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Demand on CPU Resource

• Demand on CPU, Memory, 

I/O etc.

D(t; t + Δ) = max{D(t); … ;D(t + Δ)}

Basic Review Point
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Server Operational Cost

The # of servers 

and at which 

Demand

Cost due to 

horizon

Cost due to 

reconfiguration 

over a time 

horizon

• Wear and Tear 

(turning on/off cost)

most vulnerable part: 

hard disk

Proportional to the # of servers
and  the CPU frequency cubic

Ve~f Ve: Voltage,  f: Frequency
P~Ve

2 x f ~f3 P: Power
P=Pfixed +Pf x f3 Pfixed: Fixed component,   Pf: 
Coefficient 
E=P x t                    E: Energy, t: Time

and at which 

frequency at 

review points

Capacity
Energy 

Cost

Energy 

Consumption 

Cost
• Proportional to the # of 

servers 

• Positively correlated to 

CPU frequency 

DVFS: Dynamic 

Voltage/Frequency Scaling

DVFS: Dynamic 

Voltage/Frequency Scaling
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Notations
Options Type Set Notation Element 

Notation

Range

Server Z+ I i [1,I]

Frequency Modular value J J [1,J]

Time Z+ T t [1,T]

Cij Power Consumption when server i

S
y
ste

m
 V

a
ria

b
le

s

Capacity NotationsCij Power Consumption when server i

is running at frequency option j

(per time unit)

Cs
+ Cost of turning a server on at a 

review point

Cs
- Cost of turning a server off at a 

review point

Decision Variable:

Vij Capacity of server i running at 

frequency option j.

C
o

st N
o

ta
tio

n
s

Capacity Notations

yij(t) if server i is turned on and 

operated at frequency j at 

time slot t
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Minimize the Server Operational Cost

over a Time Horizon 

∑

t∈T

∑

i∈I

∑

j∈J
C

ij
· y

ij
(t) +

server power consumption
Turning servers on cost

+

Minimize

∑

t∈T

∑

i∈I
(C
+

s
·
∑

j∈J
y
ij
(t) · (
∑

j∈J
y
ij
(t)−
∑

j∈J
y
ij
(t− 1))

It is quadratic integer 

programming!

Dependency Dependency 

on 

immediate

Turning servers off cost
Subject to
∑

j∈J
y
ij
(t) ≤ 1, t∈ T

∑

i∈I

∑

j∈J
V
ij
y
ij   

(t)≥D(t) , t∈ T

t∈T i∈I j∈J j∈J j∈J

∑

t∈T

∑

i∈I
(C−

s
·
∑

j∈J
y
ij
(t− 1) · (
∑

j∈J
y
ij
(t− 1)−
∑

j∈J
y
ij
(t))

One server can only be operated at one 

frequency at one time 

Demand requirement

time slot

immediate

previous 

time slot
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Linearize the Objective Function

Introduce two binary variables to represent turning on/off
∑

j∈J
y
ij
(t)−
∑

j∈J
y
ij
(t− 1)− y+(t) + y−(t) = 0

In case of  “no change”, two variables should be both 0 

y+(t) + y−(t) ≤ 1, ∀i ∈ I, ∀t ∈ T

y+(t) y-(t)

1 0

0 1

0 0

Initialization (assume reshuffling at the beginning of planning) 

y+
i
(t) + y−

i
(t) ≤ 1, ∀i ∈ I, ∀t ∈ T

y+
i
(1) =
∑

j
y
ij
(1) y−

i
(1) = 0

The objective function becomes
∑

t∈T

∑

i∈I

∑

j∈J
C

ij
· y

ij
(t) +
∑

t

∑

i∈I
(C
+
· y+

i
(t) + C− · y−

i
(t))s

1 1
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Re-formulate the Problem as 

Integer Linear Programming
Minimize
∑

t∈T

∑

i∈I

∑

j∈J
C

ij
· y

ij
(t) +
∑

t

∑

i∈I
(C
+
· y+

i
(t) + C

−

· y−
i
(t))

Subject to∑

j∈J
y
ij
(t) ≤ 1,∀i ∈ I, ∀t ∈T

∑

i∈I

∑

j∈J
V
ij
y
ij
≥ D, ∀t ∈ T

s s

y+
i
(t) + y−

i
(t) ≤ 1, ∀i ∈ I, ∀t ∈ T

∑

j∈J
y
ij
(t)−
∑

j∈J
y
ij
(t− 1)− y+(t) + y−(t) = 0,∀i ∈ I, ∀t ∈ T

i∈I j∈J ij ij

y
+

i
(1) =
∑

j∈J
y
ij
(1),∀i ∈ I

y
−

i
(1) = 0, ∀i ∈ I

Binary
y+
i
(t), y−

i
(t), ∀i ∈ I, ∀t ∈ Ty

ij
(t), ∀I ∈ I, ∀j ∈ J, ∀t ∈ T
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Evaluation Setup

• A 100 homogeneous server cluster with DVFS capability*

# j 1 2 3 4 5 6 7 8

Freq. Fj 1.4 1.57 1.74 1.91 2.08 2.25 2.42 2.6

Cap. Vj .5385 .6038 .6692 .7346 .8 .8645 .9308 1

watts Pj 60 63 66.8 71.3 76.8 83.2 90.7 100

cents Cj .42t .441t .467t .4991t .5376t .5824t .6349t .7t

• The demand is forecasted and profiled every 5 minutes based on the traces of the 
demand on CPU

– Assume the distribution is exponential with the mean of 20 (20% utilization)

• How optimal solution is effected by (and how good it is?)
– Granularity: 5 min, 15 min, 30 min, 60 min

– DVFS capability: Full, PingPong, Max

– Relations between power consumption and turning on/off cost

* The CPU frequency is adopted from Chen. et. al. SIGMETRICS 2005 paper [6]

cents Cj .42t .441t .467t .4991t .5376t .5824t .6349t .7t
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Minimum Cost in a 100 Server Cluster
Baseline-I: all servers are 

always on and operated at 

maximum frequency

Baseline-II: the optimization 

is executed for each time 

slot independently (tuning 

on/off cost is ignored)

Outperforms Baseline cases• Outperforms Baseline cases

• Σ local optimum (BL-II) ≠
global optimum (our solution)

• Finer time granularity, better 

optimum

• Partial gain cancelled out 

because of the existence of 

turn on/off cost

Max:  operated at maximum frequency only

Full: operated at full spectrum (discrete)

Max:  operated at maximum frequency only

PingPong: operated at maximum and minimum freq. 

Full: operated at full spectrum (discrete)

Baseline-I: all servers are always on 

and operated at maximum 

frequency (static allocation)

Baseline-II: the optimization is 

executed for each time slot 

independently (tuning on/off cost is 

ignored) (independent optimization)

turn on/off cost

• More frequency options improves 

optimum. But,  the improvement 

from PingPong to Full is marginal.
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Relative Improvement (R)

Cb: Cost of baseline

Cop: Optimal cost

R=(Cb- Cop )/Cop   

Baseline-I: static allocation

Baseline-II: independent optim.

Max:  operated at maximum frequency only

Full: operated at full spectrum (discrete)

Max:  operated at maximum frequency only

PingPong: operated at maximum and minimum freq. 

Full: operated at full spectrum (discrete)

• Finer granularity, more 

improvement

• Improvement  over 

Baseline-II diminishes as time 

granularity gets coarser 

• Improvement from 

PingPong to Full is marginal
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Scaling Factor Vesus Minimum Cost
Scaling Factor: the ratio 

between turning on/off cost 

and power consumption cost   

Max:  operated at maximum frequency only

PingPong: operated at maximum and 

minimum frequenct

Full: operated at full spectrum (discrete)

• The gain obtained Finer time granularity goes down as SF increase• The gain obtained Finer time granularity goes down as SF increase

• Turning on/off cost dominant, less significant impact of time granularity

• Power consumption dominant, more significant impact 
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Conclusion

• The demand is dynamic over time horizon due to the 
nature of provisioning service

• Multi-time period mathematical model to optimize server 
operational cost

• Leverage turning  servers on/off and DVFS in synchronous 
manner manner 

• Significantly reduce the server operational cost compared 
with static allocation and local optimization

• Finer time slot granularity results in better optimum, but 
the improvement depends on relationships of cost 
components 

• Optimization aspects for DVFS chip design and operating 
system software management
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Future Work

• Heuristics for large scale cloud clusters

• Management overhead (such as migration) for 
reconfiguration cost besides turn on/off cost

• Communication cost when allocating resources

• Leverage turning on/off and DVFS asynchronously• Leverage turning on/off and DVFS asynchronously

• Uncertainty in demand

• We need demand trace/profile/workload in real 
cloud/cluster computing environment
– The demand  for resources from individual customers

– Customer information
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