-
constant expression, local common-subexpression
elimination (CSE) is applied to the new expression.
Our local CSE is implemented as a backward search
within the EBB for an available matching expression,
with expressions hashed by operation to eliminate
searching through expressions that cannot possibly
match the new expression.

Most bytecodes that perform simple operations
simply map to a single corresponding IR expression.
Complex bytecodes, like array accesses, branches and
method calls, are decomposed into IR expressions that
are more representative of the instructions that must be
executed on the underlying hardware. Consider the
array access sequence shown in Figure 4.
Decomposing allows us to optimize an array bounds
check with another access to the same array, or allows
us to use the same index computation for access to a
different array.

3.3.3 Inlining and Specialization

Our inliner supports fast inlining of small methods
(< 20 bytes) rather than full, and potentially more
expensive, integration of a callee method into a caller
method. Expressions in the inlined method are added
to the caller context, but maintain a separate
environment.

Small methods represent the most common
opportunities to inline, and result in big performance
gains by eliminating large calling overheads relative to
work performed within the inlined call. Our inliner
handles nested inlining (e.g. for optimizing subclassed
object constructors like class.<init>), and
specialization of virtual and interface methods (e.g. for
optimizing object accessor methods). The inliner is
also responsible for inlining fast, common case
handlers for the checkcast and instanceof
bytecodes, which must execute a costly class hierarchy
search if the object class is not equivalent to the
requested class.

3.3.4 Global Optimization

We perform global optimizations non-iteratively,
but produce results that are equivalent to a traditional
iterative dataflow analysis. This is possible because IR
expression generation for EBBs is processed in reverse
post-order traversal (an EBB must be processed before
any of it sucessors have been). In this fashion, we can
propagate forward flow information to successor EBBs
before IR expressions are generated for them.

At EBB headers, we merge flow information for
global copy and constant propagation before generating
IR expressions in the EBB. Loop invariant code
motion and global CSE are handled within the
EXPR_add() function introduced in the previous
section.

If the current BB exists within a loop, a check is
made to see if the new expression can be hoisted to the
loop preheader. For most expressions, this involves
determining if their arguments are constants or locals
that are not redefined in the loop. This later property is
queried from the loop locals and field access statistics
computed during the CFG generation pass (Section
3.2).

Global CSE is performed on a new expression only
if local CSE fails and its arguments are locals or globals
that we have created. The global CSE optimizer
searches BBs backwards toward the method entry for
matching available expressions using the same routines

used for CSE within an EBB.
We terminate the search if one
of the arguments is redefined
along any of the backward paths
toward method entry.

We compare our local and
global optimizer to other
implementations in Section 4.1.

3.3.5 Data Flow Statistics

During DFG generation, we
collect additional information
that will be utilized by the
register allocator. Each IR
expression includes a local and
global use counter. The local
use counter is incremented
whenever a given expression is
used as a source in another
expression. We also compute a
flag called
expr_spans_call which is

set if a call occurs between an expression definition and
use.

The global use counter is accumulated towards the
expression definition after all expressions have been
generated using a post-order traversal from method exit
BBs to the entry BB. The global use count for a given
local expression at the exit of a BB is equal to the sum
of the local and global uses for the local expression at
the entry to immediate successor BBs. We do not
consider this scan a major pass as only expressions in
Java locals at BB exits and entries are considered. This
computation is equivalent to a live variable dataflow
analysis but also includes relative weighting of uses.
This computation must be iterated when loops are
present to compute correct liveness values within the
loop.

Also computed concurrent with DFG generation is
a structure we call a BB join. A BB join is the union of
all adjoining BBs entries or exits, with each BB
identified as whether its entry or exit is part of the join.
Example BB joins are shown in Figure 6. A BB may
be in at most two BB joins, or it may be in only one BB
join (its entry and exit share common successors and
predecessors). A BB join is used to link register
assignments between dependent BB entry and exit
points, described in more detail in Section 3.4.2.

bpc eid
 2 [1] load @([L0]+8)
 [2] cmp [L1] [1]
 [3] cbranch_ult [2]
 � --> [5]
 [4] call bad_array_idx
 [5] target
 [6] const 2
 [7] sll [L1] [6]
 [8] const 12
 [9] add [L0] [8]
 [10] load @([7]+[9])
 3 [11] const 1
 4 [12] add [10] [11]
 7 [13] load @([L0]+8)
 [14] cmp [L2] [11]
 [15] cbranch_ult [14]
 � --> [17]
 [16] call bad_array_idx
 [17] target
 [18] const 2
 [19] sll [L2] [18]
 [20] const 12
 [21] add [L0] [20]
 [22] store @([19]+[21])

Java bytecode
Unoptimized

intermediate representation

bpc
0 aload_0
1 iload_1
2 iaload
3 iconst_1
4 iadd
5 aload_0
6 iload_2
7 iastore

Optimized
intermediate representation

bpc eid
 2 [1] load @([L0]+8)
 [2] cmp [L1] [1]
 [3] cbranch_ult [2]
� --> [5]
 [4] call bad_array_idx
 [5] target
 [6] const 2
 [7] sll [L1] [6]
 [8] const 12
 [9] add [L0] [8]
 [10] load @([7]+[9])
 3 [11] const 1
 4 [12] add [10] [11]
 7 [14] cmp [L2] [11]
 [15] cbranch_ult [14]
� --> [17]
 [16] call bad_array_idx
 [17] target
 [19] sll [L2] [18]
 [22] store @([19]+[9])

header

length

a[0]

0

a[1]

a[2]

8

12

16

20

array object layout

Equivalent C

L0[L2] =
 L0[L1]+1;

1

1

1

1 instructions removed
in second array
access

Figure 4. Array accesses bytecodes are decomposed so that optimizations can be
performed on their components.

3.4 Code Generation Pass
3.4.1 Code Generation

For the most part, code is generated in place using
single pass of the expressions in a BB. Like expression
generation, EBBs are processed in reverse post-order
when generating code. A patching system is used to fix
unknown values likes branch targets and variable sized
method prologues and epilogues (for certain ISAs) after
the primary code generation pass. Selective code
buffering and movement is supported for block-level
code scheduling. This facility is currently used to move
array out-of-bounds throw clauses out of the critical
code path and to implement loop inversion.

3.4.2 Register Allocation

We do not allocate registers in a separate pass, but
assign registers as code is generated. Use counters, the
expr_spans_call flag, and register pre-
assignments are all critical to achieving good register
allocation. Pseudo-code for the register allocator is
shown in Figure 5 and an example allocation pass is
shown in Figure 6.

REG_alloc(expr * e)
{
 reg * r; int r_type;

 // HANDLE REGISTER RESERVATIONS
 if(e->reserved_reg){
 r = e->reg;
 if(r->is_assigned){
 r->spill_expr();
 r->free();
 }
 r->assign(e);
 }
 // NORMAL ALLOCATION
 else{
 // CLASSIFY REG ASSIGNMENT
 if(e->uses.other > 0
 || e->spans_next_call){
 r_type = R_caller_saved;
 }
 else{
 r_type = R_temp;
 }
 // ASSIGN REGISTER
 if(r = get_free_reg(r_type)){
 r->assign(e);
 }
 else if(r = any_free_reg()){
 r->assign(e);
 }
 else if(r = min_cost_live_reg()){
 r->spill_expr();
 r->free();
 r->assign(e);
 }
 }
}

Figure 5. REG_alloc() pseudo code (simplified code).

Register allocation starts with any register
allocated arguments at a method entry. When a register

is needed for an expression being generated, allocation
occurs as follows. If a register has not been pre-
assigned, we must choose an appropriate register class
assignment (e.g. temporary or call-preserved register).
Accounting for whether an expression must survive a
future call (expr_spans_call flag), whether it
will survive past the BB it is defined in (global use
counter), and potential conflicts with registers allocated
at the BB exit, we can select an appropriate register to
minimize future moves or spills.

As each expression is processed and code is
generated for it, we decrement the local use counter of
the source arguments to reflect that the argument has
been “used.” When the local use counter and the
global user counter both are zero for a register allocated
expression, the register can be freed as it can be
guaranteed that this expression will never be used
again.

Once code has been generated for a BB, the BB
linker is responsible for properly linking register
assignments between BBs. The register assignments at
a BB exit are compared to the assignments in the BB
join. Register assignments are added to the BB join or
a register move or spill is generated match a previous
BB join register assignment.

 We will compare our register allocator to other
schemes in Section 4.2

3.4.3 Instruction Scheduler

We use a standard list scheduler for low-level
instruction scheduling. To simplify the
implementation, scheduling is currently limited to a
given BB. Despite this limitation, we believe BB
regions have enough instructions to sufficiently target
the biggest benefactors of scheduling, filling load and
branch delay slots. We schedule instructions only after
they have been generated because some IR expressions
may expand into more than one instruction while others
may not even generate one. Additionally, the loads and
spills to the runtime frame of Java locals, which are
only generated as needed, are not represented as
explicit expressions in our IR.

3.5 Fast Optimization of Machine Idioms
Machine idioms are instructions or instruction

sequences for a specific ISA that execute more
efficiently than a similar sequence of instructions
targeted for a more general architecture. Common
machine idioms include immediate arguments, auto-
increment arguments, call argument specifics, leaf

procedure optimization, and condition code (CC)
usage.

Optimizing for machine idioms is often left to the
end of the compilation process, after one has generated
machine specific code, using a peephole optimizer [12].
A peephole optimizer searches code for instruction
patterns it knows how to replace with an equivalent
sequence that requires less instructions or cycles.
Using peephole optimization is expensive because it
usually requires at least one additional pass across all

instructions generated with a pattern matcher.

In our dynamic compiler, we handle machine
idioms as well as other miscellaneous opportunities to
reduce instruction sequences by providing machine
dependent (MD) code an opportunity to access an
expression as soon as it is created. This allows us to
perform preliminary analysis and set flags which can be
accessed at code generation time to help generate
machine idioms. A common use of this facility is for
generating immediate arguments. In the md_prep

access, the MD code can flag constants that
can fit into immediate fields for that ISA.
When the actual pass to generate code
occurs, only constants that cannot fit into
immediate fields will be register allocated.

Another important use of this facility
is for satisfying calling argument
conventions. We implement a register
reservation system where register
assignments can be made before the code
generation pass. Using this system, we can
pre-assign registers to expressions that will
be used as a call argument, which prevents
a possible expression assignment to an
unknown register and then an extra move
to the correct argument register during
code generation.

For more complex idioms, we can
make minor adjustments to the IR to
simplify certain optimizations. For
example, we provide a special branch IR
representation to accommodate

Java bytecode
Intermediate
representation 1

bpc
0 aload 0
1 iload 1
2 iaload
3 istore 3
4 aload 0
5 iload 2
6 iaload
7 istore 4

Intermediate
representation 2

bpc eid
(bounds check omitted
 for clarity...)
 2 [1] const 12
 [2] add [L0] [1]
 [3] const 2
 [4] lsl [L1] [3]
 [5] load @([2]+[4])
 6 [6] lsl [L2] [3]
 [7] load @([2]+[6])

bpc eid
(bounds check omitted
 for clarity...)
 2 [1] const 2
 [2] lsl [L1] [1]
 [3] add [L0] [2]
 [4] load @([3]+12)
 6 [5] lsl [L1] [1]
 [6] add [L0] [2]
 [7] load @([3]+12)

add %i0, 12, %g1
sll %i1, 2, %g2
ld [%g1+%g2], %g3
sll %i2, 2, %g2
ld [%g1+%g2], %g4

SPARC code

add r3, r0, 12
ldr r4, [r3, r1, LSL#2]
ldr r5, [r3, r2, LSL#2]

ARM code

lsl $t1, $a1, 2
add $t0, $t1, $a0
lw $s0, 12($t0)
lsl $t1, $a2, 2
add $t0, $t1, $a0
lw $s1, 12($t0)

MIPS code

header

length

a[0]

0

a[1]

a[2]

8

12

16

20

array object layout

Equivalent C

L3 = L0[L1];
L4 = L0[L2];

1 ARM and SPARC support
[r1 + r2] addressing

2 MIPS only supports [r + offset]
addressing; note that offset
can be merged directly into
the expression since these
cannot change during
compilation

Figure 7. Idiomatic optimizations can be performed more quickly by
having different IRs for different ISAs.

Equivalent
interference graph:

L0

B0
(entry)

L0: U{0,1}
L1: U{0,4}

if(L0 == L1)

L0: U{1,1}
L1: U{1,4}

Legend:

L1

L2

B1

L1:U{0,2}
L2:U{0,1} (def)

L2 = L1 + 1
if(L1 != 0)

L0: U{0,0}
L1: U{2,2}

B2

L1: U{0,1} (def)

L1 = L1 + 1

B3

L3: {0,1} (def)

L3 = L1 + L2

L1: U{1,0}
L2: U{1,0}

B5
(exit) return L3 r:%i0

L3: U{1,0}

B4

L3: U{0,1} (def)

L3 = L0 + 2

L0: U{1,0}
L1: U{0,0}

L1: U{1,0}

Y

N

N

Y

J0: predB0, succB1, succB4
 L0:R=%i0
 L1:R=%i1

J1: predB1,predB2,succB2,succB3
 L1:R=%i1
 L2:R=%i0

L3 J2: predB3, predB4, succB5
 L3:R=%i0

Bn
(block)

Ln:U{block_use,global_use}
Lx:U{block_use,global_use} (redefinition)

statement

Ln:U{block_use,global_use}

Allocation step-by-step:

before code
generated

after code
generated or
defined in block

Incoming arguments L0=%i0, L1=%i1
B0 code generated, L0 & L1 assignments

propagated by J0 (join 0)
%i0 is freed since there are no L0 uses

down this path; L2=%i0 as B1 code
generated; L1 & L2 assignments
propagated by J1

L1=%i1 reserved from J1 before B2 code
generated; note that L1 is redefined in
this block so L1in expression is distinct
from L1out expression

L3=%i0 from return argument reservation as
B3 code generated or B4 code generated,

1
2

3

4

5

1

2

3

4

5

Figure 6. Register allocation example

architectures that set CCs. Also useful is altering array
access decompositions to target addressing modes
available for the ISA, as illustrated in Figure 7.

Using this approach, we do not need to make an
additional pass to optimize for machine idioms. This
system appears sufficiently robust, as we have been
able to accommodate all the low-level optimizations
that we have wanted to perform on the ISAs we have
targeted so far.

Initial design of the compiler was done on a MIPS
IV ISA. So far, we have ported the compiler to the
SPARC v9 and StrongARM ISAs. An ISA port
requires defining a register file, assigning register
classes and coding md_prep (when required) and
md_asm functions for each IR expression type (see
Figure 1). MD code represents about 1/4 – 1/3 of the
total binary size of our dynamic compiler.

As a demonstration of the portability of our design,
each port, with some MD optimizations, only took
about 2 man-weeks to complete. As RISC style
machines, the SPARC and MIPS ports are similar, but
there are still significant differences in the register file
and calling convention models. The ARM architecture
provides for unusual source argument arrangements,
load/store addressing modes, and full instruction
predication. The current port does not use the more
exotic aspects of the ARM architecture, but support
could be added in future revisions. A x86 port is
planned, though not currently implemented.

4. Comparisons To Other Compilers
4.1 Dataflow Analysis

Our compiler implementation of dataflow
algorithms differs significantly from most modern
optimizing compilers. In this section, we discuss how
our approach compares against traditional
implementations.

Optimizing compilers like the Sun-server compiler
[6] and LaTTe JIT compiler [19] implement traditional
dataflow analysis using lattices and flow functions [12].
Traditional implementations can be computationally
expensive for several reasons. Setting up a problem for
dataflow analysis often requires scanning the entire
method to set up initial conditions. Additionally, some
optimizations require more involved auxiliary data
structures than bit vectors alone, may be iterative, or
may require solving more than one dataflow problem.

Rather than setting up separate dataflow problems,
we apply several optimizations concurrently as IR

expressions are generated. Forward flow information
required by these optimizations is communicated by
processing EBB in reverse post-order when generating
IR expressions

When performing traditional iterative dataflow
analysis, blocks are also processed in reverse post-order
to minimize required iterations to reach a fixed point
[12]. If A is the maximal number of loop back edges in
the CFG, the bound on the maximum number of times a
block may be visited before reaching a fixed point is
A+1. Logically, this is required to propagate forward
flow information through loops so a fixed point can be
found at the loop header. In our implementation, we
can use the per loop Java local load and store usage
statistics collected in the CFG generation pass (Section
3.2) to compute forward flow information through loop
back edges without iterating. For example, a local V
can be copy or constant propagated to successor blocks
outside the loop if V is not redefined within the loop
(no stores to V within the loop).

Our loop invariant code motion optimizer is also
non-iterative. Normally, a loop has to be scanned
multiple times as loop invariant code motion of one
expression inevitably can cause other expressions
dependent on it to become loop invariant [12]. We
generate IR expressions in a BB in order, and
predecessor loop BBs are always processed first. As a
result, when loop invariant code motion is applied to an
expression, this change is immediately communicated
to successive, dependent instructions of the loop.

What might be considered a major limitation to our
approach is that it is largely restricted to optimizations
that rely primarily on forward flow information. Since
most basic optimizations are based on forward flow
information (e.g. reaching definitions, available
expressions, copy propagation, constant propagation)
[12], we do not consider this a serious restriction.

4.2 Register Allocation
In this section, we compare our on-the-fly register

allocation scheme with graph coloring and other
proposed fast allocation schemes. Most register
allocation algorithms work with liveness information,
the span between a variable’s definitions to all its uses.

While graph coloring usually generates the best
results, it can be expensive. Register coalescing and
spill points cause the algorithm to iterate, which can
result in high register allocation times, particularly for
methods that are large or are not initially colorable [12].

All the fast register allocation schemes share more
with each other than with graph coloring. The most
important common characteristic is that they consider
allocation using a limited view of interference.
Additionally, these algorithms handle spills
dynamically at points in the program where there are no
free registers.

LaTTe’s register allocation system probably bears
the closest resemblance to our implementation [19].
Their algorithm uses three passes for each block: a scan
that computes estimates of live variables and their last
uses, a backward sweep that computes preferred
register assignments, and a final forward sweep which
allocates registers and removed unnecessary copies.

Compared to the LaTTe JIT, our on-the-fly
allocator requires one less pass over the code. We
compute liveness (derived from our local and global
use counters) and perform register preallocation in the
same step. Additionally, we integrate these two
computations into the DFG generation stage so that
only one pass is required for register allocation
(concurrent with code generation). At each allocation
point, the LaTTe allocator also has less information to
make good spill decisions and register class selections.

Linear scan allocators direct global allocation of
register using a linear sweep of the program being
compiled [4][17]. The basic linear scan allocator uses a
simple view of liveness known as a lifetime interval,
which spans from a variable definition to where it is

last live in linear program order. Each step of the
algorithm tracks the active lifetimes at a given program
point. When there are more active lifetimes than
available registers, the longest active lifetime is spilled.

Although the basic linear scan algorithm is
probably the fastest allocator we describe here, its
representation of liveness is probably the most
imprecise. An algorithm has been proposed to improve
the precision of lifetime intervals [17], at the cost of an
additional dataflow analysis pass, and a scan to resolve
assignment conflicts at basic block boundaries.

5. Experiment Results
5.1 Setup

The microJIT was developed on a commercial
version of the open source Kaffe virtual machine
(http://www.transvirtual.com). We compared our JIT
compiler against three other compilers that target the
SPARC ISA. Characteristics of these compilers are
shown in Table 2. The SPARC architecture was
chosen because it had the largest availability of good
compilers for which source code could be found, and
because we wanted performance results from a neutral
RISC architecture. We could have also chosen the x86
platform, but we were concerned that its small register
file might skew the results by eliminating most
possibilities for register allocation.

We included the two dynamic compilers from the
Sun JDK, the client and server compilers [9][6]. The
server compiler uses the powerful, but expensive static-

Table 2. Features and characteristics of compilers evaluated.

JIT Sun - Client Sun - Server SNU LaTTe MicroJIT

Source C++ C++ C C

64b ops Full Full Some Some

Intermediate
representation Simple SSA dataflow Dataflow Dataflow

Major compiler
passes 4 Iterative 7 4

Optimizations

Block merging/elimination
Simple constant

propagation
Inlining & specialization

Loop invariant code motion
Global value numbering
Conditional constant

propagation
Inlining & specialization
Instruction scheduling

EBB value numbering
EBB constant propagation
Loop invariant code

motion
Dead code elimization
Inlining & specialization
Instruction scheduling

CSE
Copy propagation
Constant propagation
Loop invariant code

motion
Dead code elimization
Inlining & specialization
Instruction scheduling

Register
allocation 1-pass dynamic Graph coloring 2-pass dynamic 1-pass dynamic

Garbage
collection Incremental copying Incremental copying Incremental

mark & sweep
Incremental

mark & sweep

Compiler size 700KB 1.5Mb 325KB 200KB

Interpreter size 220KB 220KB 65KB None

single assignment (SSA) representation
internally. This compiler is not optimized
for fast compilation times, but generates
extremely good code through traditional
dataflow analysis. The client compiler
does not perform any advanced analysis,
but focuses on basic register allocation and
inlining optimizations. Both of these
compilers run under the HotSpot VM,
which only compiles frequently called
methods and interprets otherwise.

The other compiler included in our
experiment is the LatteVM [19]. This
relatively fast dataflow compiler
implements many of the optimizations
performed by the Sun-server compiler.
This VM also supports lazy compilation,
although it appears to use very little
interpretation during exeuction. This
compiler was not designed to be ported to
different ISAs as the IR maps closely to the
SPARC ISA.

We used perfmon
(http://web.cps.msu.ed/~enbody/perfmon.h
tml), a library interface to the UltraSparc2
hardware counters, to time compilations. This was
necessary to get accurate times for the compilation of
smaller methods. The UNIX time command was
accurate enough for code execution times. All VMs
ran on the same machine (200MHz UltraSparc2 w/
Solaris 8).

Table 3 lists the benchmarks used to evaluate the
performance. In choosing benchmarks, we tried to
include a variety of programs to represent both
numerical and object-oriented programs. Most the
larger benchmarks are part of the Spec JVM98
(http://www.spec.org/) and Java Grande
(http://www.epcc.ed.ac.uk/javagrande/javag.html)
benchmark suites. Scimark2 and jBYTEmark are
benchmarks suites comprised of smaller kernels.

5.2 Compilation Time
Compilation times, decomposed by method

bytecode size, are shown in Figure 8. We normalized
to bytecodes processed per 1k cycles to accommodate
varying method bytecode sizes within each bin. In this
figure (and subsequent figures), two bars show
microJIT’s compilation performance: advanced
optimizations (scheduling, inlining, loop opt) are
enabled for microJIT1 and disabled for microJIT2. For
methods <1000b, microJIT’s compilation times are

always better, averaging over 2.5x faster than the
closest dataflow compiler, LaTTe, and 12x faster than
the Sun-server compiler. Relative compilation times
may be even better against the LaTTe compiler because
it is heavily optimized for SPARC, and may incur
additional overheads to support multiple target ISAs.
While we are only about 30% faster than the Sun-client
compiler, the client compiler performs fewer
optimizations than the microJIT, LaTTe, and Sun-
server compiler.

0.00

0.10

0.20

0.30

<5
0B

50
B

-2
50

B

25
0B

-
1K

B

1K
B

-5
K

B

>5
K

B

av
er

ag
e

method bytecode size

by
te

co
de

s
/ 1

k
cy

cl
e

Sun-server LaTTe Sun-client
microJIT1 microJIT2

Figure 8. Compilation rate for given method bytecode
sizes in bytecodes processed per 1k cycles.

Table 3. Method bytecode sizes by benchmark.
Method bytecode size

Benchmark
<50B 50-

250B
250B -
1KB

1K –
5KB >5KB

mp3 – mp3 decoder 131 70 17 4 1

mtrt – raytracer 128 34 13 2 1

jess – expert system 289 60 11 0 0

compress – compression 35 8 4 0 0

db – database 16 9 0 0 0

jlex – parser gen. 47 33 23 3 3

deltablue – planner 52 15 1 0 0

richards – task simulator 306 54 4 0 0

java_cup – parser gen. 122 30 7 0 0

moldyn – particle simulation 13 15 3 1 0

search – alpha beta search 15 20 4 0 0

h263dec – video decoder 40 24 20 11 3

pizza – java compiler 327 194 40 9 0

euler – fluid dynamics 14 14 4 5 0

jpeg – image compression 237 75 54 16 0

mips_sim – cpu simulator 25 25 9 2 0

scimark2 – fp loops 14 13 2 0 0

jbytemark – int & fp loops 47 64 15 0 0

Figure 9 shows the effect of various optimizations
on compile time (CSE is always on by default).
Inlining results in about a 10% slowdown and
scheduling caused an average 15% penalty. The cost of
loop optimizations are relatively cheap expect for large
methods, where it adds over 20% to the compilation
time.

0.00

0.10

0.20

0.30

<5
0B

50
B-

25
0B

25
0B

-
1K

B

1K
B-

5K
B

>5
KB

av
er

ag
e

method bytecode size

by
te

co
de

s
/ 1

k
cy

cl
es

all -loopopt -inlining -scheduling

Figure 9 Compilation rate for microJIT with different
optimizations disabled, in bytecodes processed per 1k

cycles.

Figure 10, also decomposed by method bytecode
size, breaks down time spent in each pass of our
compiler. For very large methods (>1000b), time spent
in DFG generation dominates almost 70% of
compilation time. We attribute this shift to the high
cost of CSE. As methods get large, we expect regions
searched for CSE will grow, along with the number of
expressions on which CSE is applied, resulting in non-
linear computational cost. We believe this is also the
primary cause of decreasing compilation speeds for
larger methods. If this effect is undesirable, one
possible fix is to limit the depth of backward searches

performed by CSE.

0%

25%

50%

75%

100%

<5
0B

50
B

-
25

0B

25
0B

-
1K

B

1K
B

-
5K

B

>5
K

B

av
er

ag
e

method bytecode size

co
m

pi
la

tio
n

tim
e

CFG generation DFG generation code generation

Figure 10. Times spent in each pass of microJIT.

5.3 Generated Code Performance
 Performance of the code generated by the

compilers is shown in Figure 11 (long running
applications, large data sets) and Figure 12 (short
running applications, small data sets). Benchmarks
included in both graphs (like compress, db, jess, mp3,
and mtrt) are run with different input data set sizes.
Reported performance times are for total running time,
including compilation, interpretation (if any), garbage
collection, and native execution. For comparison,
performance of the original Kaffe JIT and a Sun JDK
using only interpretation are also included. The
performance in Figure 11 is expressed as speedup
normalized to the JIT compiler used in the JDK1.1 to
compensate for the different sizes of each benchmark.
This JIT compiler is a suitable baseline because it is a
relatively conservative dynamic compiler that does not
attempt any advanced optimizations. Short run
execution times in Figure 12 are represented in seconds
and have been divided into interpretation, compilation

0

1

2

3

4

5

co
m

pr
es

s db je
ss

m
p3 m
trt

jb
yt

e
in

t

jb
yt

e
fp

jp
eg

pi
zz

a

eu
le

r

m
ol

dy
n

h2
63

de
c

se
ar

ch

sc
im

ar
k2

benchmark

sp
ee

du
p

Sun-server LaTTe Sun-client microJIT1 microJIT2 Kaffe Sun-intrp

Figure 11. Speedup of large benchmarks relative to JDK1.1 (Sun’s pre-Hotpot JIT).

and native execution times. (Note: missing bars in the
graphs represent programs that we could not collect
results for)

For long running applications, microJIT performs
well on numerically intensive applications (e.g. mp3,
euler, moldyn, jpeg, h263dec, jBYTEmark, and
scimark2). While the LaTTe and Sun-server compilers
still produce better code, microJIT is able to outperform
the Sun-client compiler on many applications. On short
running applications, microJIT’s low compilation times
allow it to keep total execution time small relative to
the other systems.

Overall, we are most disappointed by our
performance on object-oriented applications like db and
jess. db’s execution time is largely dominated by a
loop nest within a shell sort
routinue. For this benchmark,
we suspect aggressive array
bounds check elimination
within the loop nest allows
LaTTe to perform particularly
well on this program.

To understand further the
quality of code generated by
our compiler, we also
decomposed execution times of
some of the long running
benchmarks, given in Figure 13.
Results are normalized to the
Sun-server compiler and
include garbage collection
times. This graph suggests that
one factor limiting performance

of microJIT code is inefficiencies in our garbage
collector. On applications that allocate memory
intensively, our system spends a larger percentage of
time in collection than other virtual machines,
deteriorating its relative performance.

Another performance limitation could be from our
naïve implementation of specialization. The Sun-client
and server compilers support a particularly fast form of
specialization using class hierarchy analysis (CHA) and
deoptimization [9]. Non-final, public virtual and
interface calls that have only one target class can be
inlined directly without a check to verify the correct
target object class. If dynamic class loading causes this
virtual or interface call to have more than one target
class, the methods can be recompiled with these
optimizations removed, including those on the current

0.0

0.5

1.0

1.5

2.0

2.5

Su
n_

se
rv

er
La

TT
e

Su
n_

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2

compress db jess mp3 mtrt jpeg euler moldyn search

benchmark

ex
ec

ut
io

n

native interpret compile gc

Figure 13. Performance of large benchmarks normalized to Sun-server.

0

4

8

12

16

20

Su
n_

se
rv

er
La

TT
e

Su
n_

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n_
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

Su
n-

se
rv

er
La

TT
e

Su
n-

cl
ie

nt
m

ic
ro

JI
T1

m
ic

ro
JI

T2
Su

n-
in

trp

compress db jess mp3 mtrt jlex richards deltablue java_cup mips_sim

benchmark

tim
e

(s
)

native interpret compile

Figure 12. Performance on short running benchmarks.

call stack, so that the program will run correctly.

5.4 Static Memory Usage
Total size of the compilers and associated

interpreter (if any) are shown in Table 2. These
numbers were obtained by taking associated object files
and applying the UNIX strip to them to remove
unnecessary symbols. At 200KB, microJIT’s static
memory requirements are smaller than the other
compilers. Total static memory requirements are
further improved by omission of an interpreter in our
system. While Sun-server and Sun-client may be larger
because they are written in C++, and support the
profiling (JVMPI) and debugging (JVMDI) interfaces,
we believe these differences should not dramatically
affect static memory comparisons.

5.5 Dynamic Memory Usage

0

1

2

3

4

<5
0B

50
B-

25
0B

25
0B

-1
KB

1K
B-

5K
B

>5
KB

av
er

ag
e

method bytecode size

dy
na

m
ic

 K
B

/ b
yt

ec
od

e

Sun-server LaTTe Sun-client microJIT

Figure 14. Dynamic memory required during compilation.

An important consideration for dynamic
compilation in an embedded system is the limited
dynamic memory available to the compiler. Figure 14
shows dynamic memory used by the compilers during
compilation. On average, microJIT uses 25% of the
memory required by the LaTTE compiler and 12.5% of
the memory required by the Sun-server compiler, but it
uses twice the memory required by the Sun-client
compiler. These numbers suggest a 250KB buffer is
sufficient memory for microJIT to compile method
bytecodes less than 1KB.

To limit the dynamic memory required by the
compiler for larger method bytecodes (> 1KB),
microJIT could be amended to support partial
compilation. In this mode, microJIT’s first pass (CFG
construction) would execute normally and generate the
CFG of all the BBs in the method. The DFG
generation and code generation passes would then
execute as before, but only on sections of the CFG at

one time (e.g. one EBB or loop nest). This relies on the
observation that the bulk of dynamic memory used by
the compiler is for the intermediate representation of
the bytecodes. By only generating the intermediate
representation for subsections of a method at one time,
we can reduce total dynamic memory requirements.
This possible improvement to microJIT would reduce
dynamic memory requirements at the cost of limiting
some global optimizations for large bytecode methods.

0

1

2

3

4

5

<5
0B

50
B

-
25

0B

25
0B

-
1K

B

1K
B

-5
K

B

>5
K

B

av
er

ag
e

method bytecode size

co
de

 B
 /

by
te

co
de

microJIT1 microJIT2

Figure 15. Code expansion of native code after translation
of bytecodes.

The other important dynamic memory
consideration in an embedded system is memory used
to store translated code. The effects of a limited code
buffer on total system performance were beyond the
scope of our study (e.g. choosing which translated
methods to discard and factoring the cost of
recompilation when the code buffer is full), but we did
collect statistics on code expansion resulting from
translation. Figure 15 shows the average number of
bytes of native code (code and data segments)
generated per bytecode translated by mciroJIT.
microJIT1 (with all optimizations enabled) generated
less code primarily due to filling of branch delay slots
by the instruction scheduler. We also did not observe
any dramatic differences in code expansion between the
compilers evaluated. We found the largest benchmarks
evaluated here (jpeg and pizza compiler) generated at
most 300KB of native code.

6. Conclusions
We have demonstrated how a fast dynamic

optimizer can be constructed that includes advanced
optimizations without incurring high compilation costs
or having high memory requirements. This was
accomplished by minimizing compiler passes while
optimizing aggressively and by efficient
communication and representation of flow information.
Unlike traditional dataflow compilers that solve

dataflow equations and apply optimizations
successively, we perform local and global
optimizations as the IR expressions are generated.
Additionally, we allocate registers concurrently with
code gneration using an on-the-fly allocator that utilizes
local interference, liveness, and register classes when
making allocation and spill decisions.

Our experiment shows that the tradeoff between
short compile times and high code quality may be less
pronounced than commonly believed. This result
suggests that we can incorporate small dynamic
compilers into resource-constrained environments
where high compile times, poor code quality, and the
cost of more expensive systems cannot be tolerated.

7. Acknowledgements
The authors wish to acknowledge Tim Wilkinson

and Transvirtual Technologies for their support of the
Kaffe JVM used in this study. This work was
supported by DARPA contract MDA904-98-C-A933.

8. References

[1] Adl-Tabatabai, A.R. et al. Fast, Effective Code
Generation in a Just-In-Time Java Compiler. In
SIGPLAN’98, Montreal, Canada, 1998.

[2] Alpern, B. et al. Implementing Jalapeño in Java.
In OOPSLA’99, Denver, Colorado, November,
1999.

[3] Bala, V., Duesterwald, E., and Banerjia, S.
Dynamo: A Transparent Dynamic Optimization
System. In PLDI’00, Vancouver, BC, Canada,
June, 2000.

[4] Blickstein, D.S. et al. The Gem Optimizing
Compiler System. Digital Equipment Corportation
Technical Journal, 4(4):121-135, 1992.

[5] Cierniak, M., Lueh, G. Y., and Stichnoth, J.
Practicing JUDO: Java Under Dynamic
Optimizations. In PLDI’00, Vancouver, BC,
Canada, June, 2000.

[6] Click, C. High-Performance Computing with the
Server Compiler for the Java HotSpot Virtual
Machine. In JavaOne 2001, San Francisco, CA,
June, 2001.

[7] Engler, D.R. vcode: a retargetable, extensible,
very fast dynamic code generation system. In
PLDI’96, Philadelphia, PA, May, 1996.

[8] Gosling, J., Joy, B., and Steele, G. The Java
Language Specification. Addison Wesley,
Reading, MA, 1996.

[9] Griessemer, R. and Mitrovic, S. The Java HotSpot
Virtual Machine Client Compiler: Technology and
Application. In JavaOne 2001, San Francisco, CA,
June, 2001.

[10] Holzle, U. et al. Java On Steroids: Sun’s High-
Performance Java Implementation. In Hot Chips
’97, Stanford, CA 1997.

[11] Lindholm, T. and Yellin, F. The Java Virtual
Machine Specification. Addison Wesley, Reading,
MA, 1997.

[12] Muchnick, S. Advanced Compiler Design
Implementation. Morgan Kaufmann Publishers,
San Francisco, CA, 1997.

[13] Poletto, M. Language and Compiler Support for
Dynamic Code Generation. PhD thesis, MIT,
1999.

[14] Poletto, M., Engler, D.R., and Kaashoek, M.F. tcc:
A System for Fast, Flexible, and High-level
Dynamic Code Generation. In PLDI’97, Las
Vegas, NV, June, 1997.

[15] Rubin, N. and Chernoff, A. Digital FX!32: A
Utiliity for Fast Transparent Execution of Win32
x86 Applications on Alpha NT. In Hot Chips ‘97,
Stanford, CA, Auguest, 1997.

[16] Suganuma, T. et al. Overview of the IBM Java
Just-in-Time Compiler. In IBM Systems Journal,
Vol. 39, No. 1, 2000.

[17] Traub, O., Holloway, G., and Smith, M.D. Quality
and Speed in Linear-scan Register Allocation. In
SIGPLAN’98, Montreal, Canada, 1998.

[18] Witchel, E. and Rosenblum, M. Embra: Fast and
Flexible Machine Simulation. In ACM
SIGMETRICS ’96, Philadelphia, PA, 1996.

[19] Yang, B.S. et al. LaTTe: A Java VM Just-in-Time
Compiler with Fast and Efficient Register
Allocation. In PACT’99, New Port Beach, CA,
October, 1999.

