
Gemini Lite: A Non-intrusive Debugger for Windows NT

Ryan S. Wallach
Lucent Technologies

Abstract

It is frequently useful to debug a running software system in a production environment with a symbolic debugger
without interfering with the operation of the system. The user of such a debugger may want to inspect data or
trigger some data collecting operations whenever the running program hits an arbitrary address. Terminating or
initiating the debugging session must also be transparent to users of the system. Debuggers available for Windows
NT (or any debugger written with the Win32 debugging API) cannot detach from a running process without killing
it, so they are unsuitable for debugging live systems. This paper presents the design of Gemini Lite, a debugger
written without the Win32 debugger API, which has the capabilities needed to debug running production systems.

1 Introduction
Lucent Technologies’ DEFINITY® Enterprise
Communications System is a highly reliable (99.999%
uptime) large communications server. The software
base contains several million lines of code. Like any
large software system, each release of DEFINITY
contains software bugs that are not discovered until the
system has been installed at a customer’s premises.
Many bugs are easily reproducible in the development
lab from a customer’s description. It is impossible,
however, to precisely reproduce the conditions of an
installed system, and therefore some problems cannot
be reproduced in the lab. When this happens, it is
necessary to debug the system at the customer’s
premises without disturbing its operation.

DEFINITY is implemented as a collection of processes
in a multitasking proprietary operating system. It
contains a proprietary client/server debugger, Gemini,
which lets support engineers at a Lucent site securely
connect to a customer’s system and non-intrusively
debug the software. Gemini consists of a small
DEFINITY server process (known as the agent) which
controls the target processes, and a UNIX client process
(known as the host) that accepts commands and sends
messages to the agent to execute them. The host
process runs on the support engineer’s workstation. It
has access to symbolic information for the DEFINITY
processes, so it translates symbol names into addresses
for the agent.

Gemini supports the traditional model of debugging,
that is, the user can set a breakpoint, wait for the
process to halt, then single step it and examine data to
find the cause of the bug. These features are often
used during product development under controlled
conditions. However, DEFINITY processes are
interrelated and time-dependent. If a process is halted

for more than a few milliseconds, the system could (in
the course of error recovery) reinitialize itself, and this
could disrupt the customer’s business. When
debugging a live system, then, special debugging
capabilities are needed. Gemini provides four key
features:

1. Gemini breakpoints can have lists of commands
(called action lists) associated with them, and the
breakpoints can remain active even when the host
isn’t running (the agent is always running). When
a process hits a breakpoint with an action list, the
agent runs the commands, logging any output to an
internal buffer, and resumes execution of the
debugged process. This mechanism is frequently
used to determine where processes are executing
and what the relevant data looked like when the
breakpoint was hit. Lucent support engineers
typically use the host to set breakpoints with action
lists and then they exit the debugger and come back
hours or days later and view the output buffer to
determine if the breakpoint was hit and gather the
output from the action list commands.

2. Gemini can debug all the processes in the system in
the same session of the debugger. It is even
possible to set up breakpoints with action list
commands that can manipulate other processes
when the first process hits the breakpoint.

3. Gemini is non-intrusive. Users can read and write
memory, set and clear breakpoints, and look at the
status of DEFINITY processes without halting
them. Most of the important data in DEFINITY is
global, so developers frequently need to read from
(and write to) these data structures without halting
the process they’re debugging.

4. Gemini can attach to running processes and detach
from them cleanly, without interfering with their
operation.

In February 2000, Lucent introduced its DEFINITY
ONE™ Communications System. DEFINITY ONE
contains DEFINITY plus other co-resident applications
running on one system under Windows NT 4.0 (all
references to Windows NT in this paper refer to this
version). DEFINITY ONE required a debugger to run
on the platform with the same capabilities as Gemini as
well as the ability to debug multithreaded processes.
Because no suitable off-the-shelf debugger could be
found, we developed our own debugger, Gemini Lite,
to provide these capabilities for DEFINITY ONE.

2 The Search for a Debugger on
Windows NT

In order to understand the rationale behind Gemini
Lite’s design, it is important to understand the Win32
Debugging API and how this affects off-the-shelf
debuggers for Windows NT.

2.1 The Win32 Debugging API
Windows NT provides an API for developers to create
their own debugger [1]. Typically, a debugger attaches
to a running process by calling DebugActiveProcess()
with the target process id as an argument. This
registers the debugger with the operating system. The
debugger then calls WaitForDebugEvent() which
makes the calling thread of the debugger block until a
debugging event is sent to it by the operating system.
Windows initially sends events to the debugger to give
it handles to each thread in the process being debugged.
The debugger then receives events when threads in the
target process hit a breakpoint, generate an unhandled
exception, etc.[2]

The Win32 debugging API is similar to the ptrace()
system call interface used by some UNIX debuggers
such as GDB [3] (some versions of UNIX do
debugging through the /proc filesystem instead of
through ptrace(), and there is nothing similar in
Windows NT). To initiate a debug session, a UNIX
debugger can call ptrace with a PTRACE_ATTACH
request, which allows it to control the target process as
if it were its parent. This is analogous to NT’s
DebugActiveProcess() call. After the debugger has
attached to the process, it receives SIGCHLDs when
something happens to the target, or it can do a wait() or
waitpid() to receive notification of events from the
target. The wait() or waitpid() calls are analogous to
NT’s WaitForDebugEvent() calls.

The substantial difference between the Windows NT
and UNIX APIs is that a UNIX debugger can call
ptrace() with a PTRACE_DETACH request to
disconnect the debugger from the target. The target
continues to run after the debugger is disconnected, and

the parent-child relationship between the debugger and
the target is destroyed. Windows NT does not provide
a clean way to detach a target, i.e., there is no call to
undo a DebugActiveProcess() request. Furthermore,
once the process that has initiated a debugging session
exits, Windows NT kills the processes that it was
debugging [4]. Microsoft plans to address this issue in
a later release of Windows NT (in NT 6.0 or later) [5],
but for now there is no workaround.

2.2 Debuggers Investigated
We investigated several Microsoft debuggers for
Windows NT (WinDbg, Visual C++ IDE, and ntsd) [6]
[7][8] to determine if they could be used for DEFINITY
ONE. Each of these appears to use the Win32 API and
kills the debugged process when it exits. Since the
Microsoft provided debuggers could not satisfy our
requirement that they be able to cleanly detach, we
investigated commercially available debuggers such as
GDB, NuMega’s SoftICE [9], and Oasys MULTI [10].
These exhibited the same problem.

Many other debuggers have been built for
multithreaded applications on different operating
systems [11][12][13], and multi-process, non-intrusive
debuggers have also been built [14]. These debuggers
have all been built either by using the native debugger
API provided by the operating system or extending it to
meet the needs of the debugger. Building a debugger
(or adopting one of these debuggers) on Windows NT
using the debugging API is not acceptable for the
reasons discussed above, and since Windows NT is not
an open source operating system, it would not be
possible to extend it to support one of these debuggers.

GDB is perhaps the most common open-source
debugger available, and we considered adapting it.
Besides the fact that GDB uses the Win32 debugging
API, there were other reasons that we chose not to use
it. First, GDB can only debug a single process at a time
and is intrusive [15]. This behavior stems from the core
of GDB; modifying this would be, says the Cygnus
White Paper on GDB, “a daunting task because of its
complexities…”. Furthermore, our project used the
Microsoft Visual C++ 5.0 compiler, and the version of
GDB available during our development cycle only
supported COFF format symbolic information in the
executables. The Microsoft compiler only emits
CodeView symbolic information in executable files
(and DLLs).

Because no suitable off-the-shelf debugger could be
found, we developed Gemini Lite. Gemini Lite is a
general-purpose Windows NT debugger. It can be used
to debug any NT process (not just DEFINITY)
assuming the process is properly linked. Gemini Lite is

non-intrusive and does not use the Win32 debugging
API. It has the basic features of other debuggers, but its
architecture permits it to have unattended action lists
and to debug processes without killing them once it
exits.

3 Design of Gemini Lite

3.1 Overview
The Win32 API provides the basic mechanisms to
implement basic debugging features in Gemini Lite.
Table 1 shows which Win32 functions can be used to
implement the core features of the debugger [16].

Feature Win32 API Used
Read/Write
Memory,
 set/clear
breakpoints

ReadProcessMemory(),
WriteProcessMemory()

Read/Write
Registers,
control single
stepping

GetThreadContext(),
SetThreadContext()

Halt/Resume a
thread

SuspendThread(),
ResumeThread()

Determine
when a thread
hits a
breakpoint,
steps, or has
some other
exception

Structured Exception
Handling mechanisms

Table 1. Win32 support for debugger features

Win32 calls that refer to the target’s memory require a
handle to the target process, which can be obtained
from a call to OpenProcess(). Similarly, calls that refer
to threads (e.g., SuspendThread()), require a handle to
the target thread, which can only be obtained by that
thread (or the thread which created it) [17] because
there is no OpenThread() call in Windows NT 4.0
(Microsoft has added this to the Win32 API in
Windows 2000). Using structured exception handling
mechanisms for breakpoints presents a similar problem;
a process cannot change the exception mechanisms of
threads in other processes.

When DebugActiveProcess() is used to implement a
debugger, Windows NT sends the debugger the handles
to the desired threads. Without using this API, the only
way for the debugger to have access to the thread
handles is for it (or the part of it that actually controls
other processes) to be integrated into the application
code. Due to the size of the DEFINITY code base, it

was not feasible to change the application code to
accommodate the debugger. We used a client/server
approach to separate the portion of Gemini Lite that
interacts with the user from the portion that controls
processes, which must be somehow linked into the
application.

The first part of Gemini Lite, the debugger process, is
what the user runs to access the debugger. It acts like
DEFINITY’s Gemini host, accepting input from the
user and sending the input to the server to be parsed and
executed. The server part of the architecture, which is
the core of Gemini Lite, is a DLL that is linked with the
applications that can be debugged (for the rest of this
paper, “the DLL” refers to this). The DLL takes the
place of the Gemini agent and is responsible for parsing
and executing the commands sent by the debugger
process. The DLL must be linked with both the
debugger process and all the target processes.

To force the application processes to link with the DLL
without changing their code, they must be linked (with
the Visual C++ linker) using the –include <symbol>
directive and the appropriate export library for the
DLL. The –include directive places a reference to the
specified symbol (which is some globally exported
symbol in the DLL) into the executable, which forces
the DLL to be loaded when the process is run [18].
This limits the utility of the debugger somewhat, as it
can only debug processes that are linked with the DLL,
but for DEFINITY ONE this was an acceptable
constraint.

A general overview Gemini Lite’s architecture appears
in Figure 1. The figure illustrates that all processes
linked with the DLL share some common memory.
The contents of the shared memory are defined by the

Figure 1. Overview of Gemini Lite’s Architecture

Memory shared
between processes

Per-process DLL
variables

DLL local storage

DLL

User
Process

DLL; it contains exported functions as well as shared
data. The DLL defines another set of exported
variables; this set of variables has unique copies in each
of the debugged processes. The DLL also has non-
exported code and data that are not visible to them.

Windows NT forces each process linked with the DLL
to call the DllMain() function in the DLL when the
process and its threads are created and when they exit
[19]. The Gemini Lite DLL uses this property to obtain
handles to each debuggable thread (i.e., a thread in a
process linked with the DLL) by having the thread store
a handle to itself in the shared memory area of the DLL.
DllMain also has each thread set its unhandled
exception filter to a routine inside the DLL. This
exception filter is used to catch breakpoint and single
step exceptions, which would typically not be caught by
the application. All other exceptions that are caught by
this handler are sent back to Windows NT to resolve,
although they could just as easily be handled by the
debugger and reported to the user.

The debugger itself is just another user process that can
call routines inside the DLL that implement its
functions. These routines are exported to all processes,
not just the debugger, and this architecture makes it
possible for processes to call debugger routines when
they hit breakpoints, which will be discussed in detail
below.

3.2 Shared Memory in the DLL
The shared memory area of the DLL contains data that
must be shared between the debugger and the user
processes. The data structures must be statically
allocated at compile time because any memory
dynamically allocated by one process would not be in
the address space of other processes, including the
debugger. Furthermore, there is no guarantee that the
DLL will be mapped to the same address space in each
user process, so any traditional data structure that uses
pointers (e.g., linked lists or hash tables) is not suitable
for the DLL. Array-based hash tables, lists, and queue
template classes were defined to hold the shared data.

The data structures contained in the shared memory
area include:
1. Information about each process registered with the

DLL (e.g., pid and creation time)
2. Information about each thread registered (e.g.,

thread id, handle to the thread, state of the thread)
3. Information about each breakpoint set (e.g.,

process in which it’s set, address, commands to run
when hit)

4. A queue that contains messages generated from
functions in the DLL to be displayed by the
debugger.

These data structures are protected by mutexes to
ensure correctness.

The shared memory area also contains variables that
track whether the debugger is running. Since the
debugger is a user process, it also calls DllMain() when
it starts. DllMain() checks the name of each calling
process, and when it finds the name of the debugger
process (a predefined name), it notes that the debugger
is running. Another mechanism could also be used in
DllMain() to determine which user process is the
debugger. The DLL needs to know whether the
debugger is attached because certain status messages
(e.g., breakpoints being hit) are written to a queue in the
shared memory area by functions in the DLL. The
debugger has a thread that looks at this queue and
displays the messages to the user.

3.3 Process and Thread Registration in the
DLL

As mentioned before, Windows NT forces each process
and thread linked with the DLL to call DllMain() when
they are created. NT passes a parameter to DllMain()
that indicates the reason for the call. When new
processes start up, they call DllMain() one or more
times. A process’s first call to DllMain() has this
parameter set to DLL_PROCESS_ATTACH. This
notifies the DLL that the process (and its primary
thread) has attached to the DLL. Subsequent calls by
threads in the process to DllMain() set the parameter to
DLL_THREAD_ATTACH and inform the DLL that
additional threads in the process have been created.

When the Gemini Lite DLL’s DllMain() is called with a
DLL_PROCESS_ATTACH message, the DLL
determines whether the process is the debugger or an
application process. As mentioned above, if the process
is the debugger, the DLL stores its pid in shared
memory and sets a status variable in the DLL to reflect
that the debugger is active. For the primary thread (and
other threads) of user processes, the DLL creates an
object to represent the thread in its shared memory area.
The thread id and handle are stored in the object.
DllMain() then sets the thread’s unhandled exception
filter to point to a routine inside the DLL.

Processes and threads also notify the DLL when they
exit normally. When a thread exits, NT forces it to call
DllMain() with a reason of DLL_THREAD_DETACH.
Similarly, when a process exits, NT forces it to call
DllMain() with a reason of
DLL_PROCESS_DETACH. Note that the call with
DLL_THREAD_DETACH is not made for all threads
that are running when the process exits; only the
DLL_PROCESS_DETACH call is made. When the

DLL gets these calls, it frees the object and associated
data structures that were allocated for the thread (or
threads, if the process detached) including its
breakpoints.

In some circumstances (e.g., a call to
TerminateProcess() or TerminateThread()), it is
possible that processes and threads can be terminated
without calling DllMain(). When this happens, the
DLL does not know that the process or thread is gone,
so it cannot free the related data structures. Because the
tables holding the data are statically allocated and were
sized to accommodate the number of threads and
processes running in DEFINITY ONE, it is possible
that they may fill up with information about processes
and threads that no longer exist.

If the tables are full when the DLL attempts to register
a process, the DLL checks all registered threads to
make sure that they are still valid, and it frees up entries
that are no longer valid.

Because the debugger is just another user process, the
DLL can detect when it exits through its call to
DllMain(). In order to prevent any application
processes that have breakpoints set from stopping, the
DLL disables all breakpoints that may have been set in
other processes and it resumes execution of any threads
that may have been stopped when it detects that the
debugger exited.

3.4 Debugger Process
The Gemini Lite debugger process has two threads.
The main thread runs in a loop which prompts the user
for commands, reads the command line, and calls the
appropriate functions in the DLL to parse and execute
the command. The second thread repeatedly locks the
mutex protecting the message queue in the DLL shared
memory, removes and displays any messages found in
the queue, then releases the mutex. As a result, the user
is immediately informed of events such as breakpoints
being hit regardless of what he or she may be doing in
the debugger (typing commands or viewing output).

4 Implementation of Debugging Features

4.1 Symbolic Debugging
Debuggers like GDB typically read symbolic
information for the process they are debugging from the
executable file and build internal symbol tables for use
by the debugger. Gemini Lite does not directly read the
symbolic information for the processes and threads that
it debugs. Instead, it relies on the Win32 symbol
handling routines contained in IMAGEHLP.DLL [20].
These routines provide the capability to obtain an

address in a running process from the name of a global
symbol and vice-versa. The first time the user issues a
command for a thread in a process that takes an address
as a parameter, Gemini Lite calls SymInitialize() and
passes it the handle to the process to initialize the
symbol handler. It then loads the symbols for the
process by enumerating all its modules and calling
SymLoadModule() for each of them. Once the symbols
have been loaded, Gemini Lite uses
SymGetSymFromName() to translate global symbol
names into an address or SymGetSymFromAddress() to
translate an address into a global name.

In Windows NT 4.0, IMAGEHLP.DLL does not
provide facilities for translating a file name and line
number into an address and vice versa. Microsoft has
added the SymGetLineFromAddr() and
SymGetLineFromName() functions to the Win32 API
in Windows 2000 to accomplish this. In order to
perform this function in Windows NT 4.0, a program
would have to directly examine the CodeView
debugging information in the executables (or in
separate .DBG files). Time constraints only permitted
us to display file and line number information in
Gemini Lite’s disassembly routines. Other Gemini Lite
commands (such as for setting breakpoints) cannot
accept a file and line number in place of a text address.

Use of the IMAGEHLP.DLL symbol handling
functions requires that the DLLs and EXEs that make
up the processes being debugged are compiled with
debugging information. The debugging information
must be compiled into the objects, not placed in a
program database (PDB) file. However, it is usually
undesirable to ship production code without stripping
debugging information. To avoid this, we used the
rebase tool shipped with Visual C++ to strip the
debugging information from the compiled objects and
place it in separate .DBG files. When the application
needs to be debugged, the .DBG files are copied to the
target machine, and then the _NT_SYMBOL_PATH
environment variable is set before running Gemini Lite.
This environment variable tells the IMAGEHLP.DLL
symbol handling routines where to find the symbols.
We ship the symbol files (in an encrypted form) with
the DEFINITY ONE system. When support engineers
need to debug, they use Windows RAS or a TCP/IP
network to establish a connection to the system. They
then decrypt the symbol files and run the debugger in a
window directly on the target system.

4.2 Stopping and Restarting Execution
The debugger can force threads to halt execution by
calling SuspendThread() with the handle to the thread.
The debugger obtains the handle from the shared
memory area in the DLL. Before using the handle, the

debugger must call DuplicateHandle() to obtain a
handle in its context; the handle stored in the DLL is a
handle in the context of the process that registered with
the DLL. To resume execution of a thread, the
debugger calls ResumeThread(), passing it the handle to
the thread.

4.3 Reading and Writing Memory
The debugger commands that need to read or write
memory do so by calling ReadProcessMemory() and
WriteProcessMemory(). The debugger must have
permission to read the memory of the processes it’s
debugging. When the debugger is debugging processes
started by the same user, this is not a problem. For
DEFINITY ONE, we require that the debugger can be
started only by a privileged user. Some processes we
need to debug are started by a system service.
Ordinarily, a user process does not have permission to
access a system service. We modified the default
discretionary access control lists (DACLs) of our
system level processes to give the account that can run
the debugger full access to them.

4.4 Reading and Writing Registers
Registers in a thread can only be read by reading the
thread context. Debugger commands that need to read
registers first use SuspendThread() to stop the thread
unless it is already halted. They then call
GetThreadContext() to retrieve the context of the
thread, which includes the contents of the registers.
After the context is obtained, ResumeThread() is called
if the thread needs to continue execution.

To write to a register, the context image returned by
GetThreadContext() is modified to contain the updated
register value, then SetThreadContext() is used to write
the modified context back to the thread.

4.5 Breakpoints
Like most debuggers for software running on x86
processors, Gemini Lite sets breakpoints in a process by
replacing the first byte of the instruction at the
breakpoint address with 0xcc (INT3). The original
instruction byte is saved in the record for the breakpoint
in the shared memory area of the DLL so that it can be
restored later. Because all threads in a process have the
same address space, a breakpoint set in a process will
affect all the threads in the process.

Figure 2 illustrates the sequence of events that occurs
when a thread hits a breakpoint. First, the thread raises
a breakpoint exception when it executes the instruction
at the breakpoint address. The system stores the
thread’s context in a context record (the value of the
EIP register in the record is set to the address where the
thread encountered the exception) and forces the thread

to call the appropriate exception filter. If no other
exception filter handles breakpoint exceptions (which is
a requirement for processes linked with the DLL), then
the exception filter in the DLL (which was set as the
unhandled exception for the process when it attached to
the DLL) will be called. The exception filter receives a
pointer to the context record as well as a pointer to an
exception record, which contains the exception code,
the address at which the exception occurred, and other
information.

In the exception filter in the DLL, the thread first
examines the exception record to determine the cause of
the exception. If the type is not
EXCEPTION_BREAKPOINT or
EXCEPTION_SINGLE_STEP, then the exception filter
will return EXCEPTION_CONTINUE_SEARCH,
which will force NT to handle the exception. This will
either terminate the process or invoke the system
debugger, depending on the system’s registry settings.

If the exception type is EXCEPTION_BREAKPOINT,
then the thread checks the list of breakpoints in shared
memory of the DLL to determine if a breakpoint was
set at the exception address. If no breakpoint is found,
there is no way for the thread to continue, so the filter
will return EXCEPTION_CONTINUE_SEARCH.

If a breakpoint is found, the thread determines if it
should halt. Breakpoints may have a threshold stored in
the object representing them that specifies the number
of times the breakpoint is to be hit before a thread will
stop. Also, the thread will only halt if the debugger is
running, as indicated by the variable that the debugger
sets when it registers with the DLL.

If the thread determines that it must halt, it creates a
message notifying the user that the breakpoint has been
hit, and it puts it in the message queue for the debugger.
It sets a variable in its record in the DLL’s shared
memory indicating that it is suspended due to the
breakpoint, and then it suspends itself by calling
SuspendThread() with its thread handle as a parameter.
The debugger process that the user is running,
meanwhile, contains two threads. One reads and
executes commands from the user, and the other checks
the message queue from the DLL. After the target
thread puts the message into the queue indicating that it
hit the breakpoint, this thread of the debugger displays
it to the user.

When the user decides to resume execution of the
thread, he or she gives the appropriate command to the
debugger, which calls a function in the DLL. This
function examines the record for the thread in shared
memory. If the state of the thread indicates that it has

Figure 2. View of execution when a thread hits a breakpoint.

T
I
M
E

Executing User Code

Hit Breakpoint -- INT 3
causes exception.

Find object for breakpoint at exception
address.
Determine that process should stop.
Put a message in the queue for the debugger
Call SupendThread(GetCurrentThread())

Parse command (run thread)
Find object for thread containing handle to
thread.
See that thread is halted.
Duplicate handle into this process (get
hThread)
ResumeThread(hThread)

Execute the original
instruction at the
breakpoint address.
EFLAGS trap flag causes
single step exception

Determine thread hit a breakpoint and single
stepped.
Restore breakpoint.

Continue Executing Normally

Generate Breakpoint
Exception.
Save context in exception
record.
Call Exception Filter.

Return from Exception Handler

Generate Single Step
Exception.
Save context in exception
record
Call Exception Filter

USER PROCESS AND
DEBUGGER

EXECUTION IN THE
DLL

Restore context from modified
saved context in exception record
Return from exception handler

EXECUTION IN
USER PROCESS

EXECUTION IN
DEBUGGER

PROCESS

Display message that
breakpoint has been hit.
Accept command from
user (“run thread”)
Call parsing command
in the DLL

BREAKPOINT SCENARIO

Remove breakpoint instruction and restore
saved instruction from breakpoint object.
Set Trap Flag in saved context image of the
EFLAGS register

been halted at a breakpoint, then the function gets the
handle to the thread that is stored in shared memory and
passes it to ResumeThread(). This wakes up the thread
that hit the breakpoint.

When the thread wakes up it is still in the exception
handler, and the breakpoint instruction is still at the
breakpoint address. The thread replaces the breakpoint
instruction with the original instruction, sets status
variables in its record in shared memory to indicate that
it has been resumed after a breakpoint, and sets the
Trap Flag in the image of the EFLAGS register stored
in the saved thread context that was passed to the
exception handler. It then returns
EXCEPTION_CONTINUE_EXECUTION. This
forces NT to restore its context from the saved image
(with the modified EFLAGS register) and continue
executing where the exception occurred.

The thread executes the real instruction at the
breakpoint address, and then, because the Trap Flag in
the EFLAGS register is set, it generates a single step
exception. Again, Windows NT forces the thread to
call the unhandled exception filter. In the exception
filter, the thread sees that the exception code is
EXCEPTION_SINGLE_STEP. It checks the status
variables in shared memory and figures out that it has
single stepped after the previously hit breakpoint. The
thread then saves the instruction at the breakpoint
address, reinserts the breakpoint, and again the
exception filter returns
EXCEPTION_CONTINUE_EXECUTION, which lets
the thread continue executing at the instruction after the
breakpoint. The thread then continues executing until
some other event occurs.

Gemini Lite’s handling of breakpoints differs from the
traditional implementation. In a debugger written using
the Win32 API, for example, when a thread hit a
breakpoint, the system would suspend it. A debugger
doing a WaitForDebugEvent() would be woken up, and
it would decide whether to keep the process halted or
restart it with a call to ContinueDebugEvent() (after
replacing the breakpoint instruction with the original
instruction and setting EFLAGS appropriately). In
Gemini Lite, the thread decides itself whether it should
be suspended, and it suspends itself. In both cases, the
debugger causes the thread to resume execution. In the
Win32 case, the thread resumes where it was stopped
by the system, in the application code. In Gemini Lite,
the thread resumes execution in the exception handler.
When it returns from the handler, the system causes it
to resume executing where the exception was raised.

4.6 Action Lists
An action list is a list of debugger commands to be
executed when a breakpoint is hit. When the Gemini
Lite user sets a breakpoint in a thread, he or she may
also supply the action list. The action list is stored with
the breakpoint information in the shared memory area
in the DLL. In the exception filter, if the thread
determines that a breakpoint has an action list, instead
of calling SuspendThread(), it reads the list of action
list commands from shared memory and passes them to
the same function in the DLL that the debugger
executable runs to execute commands that are input by
the user. Since all the functions of Gemini Lite are also
in the DLL, they can be executed just as if the user
were giving them on the command line. The output
from the commands is directed to a large circular
buffer, also in shared memory. The output will stay in
the buffer until the Gemini Lite user clears it. Note that
if a breakpoint has an action list, Gemini Lite does not
have to be running in order for the action list commands
to execute, because the thread automatically resumes
execution after the action list commands are run. This
makes action lists very useful for unattended
debugging. The user can set up the breakpoints with
action list commands to dump data of interest, exit
Gemini Lite, and come back later to examine the data.

The user can also set a flag in the DLL’s shared
memory area that the thread will check after it executes
the action list commands. If the flag is set and the
debugger is running, the thread will generate a message
for the debugger that tells the user that the breakpoint
was hit. This feature can be used in combination with
an empty action list to let the user know that the thread
executed code at a particular instruction without having
to halt the thread.

4.7 Single-Stepping
When a thread is stopped, either after being halted by
the user or by hitting a breakpoint, the user may wish to
step through the execution of the program being
debugged. Because Gemini Lite relies only on the
IMAGEHLP.DLL symbol handler to read debugging
information, it does not have access to the information
that links an address to the program source file and line
number. Consequently, Gemini Lite can only step
through a program any number of assembly-language
instructions at a time.

The implementation of single stepping was seen above
in the discussion of breakpoints. When the target
thread is halted, the user’s single step command sets the
Trap Flag in the EFLAGS register (by getting the
thread context, modifying, and writing it back, if the
thread is not halted after a breakpoint, or by modifying

the saved context in the exception record, if it is), and
resumes execution of the thread (by calling
ResumeThread()). The user can specify the number of
instructions to single-step; this number is stored in
shared memory in the DLL.

After resuming execution, the target thread executes
one instruction and generates an exception, sending it
into the exception filter in the DLL. If the thread has
stepped the desired number of instructions, it puts a
message in the queue for the debugger to inform the
user that it halted, then it calls SuspendThread() on
itself. Otherwise, the thread decrements the step count,
returns from the exception filter, and continues
stepping.

After the thread is finally halted, the user can resume
execution of the thread or single-step it again. As with
breakpoints, when the thread is in the exception filter it
checks to see if Gemini Lite is running before calling
SuspendThread(). If the debugger is not present, the
thread will not stop. This avoids the situation where a
user requests a single step of a large number of
instructions, but then exits the debugger before the
stepping is completed.

5 Related Tools
Since the IMAGEHLP.DLL routines only locate global
symbol names, we needed a set of tools to use with
Gemini Lite which could show us the layout of
structures in memory, addresses of individual array
elements, and addresses of global functions and
variables. In the UNIX environment, these functions
are provided by tools like objdump (from GNU) and
nm. On Windows NT, the Microsoft provided tools to
do these things (such as dumpbin) are part of Visual
C++ and cannot be run without it. We developed a
standalone set of tools to do these things. The
development was difficult, in part, because Microsoft’s
compilers emit symbolic information in a proprietary
format (CodeView), and Microsoft does not provide
any libraries for manipulating this information. We
generated our own set of routines from Microsoft’s
symbolic debugging information specification [21].

6 Conclusion
Gemini Lite was used during the development of
DEFINITY ONE to solve some difficult problems. In
one case, an uninitialized variable was causing incorrect
information to be displayed on DEFINITY’s
administration terminal. We set breakpoints with
empty action lists both where we knew the code had
executed and where we thought it should be executing.
When these breakpoints are hit, Gemini Lite puts a
message into its output buffer. By looking at the buffer,

we were able to see where the code failed to branch as
we thought it should. At that point, we used an action
list to display a variable that determined where the code
branched. After seeing that the value in this variable
could not have been set by the code that had executed, a
close examination of the code showed that the variable
had not been initialized.

Our experience with Gemini Lite suggests some
enhancements. First, Gemini Lite could be enhanced to
read CodeView information from the processes it’s
debugging and maintain its own symbol table. With
this information, Gemini Lite would have a knowledge
of variable type information, mapping of source files
and line numbers to addresses, locations and names of
local variables in functions, and more information that
would enable it to be a source level debugger instead of
an assembly level debugger. A networked client-server
approach to Gemini Lite has also been proposed which
would eliminate the need to keep the symbol files
(.DBG files) on the system being debugged.

7 Acknowledgements
I would like to thank Bhavesh Davda, Bill Lyford, and
David Walters for their assistance during the
development of Gemini Lite.

8 References
[1] “Platform SDK: Debugging and Error Handling:

Debugging Reference: Debugging Functions”,
MSDN Library, Microsoft Corp., October, 1999.

[2] Kath, Randy. “The Win32 Debugging Application
Programming Interface”, Microsoft Corp.,
November 5, 1992.

[3] Stallman, Richard and Pesch, Roland. Debugging
with GDB, the GNU Source-Level Debugger, Fifth
Edition, Free Software Foundation, April, 1998.

[4] “PRB: Debugee Exits When the Debugger Exits,
ID Q164205”, Microsoft Knowledge Base,
Microsoft Corp., February 28, 1997.

[5] Private Conversations with Microsoft Premier
Support Representatives.

[6] “Platform SDK: Tools: Symbolic Debuggers”,
MSDN Library, Microsoft Corp., October, 1999.

[7] “Platform SDK: Tools: WinDbg”, MSDN Library,
Microsoft Corp., October, 1999.

[8] “Visual C++ User’s Guide: Debugger”, MSDN
Library, Microsoft Corp., October, 1999.

[9] SoftICE is a trademark of NuMega Technologies,
Inc.

[10] MULTI is a trademark of Green Hills Software and
XEL, Inc.

[11] Buhr, Peter, Karsten, Martin, and Shih, Jun.
“KDB: A Multi-threaded Debugger for Multi-
threaded Applications”. Proceedings of the

SIGMETRICS Symposium on Parallel and
Distributed Tools, ACM, 1996, pp. 80 – 87.

[12] Caswell, Deborah, and Black, David.
“Implementing a Mach Debugger for
Multithreaded Applications”. Proceedings of the
Winter 1990 USENIX Conference.

[13] Redell, David. “Experience with Topaz
TeleDebugging”. Digital Equipment Corporation,
Systems Research Center.

[14] Himelstein, Mark and Rowell, Peter. “Multi-
process Debugging”. USENIX Conference
Proceedings, Summer, 1985.

[15] Shebs, Stan. “GDB: An Open Source Debugger
for Embedded Development”, Cygnus Support
White Paper available at
http://www.redhat.com/support/wpapers/cygnus_g
db.

[16] See the appropriate page for each function in
MSDN Library, Microsoft Corp., October, 1999.

[17] “Platform SDK: DLLs, Processes, and Threads:
Thread Handles and Identifiers”, MSDN Library,
Microsoft Corp., October, 1999.

[18] “Visual C++ Programmer’s Guide: Compiler
Reference”, MSDN Library, Microsoft Corp.,
October, 1999.

[19] Sarma, Debabrata. “DLLs for Beginners”,
Microsoft Developer Support, November, 1996.

[20] Pietrek, Matt. “Under the Hood”, Microsoft
Systems Journal, May, 1997.

[21] Smith, Steve, and Spalding, Dan, et al. “Visual
C++ Symbolic Debug Information Specification,
Revision 5, 32-Bit only September, 30,1996”,
MSDN Library, Microsoft Corp., October, 1999.

