

IBM Research

Towards Automated Identification of Security Zone Classification in Enterprise Networks

IBM: Hari Ramasamy, Birgit Pfitzmann, Nikolai Joukov, Jim Murray Georgia Tech: Cheng-Lin Tsao

USENIX Hot-ICE 2011, Boston

© 2011 IBM Corporation

BM

Background: Firewalls, Security Zones

- Enterprise network infrastructures are divided into zones of varying criticality
- Zone: set of devices of same security requirements
 - Guarded by boundary firewalls

IBM Research

• Security requirements defined in *enterprise policy*, (hopefully) enforced by *network configuration*

	_	
_		
_		

Network Model and Policy Model

 $Host \in Subnet \subseteq Zone \in Classification(Color)$

	_	
_		
_		

Problem Statement – Zone Discovery

Input

- Devices and policy
 - Color of some devices known a priori
- Output
 - zones, colors, interconnections between zones

| IBM Research

Motivation for Security Zone Discovery

- Even medium sized enterprises may have hundreds of security zones
- Information about zones is *required* in many IT management situations
 - System Migration and Storage Consolidation
 - End-to-end Security Assessment
 - Network Rearrangement or Optimization
- An enterprise-wide inventory of zones is simply absent in many enterprises
- Information about zones is synthesized manually, and often incomplete
- Existing tools can analyze network configs, but don't yield zone information

ocoarch

Solution Overview

- Staged approach, where each stage has 2 phases
- Information Collection
 - Collect information about actually allowed flows
- Analysis
 - Infer zone colors by comparing actually allowed network flows against policy

Elimination-Based Inferencing Algorithm

- If color of a zone is Unknown, initially, assign all possible colors (Blue, Green, Red, Yellow)
- Eliminate color if *actually allowed network flows* violates *enterprise policy* for that color
 - Compliance Assumption
- Red zone can send to Unknown
 - Green color is impossible, per policy
 - Blue color is impossible, per policy
- Unknown can send to Blue zone
 - Red color is impossible, per policy
- Only yellow is possible

Enterprise Policy

Τo	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red (None	None	All	All

	_	
-		
=	_	
		= 7 =

Sample Techniques for Collecting information about Actually Allowed Flows

- Host Config Analysis
 - Routing tables: subnets and groups in the same zone
 - Active connections: app behaviors
- Connectivity Probes
 - Probing with existing app like ping, Telnet, nslookup
- Firewall Config Analysis
 - Parsing firewall configuration files
 - Emulating firewall filtering to find the permitted connections
- Flow Log Analysis
- Network Statistics Analysis
- Packet Analysis

Incremental Discovery: Sequence collection methods so that lower interference methods are performed ahead Implemented in BlueGates Tool

	_	_
	_	
_		

IBM Research

Case Study: Our approach in action (0 of 5)

Input

- Hosts w/ unknown color: X1 ~ X5
- Hosts w/ known color: B1 (blue) and R1 (red)
- Policy

BGYR	BGYR
X1	X2
BGYR	BGYR
X3	X4
BGYR X5	

То	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

R

R1

_			_
_			
		-	
	_	_	

Case Study: Our approach in action (1 of 5)

- Host Config Analysis
 - Routing table analysis: X1 and X2 belongs to the same subnet

То	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

_			_
_			
		-	
	_	_	

Case Study: Our approach in action (2 of 5)

Host Config Analysis

- Routing table analysis: X1 and X2 belongs to the same subnet
- Active connections analysis: HTTP from R1 to X2 and X4

Τo	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

_	_	
_	_	
	_	
		- 7 -

Case Study: Our approach in action (3 of 5)

- Host Config Analysis
 - Routing table analysis: X1 and X2 belongs to the same subnet
 - Active connections analysis: HTTP from R1 to X2 and X4

To	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

Active connections analysis: HTTPS from X1
B
X1
Y
X2
BGYR
X3
YR
HTTP
R1

_			_
_			
		-	
	_	_	

Case Study: Our approach in action (4 of 5)

Connectivity Probing

- HTTPS traffic allowed from X3 and X5 to B1
- TFTP traffic allowed from X4 to X3

То	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

_			_
_			
		-	
	_	_	

Case Study: Our approach in action (5 of 5)

Firewall Config Analysis

- No firewall between X3 and X4
- HTTP traffic between R1 and new host X6
- X5 and X6 in same subnet

Τo	Blue	Green	Yellow	Red
From				
Blue	All	All	All	All
Green	Auth	All	All	All
Yellow	S.Auth	S.Auth	All	All
Red	None	None	All	All

Conclusion

- Systematic and semi-automated approach for discovering security zone classifications of devices
 - Staged approach to information collection
 - Elimination-based inferencing
 - Generalization as a Constraint Satisfaction Problem
- Future (on-going) work
 - Loosening the compliance assumption
 - Evaluating the approach in large-scale infrastructures