
May 17, 2000 Page 1

-
d
p

of
e
i-

ut
-
ut
n
ny
t
a-
be
ot
ut
d

-
m
-

e
d
lso
se
to
a-
s

m
ion
s
t-
)
ror
he
r

An Empirical Study of the Robustness of Windows NT Applications Using
Random Testing

Abstract

We report on the third in a series of studies on the reliability of
application programs in the face of random input. In 1990 and
1995, we studied the reliability of UNIX application programs,
both command line and X-Window based (GUI). In this study,
we apply our testing techniques to applications running on the
Windows NT operating system. Our testing is simple black-box
random input testing; by any measure, it is a crude technique,
but it seems to be effective at locating bugs in real programs.

We tested over 30 GUI-based applications by subjecting them
to two kinds of random input: (1) streams of valid keyboard and
mouse events and (2) streams of random Win32 messages. We
have built a tool that helps automate the testing of Windows NT
applications. With a few simple parameters, any application
can be tested.

Using our random testing techniques, our previous UNIX-
based studies showed that we could crash a wide variety of
command-line and X-window based applications on several
UNIX platforms. The test results are similar for NT-based
applications. When subjected to random valid input that could
be produced by using the mouse and keyboard, we crashed 21%
of applications that we tested and hung an additional 24% of
applications. When subjected to raw random Win32 messages,
we crashed or hung all the applications that we tested. We
report which applications failed under which tests, and provide
some analysis of the failures.

1 INTRODUCTION

We report on the third in a series of studies on the reli-
ability of application programs in the face of random
input. In 1990 and 1995, we studied the reliability of
UNIX command line and X-Window based (GUI) appli-
cation programs[8,9]. In this study, we apply our tech-
niques to applications running on the Windows NT
operating system. Our testing, calledfuzz testing, uses
simple black-box random input; no knowledge of the
application is used in generating the random input.

Our 1990 study evaluated the reliability of standard
UNIX command line utilities. It showed that 25-33% of
such applications crashed or hung when reading random
input. The 1995 study evaluated a larger collection of

applications than the first study, including some com
mon X-Window applications. This newer study foun
failure rates similar to the original study. Specifically, u
to 40% of standard command line UNIX utilities
crashed or hung when given random input and 25%
the X-Window applications tested failed to deal with th
random input. In our current (2000) study, we find sim
lar results for applications running on Windows NT.

Our measure of reliability is a primitive and simple
one. A program passes the test if it responds to the inp
and is able to exit normally; it fails if it crashes (termi
nated abnormally) or hangs (stops responding to inp
within a reasonable length of time). The applicatio
does not have to respond sensibly or according to a
formal specification. While the criterion is crude, i
offers a mechanism that is easy to apply to any applic
tion, and any cause of a crash or hang should not
ignored in any program. Simple fuzz testing does n
replace more extensive formal testing procedures. B
curiously, our simple testing technique seems to fin
bugs that are not found by other techniques.

Our 1995 study of X-Window applications pro-
vided the direction for the current study. To test X-Win
dow applications, we interposed our testing progra
between the application (client) and the X-window dis
play server. This allowed us to have full control of th
input to any application program. We were able to sen
completely random messages to the application and a
to send random streams of valid keyboard and mou
events. In our current Windows NT study, we are able
accomplish the same level of input control of an applic
tion by using the Windows NT event mechanism
(described in Section 2).

Subjecting an application to streams of rando
valid keyboard and mouse events tests the applicat
under conditions that it should definitely tolerate, a
they could occur in normal use of the software. Subjec
ing an application to completely random (often invalid
input messages is a test of the general strength of er
checking. This might be considered an evaluation of t
software engineering discipline, with respect to erro
handling, used in producing the application.

Justin E. Forrester Barton P. Miller
{jforrest,bart}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 2

g
-

ca-
is
s
of

m
is-
the
e

en-

a-
er
e
re
e
n-

-
rt-
m
o
ta
nd
ms

m-
.

-
f
or
ed
m
lly

he
is

nts
the

in
is
f
in-

-
er

o
e

Five years have passed since our last study, during
which time Windows-based applications have clearly
come to dominate the desktop environment. Windows
NT (and now Windows 2000) offers the full power of a
modern operating system, including virtual memory,
processes, file protection, and networking. We felt it was
time to do a comparable study of the reliability of appli-
cations in this environment.

Our current study has produced several main
results:

❏ 21% of the applications that we tested on NT 4.0
crashedwhen presented with random, valid key-
board and mouse events. Test results for applica-
tions run on NT 5.0 (Windows 2000) were similar.

❏ An additional 24% of the applications that we
testedhungwhen presented with random valid key-
board and mouse events. Tests results for applica-
tions run on NT 5.0 (Windows 2000) were similar.

❏ Up to 100% of the applications that we tested failed
(crashed or hung) when presented with completely
random input streams consisting of random Win32
messages.

❏ We noted (as a result of our completely random
input testing) thatanyapplication running on Win-
dows platforms is vulnerable to random input
streams generated by any other application running
on the same system. This appears to be a flaw in the
Win32 message interface.

❏ Our analysis of the two applications for which we
have source code shows that there appears to be a
common careless programming idiom: receiving a
Win32 message and unsafely using a pointer or
handle contained in the message.

The results of our study are significant for several
reasons. First, reliability is the foundation of security[4];
our results offer an informal measure of the reliability of
commonly used software. Second, we expose several
bugs that could be examined with other more rigorous
testing and debugging techniques, potentially enhancing
software producers’ ability to ship bug free software.
Third, they expose the vulnerability of applications that
use the Windows interfaces. Finally, our results form a
quantitative starting point from which to judge the rela-
tive improvement in software robustness.

In the 1990 and 1995 studies, we had access to the
source code of a large percentage of the programs that
we tested, including applications running on several
vendors’ platforms and GNU and Linux applications.
As a result, in addition to causing the programs to hang
or crash, we were able to debug most applications to
find the cause of the crash. These causes were then cate-
gorized and reported. These results were also passed to

the software vendors/authors in the form of specific bu
reports. In the Windows environment, we have only lim
ited access (thus far) to the source code of the appli
tions. As a result, we have been able to perform th
analysis on only two applications: emacs, which ha
public source code, and the open source version
Netscape Communicator (Mozilla).

Section 2 describes the details of how we perfor
random testing on Windows NT systems. Section 3 d
cusses experimental method and Section 4 presents
results from those experiments. Section 5 offers som
analysis of the results and presents associated comm
tary. Related work is discussed in Section 6.

2 RANDOM TESTING ON THE WINDOWS NT
PLATFORM

Our goal in using random testing is to stress the applic
tion program. This testing required us to simulate us
input in the Windows NT environment. We first describ
the components of the kernel and application that a
involved with processing user input. Next, we describ
how application programs can be tested in this enviro
ment.

In the 1995 study of X-Window applications, ran
dom user input was delivered to applications by inse
ing random input in the regular communication strea
between the X-Window server and the application. Tw
types of random input were used: (1) random da
streams and (2) random streams of valid keyboard a
mouse events. The testing using random data strea
sent completely random data (not necessarily confor
ing to the window system protocol) to an application
While this kind of input is unlikely under normal operat
ing conditions, it provided some insight into the level o
testing and robustness of an application. It is crucial f
a properly constructed program to check values obtain
from system calls and library routines. The rando
valid keyboard and mouse event tests are essentia
testing an application as though a monkey were at t
keyboard and mouse. Any user could generate th
input, and any failure in these circumstances represe
a bug that can be encountered during normal use of
application.

We used the same basic principles and categories
the Windows NT environment, but the architecture
slightly different. Figure 1 provides a simplified view o
the components used to support user input in the W
dows NT environment[10,11,12].

We use an example to explain the role of each com
ponent in Figure 1. Consider the case where a us
clicks on a link in a web browser. This action sets int
motion the Windows NT user input architecture. Th
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 3

-
m

ted
ate
p
ss-
ack

e
ge
e

er
e

ut-
at

st
m
ils
nt

oke
the
es,
mouse click first generates a processor interrupt. The
interrupt is handled by the I/O System in the base of the
Windows NT kernel. The I/O System hands the mouse
interrupt to the mouse device driver. The device driver
then computes the parameters of the mouse click, such
as which mouse button has been clicked, and adds an
event to the System Event Queue (the event queue of the
Window Manager) by calling themouse_event func-
tion. At this point, the device driver’s work is complete
and the interrupt has been successfully handled.

After being placed in the System Event Queue, the
mouse event awaits processing by the kernel’s Raw
Input Thread (RIT). The RIT first converts the raw sys-
tem event to a Win32 message. A Win32 message is the
generic message structure that is used to provide appli-
cations with input. The RIT next delivers the newly cre-
ated Win32 message to the event queue associated with
the window. In the case of the mouse click, the RIT will
create a Win32 message with the
WM_LMOUSEBUTTONDOWNidentifier and current mouse
coordinates, and then determine that the target window
for the message is the web browser. Once the RIT has
determined that the web browser window should receive
this message, it will call thePostMessage function.
This function will place the new Win32 message in the
message queue belonging to the application thread that
created the browser window.

At this point, the application can receive and pro
cess the message. The Win32 Application Progra
Interface (API) provides theGetMessage function for
applications to retrieve messages that have been pos
to their message queues. Application threads that cre
windows generally enter a “message loop”. This loo
usually retrieves a message, does preliminary proce
ing, and dispatches the message to a registered callb
function (sometimes called awindow procedure) that is
defined to process input for a specific window. In th
case of the web browser example, the Win32 messa
concerning the mouse click would be retrieved by th
application via a call toGetMessage and then dis-
patched to the window procedure for the web brows
window. The window procedure would then examin
the parameters of theWM_LMOUSEBUTTONDOWNmessage
to determine that the user had clicked the left mouse b
ton at a given set of coordinates in the window and th
the click had occurred over the web link.

Given the above architecture, it is possible to te
applications using both random events and rando
Win32 messages. Testing with random events enta
inserting random system events into the system eve
queue. Random system events simulate actual keystr
or mouse events. They are added to the system via
same mechanism that the related device driver us

Figure 1: Windows NT Architectural Components for User Input

Windows NT Kernel Mode

Keyboard/Mouse

I/O System

Device Driver

Window Manager (Win32 USER)

Raw Input Thread (RIT)

system
event System Event Queue

Application Program

Application Thread

Win32
message Thread Message Queue
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 4

est

ata

s.
n-
s
in
of
eb
ili-
nts,
o
s,

ed
r-
e
ws
a-
ed
d-
namely the mouse_event and keybd_event func-
tions.

The second random testing mechanism involves
sending random Win32 messages to an application.
Random Win32 messages combine random but valid
message types with completely random contents
(parameters). Delivering these messages is possible by
using the Win32 API functionPostMessage . The
PostMessage function delivers a Win32 message to a
message queue corresponding to a selected window and
returns. Note that there is similar function toPostMes-

sage , calledSendMessage , that delivers a Win32 mes-
sage and waits for the message to be processed fully
before returning. Win32 messages are of a fixed size and
format. These messages have three fields, a message ID
field and two integer parameters. Our testing produced
random values in each of these fields, constraining the
first field (message ID) to the range of valid message
ID’s.

Figure 2 shows where each random testing mecha-
nism fits into the Windows NT user input architecture.

Notice in Figure 2 that under both testing condi-
tions, the target application is unable to distinguish mes-
sages sent by our testing mechanisms from those
actually sent by the system. This distinction is essential
to create an authentic test environment.

3 EXPERIMENTAL METHOD

We describe the applications that we tested, the t
environment, our new testing tool (calledfuzz), and the
tests that we performed. We then discuss how the d
was collected and analyzed.

3.1 Applications and Platform

We selected a group of over 30 application program
While we tried to select applications that were represe
tative of a variety of computing tasks, the selection wa
also influenced by what software was commonly used
the Computer Sciences Department at the University
Wisconsin. The software includes word processors, W
browsers, presentation graphics editors, network ut
ties, spread sheets, software development environme
and others. In addition to functional variety, we als
strove to test applications from a variety of vendor
including both commercial and free software.

The operating system on which we ran and test
the applications was Windows NT 4.0 (build 1381, se
vice pack 5). To insure that our results were timely, w
tested a subset of the applications on the new Windo
2000 system (version 5.00.2195). For the 14 applic
tions that we re-tested on Windows 2000, we obtain
similar results to those tested under NT 4.0. The har

Figure 2: Insertion of Random Input

Windows NT Kernel Mode

Keyboard/Mouse

I/O System

Device Driver

Window Manager (Win32 USER)

Raw Input Thread (RIT)

system
event System Event Queue

Application Program

Application Thread

Win32
message Thread Message Queue

Random System
Events

(for random valid
keyboard & mouse

events)

Random Win32
Messages

(for completely
random messages)
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 5

he

he

he

he
se

ed
t
it
or
er-
t
re
for
m

lts
of
e

ee
he
a-
the
e
te-
h

s,
for

ts
b-
n

e-
e
sts

e
th
2
ran-
to

ude
ar-
ware platform used for testing was a collection of stan-
dard Intel Pentium II PCs.

3.2 The Fuzz Testing Tool

The mechanism we used for testing applications was a
new tool, calledfuzz, that we built for applications run-
ning on the Windows NT platform. Fuzz produces
repeatable sequences of random input and delivers them
as input to running applications via the mechanisms
described in Section 2. Its basic operation is as follows:

1. Obtain the process ID of the application to be tested
(either by launching the application itself or by an
explicit command line parameter).

2. Determine the main window of the target applica-
tion along with its desktop placement coordinates.

3. Using one ofSendMessage , PostMessage , or
keybd_event andmouse_event , deliver random
input to the running application.

Fuzz is invoked from a command line; it does not
use a GUI so that our interactions with the tool do no
interfere with the testing of the applications. The first
version of our Windows NT fuzz tool had a GUI inter-
face but the use of the GUI for the testing tool interfered
with the testing of the applications. As a result, we
changed fuzz to operate from a command line. The fuzz
command has the following format:

fuzz [-ws] [-wp] [-v] [-i pid] [-n
#msgs] [-c] [-l] [-e seed] [-a appl cmd
line]

Where -ws is random Win32 messages usingSend-

Message , -wp is random Win32 messages usingPost-

Message , and-v is random valid mouse and keyboard
events. One of these three options must be specified.

The -i option is used to start testing an already-
running application with the specified process ID, and-

a tells fuzz to launch the application itself. The-n
option controls the maximum number of messages that
will be sent to the application, and-e allows the seed
for the random number generator to be set.

The -l and -c options provide finer control of the
SendMessage and PostMessage tests, but were not
used in the tests that we report in this paper. Null param-
eters can be included in the tests with-l and
WM_COMMANDmessages (control activation messages
such as button clicks) can be included with-c .

3.3 The Tests

Our tests were divided into three categories according to
the different input techniques described in Section 2. As
such, the application underwent a battery of random
tests that included the following:

• 500,000 random Win32 messages sent via t
SendMessage API call,

• 500,000 random Win32 messages sent via t
PostMessage API call, and

• 25,000 random system events introduced via t
mouse_event andkeybd_event API calls.

The first two cases use completely random input and t
third case uses streams of valid keyboard and mou
events.

The quantity of messages to send was determin
during preliminary testing. During that testing, i
appeared that if the application was going to fail at all,
would do so within the above number of messages
events. Each of the three tests detailed above was p
formed with two distinct sequences of random inpu
(with different random seeds), and three test trials we
conduced for each application and random sequence,
a total of 18 runs for each application. The same rando
input streams were used for each application.

4 RESULTS

We first describe the basic success and failure resu
observed during our tests. We then provide analysis
the cause of failures for two applications for which w
have source code.

4.1 Quantitative Results

The outcome of each test was classified in one of thr
categories: the application crashed completely, t
application hung (stopped responding), or the applic
tion processed the input and we were able to close
application via normal application mechanisms. Sinc
the categories are simple and few, we were able to ca
gorize the success or failure of an application throug
simple inspection. In addition to the quantitative result
we report on diagnosis of the causes of the crashes
the two applications for which we have source code.

Figure 3 summarizes the results of the experimen
for Windows NT 4.0 and Figure 4 has results for a su
set of the applications tested on Windows 2000. If a
application failed on any of the runs in a particular cat
gory (column), the result is listed in the table. If th
application neither crashed nor hung, it passed the te
(and has no mark in the corresponding column).

The overall results of the tests show that a larg
number of applications failed to deal reasonably wi
random input. Overall, the failure rates for the Win3
message tests were much greater than those for the
dom valid keyboard and mouse event tests. This was
be expected, since several Win32 message types incl
pointers as parameters, which the applications app
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 6

he

nt
m
of
ently de-reference blindly. The NT 4.0 tests using the
SendMessage API function produced a crash rate of
over 72%, 9% of the applications hung, and a scant 18%
successfully dealt with the random input. The tests using
the PostMessage API function produced a slightly
higher crash rate of 90% and a hang rate of 6%. Only

one application was able to successfully withstand t
PostMessage test.

The random valid keyboard and mouse eve
results, while somewhat improved over the rando
Win32 message test, produced a significant number

Application Vendor SendMessage PostMessage
Random Valid

Events

Access 97 Microsoft ● ● ❍

Access 2000 Microsoft ● ● ❍

Acrobat Reader 4.0 Adobe Systems ● ●

Calculator 4.0 Microsoft ●

CD-Player 4.0 Microsoft ● ●

Codewarrior Pro 3.3 Metrowerks ● ● ●

Command AntiVirus 4.54 Command Software Systems ● ●

Eudora Pro 3.0.5 Qualcomm ● ● ❍

Excel 97 Microsoft ● ●

Excel 2000 Microsoft ● ●

FrameMaker 5.5 Adobe Systems ●

FreeCell 4.0 Microsoft ● ●

Ghostscript 5.50 Aladdin Enterprises ● ●

Ghostview 2.7 Ghostgum Software Pty ● ●

GNU Emacs 20.3.1 Free Software Foundation ● ●

Internet Explorer 4.0 Microsoft ● ● ●

Internet Explorer 5.0 Microsoft ● ●

Java Workshop 2.0a Sun Microsystems ● ❍

Netscape Communicator 4.7 Netscape Communications ● ● ●

NotePad 4.0 Microsoft ● ●

Paint 4.0 Microsoft ● ●

Paint Shop Pro 5.03 Jasc Software ❍

PowerPoint 97 Microsoft ❍ ❍ ❍

PowerPoint 2000 Microsoft ❍ ❍

Secure CRT 2.4 Van Dyke Technologies ● ● ❍

Solitaire 4.0 Microsoft ●

Telnet 5 for Windows MIT Kerberos Group ●

Visual C++ 6.0 Microsoft ● ● ●

Winamp 2.5c Nullsoft ❍ ●

Word 97 Microsoft ● ● ●

Word 2000 Microsoft ● ● ●

WordPad 4.0 Microsoft ● ● ●

WS_FTP LE 4.50 Ipswitch ● ● ❍

Percent Crashed 72.7% 90.9% 21.2%

Percent Hung 9.0% 6.0% 24.2%

Total Percent Failed 81.7% 96.9% 45.4%

Figure 3: Summary of Windows NT 4.0 Test Results
● = Crash,❍ = Hang.

Note that if an application both crashed and hung, only the crash is reported.
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 7

d

nd
ess
y
ch
the
s
his
crashes. Fully 21% of the applications crashed and 24%
hung, leaving only 55% of applications that were able to
successfully deal with the random events. This result is
especially troublesome because these random events
could be introduced by any user of a Windows NT sys-
tem using only the mouse and keyboard.

The Windows 2000 tests have similar results to
those performed on NT 4.0. We had not expected to see
a significant difference between the two platforms, and
these results confirm this expectation.

4.2 Causes of Crashes

While source code was not available to us for most
applications, we did have access to the source code of
two applications: the GNU Emacs text editor and the
open source version of Netscape Communicator
(Mozilla). We were able to examine both applications to
determine the cause of the crashes that occurred during
testing.

Emacs Crash Analysis

We examined the emacs application after it crashed
from the random Win32 messages. The cause of the
crash was simple: casting a parameter of the Win32
message to a pointer to a structure and then trying to de-
reference the pointer to access a field of the structure. In

the file w32fns.c , the message handler
(w32_wnd_proc) is a standard Win32 callback func-
tion. This callback function tries to de-reference its thir
parameter (lparam); note that there is no error checking
or exception handling to protect this de-reference.

LRESULT CALLBACK
w32_wnd_proc (hwnd, msg, wParam, lParam)
{

. . .
POINT *pos;
pos = (POINT *)lParam;
. . .
if (TrackPopupMenu((HMENU)wParam,

flags, pos->x, pos->y, 0, hwnd,
NULL))
. . .

}

The pointer was a random value produced by fuzz, a
therefore was invalid; this de-reference caused an acc
violation. It is not uncommon to find failures caused b
using an unsafe pointer; our previous studies found su
cases, and these cases are also well-documented in
literature [13]. From our inspection of other crashe
(based only on the machine code), it appears that t
problem is the likely cause of many of the random
Win32 message crashes.

Application Vendor SendMessage PostMessage
Random Valid

Events

Access 97 Microsoft ● ●

Access 2000 Microsoft ● ● ●

Codewarrior Pro 3.3 Metrowerks ●

Excel 97 Microsoft ● ●

Excel 2000 Microsoft ● ●

Internet Explorer 5 Microsoft ● ●

Netscape Communicator 4.7 Netscape Communications ● ● ●

Paint Shop Pro 5.03 Jasc Software ❍

PowerPoint 97 Microsoft ❍ ❍

PowerPoint 2000 Microsoft ❍ ❍

Secure CRT 2.4 Van Dyke Technologies ● ●

Visual C++ 6.0 Microsoft ● ● ●

Word 97 Microsoft ● ● ●

Word 2000 Microsoft ● ● ●

Percent Crashed 71.4% 71.4% 42.9%

Percent Hung 14.3% 0.0% 21.4%

Total Percent Failed 85.7% 71.4% 64.3%

Figure 4: Summary of Windows 2000 Test Results
● = Crash,❍ = Hang.

Note that if an application both crashed and hung, only the crash is reported.
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 8

is
f
e
a

r-
nd
uld
ult
sis

f a
ro-
by
g
-

id
le
w
to

st-
er
st
d
he
s of
a-
er,
to

s-
ts
y,
as
n

t
hat
he
ion-
le

“Of
y.”
.
ar-
)

nt
is
n
un-
o-
he
ch
Mozilla Crash Analysis

We also examined the open source version of Netscape
Communicator, called Mozilla, after it crashed from the
random Win32 messages. The cause of the crash was
similar to that of the emacs crash. The crash occurred in
file nsWindow.cpp , function nsWindow::Process-

Message . This function is designed to respond to
Win32 messages posted to the application’s windows. In
fashion similar to the GNU emacs example, a parameter
of the function (lParam in this case) is assumed to be a
valid window handle.

. . .

nsWindow* control =
(nsWindow*)::GetWindowLong(

(HWND)lParam, GWL_USERDATA);
if (control) {

control->SetUpForPaint(
(HDC)wParam);

. . .

The value is passed as an argument to theGetWin-

dowLong function, which is used to access application
specific information associated with a particular win-
dow. In this case, the parameter was a random value pro-
duced by fuzz, so theGetWindowLong function is
retrieving a value associated with a random window.
The application then casts the return value to a pointer
and attempts to de-reference it, thereby causing the
application to crash.

5 ANALYSIS AND CONCLUSIONS

The goal of this study was to provide a first look at the
general reliability of a variety of application programs
running on Windows NT. We hope that this study
inspires the production of more robust code. We first
discuss the results from the previous section then pro-
vide some editorial discussion.

The tests of random valid keyboard and mouse
events provide the best sense of the relative reliability of
application programs. These tests simulated only ran-
dom keystrokes, mouse movements, and mouse button
clicks. Since these events could be caused by a user,
they are of immediate concern. The results of these tests
show that many commonly-used desktop applications
are not as reliable as one might hope.

The tests that produced the greatest failure rates are
the random Win32 message tests. In the normal course
of events, these messages are produced by the kernel
and sent to an application program. It is unlikely
(though not impossible) that the kernel would send mes-
sages with invalid values. Still, these tests are interesting
for two reasons. First, they demonstrate the vulnerability
of this interface. Any application program can send

messages to any other application program. There
nothing in the Win32 interface that provides any type o
protection. Modern operation systems should provid
more durable firewalls. Second, these results point to
need for more discipline in software design. Major inte
faces between application software components a
between the application and the operating system sho
contain thorough checks of return values and res
parameters. Our inspection of crashes and the diagno
of the source code shows the blind de-referencing o
pointer to be dangerous. A simple action, such as p
tecting the de-reference with an exception handler (
using the Windows NT Structured Exception Handlin
facility, for example), could make a qualitative improve
ment in reliability.

As a side note, many of those applications that d
detect the error did not provide the user with reasonab
or pleasant choices. These applications did not follo
with an opportunity to save pending changes made
the current document or other open files. Doing a be
effort save of the current work (in a new copy of the us
file) might give the user some hope of recovering lo
work. Also, none of the applications that we teste
saved the user from seeing a dialog pertaining to t
cause of the crash that contained the memory addres
the instruction that caused the fault, along with a hex
decimal memory dump. To the average application us
this dialog is cryptic and mysterious, and only serves
confuse them.

Our final piece of analysis concerns operating sy
tem crashes. Occasionally, during our UNIX study, tes
resulted in OS crashes. During this Windows NT stud
the operating system remained solid and did not crash
a result of testing. We should note, however, that a
early version of the fuzz tool for Windows NT did resul
in occasional OS crashes. The tool contained a bug t
generated mouse events only in the top left corner of t
screen. For some reason, these events would occas
ally crash Windows NT 4.0, although not in a repeatab
fashion.

These results seem to inspire comments such as
course! Everyone knows these applications are flak
But it is important to validate such anecdotal intuitions
These results also provide a concrete basis for comp
ing applications and for tracking future (we hope
improvements.

Our results also lead to observations about curre
software testing methodology. While random testing
far from elegant, it does bring to the surface applicatio
errors, as evidenced by the numerous crashes enco
tered during the study. While some of the bugs that pr
duced these crashes may have been low priority for t
software makers due to the extreme situations in whi
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 9

me
-
s

, an
e

at
n a

y
o-
he
-

ey
ld
h-
ve
n-
il-
d
by
l-
c-

n
ur
d-
line
r
e
ed
c,
ed
s,

IX
-
in

-
:

e
r.
they occur, a simple approach to help find bugs should
certainly not be overlooked.

The lack of general access to application source
code prevented us from making a more detailed report
of the causes of program failures. GNU Emacs and
Mozilla were the only applications that we were able to
diagnose. This limited diagnosis was useful in that it
exposes a trend in poor handling of pointers in event
records. In our 1990 and 1995 studies, we were given
reasonable access to application source code by the
almost all the UNIX vendors. As a result, we provided
bug fixes, in addition to our bug reports. Today’s soft-
ware market makes this access to application source
code more difficult. In some extreme cases (as with
database systems, not tested in this study), even the act
of reporting bugs or performance data is forbidden by
the licence agreements [1] (and the vendors aggressively
pursue this restriction). While vendors righteously
defend such practices, we believe this works counter to
producing reliable systems.

Will the results presented in this paper make a dif-
ference? Many of the bugs found in our 1990 UNIX
study were still present in 1995. Our 1995 study found
that applications based on open source had better reli-
ability than those of the commercial vendors. Following
that study, we noted a subsequent overall improvement
in software reliability (by our measure). But, as long as
vendors and, more importantly, purchasers value fea-
tures over reliability, our hope for more reliable applica-
tions remains muted.

Opportunity for more analysis remains in this
project. Our goals include

1. Full testing of the applications on Windows 2000:
This goal is not hard to achieve, and we anticipate
having the full results shortly.

2. Explanation of the random Win32 message results:
We were surprised that thePostMessage and
SendMessage results differed. This difference may
be caused by the synchronous vs. asynchronous
nature ofPostMessage andSendMessage , or the
priority difference between these two types of mes-
sages (or other reasons that we have not identified).
We are currently exploring the reasons for this dif-
ference.

3. Explanation of the Windows NT 4.0 vs. Windows
2000 results: Given that we test identical versions
of the applications on Windows NT 4.0 and Win-
dows 2000, our initial guess was that the results
would be identical. The differences could be due to
several reasons, including timing, size of the screen,
or system dependent DLLs. We are currently
exploring the reasons for this difference.

6 RELATED WORK

Random testing has been used for many years. In so
ways, it is looked upon as primitive by the testing com
munity. In his book on software testing[7], Meyers say
that randomly generated input test cases are “at best
inefficient and ad hoc approach to testing”. While th
type of testing that we use may bead hoc, we do seem
to be able to find bugs in real programs. Our view is th
random testing is one tool (and an easy one to use) i
larger software testing toolkit.

An early paper on random testing was published b
Duran and Ntafos[3]. In that study, test inputs are ch
sen at random from a predefined set of test cases. T
authors found that random testing fared well when com
pared to the standard partition testing practice. Th
were able to track down subtle bugs easily that wou
otherwise be hard to discover using traditional tec
niques. They found random testing to be a cost effecti
testing strategy for many programs, and identified ra
dom testing as a mechanism by which to obtain reliab
ity estimates. Our technique is both more primitive an
easier to use than the type of random testing used
Duran and Ntafos; we cannot use programmer know
edge to direct the tests, but do not require the constru
tion of test cases.

Two papers have been published by Ghoshet al on
random black-box testing of applications running o
Windows NT[5,6]. These studies are extensions of o
earlier 1990 and 1995 Fuzz studies[8,9]. In the NT stu
ies, the authors tested several standard command-
utilities. The Windows NT utilities fared much bette
their UNIX counterparts, scoring less than 1% failur
rate. This study is interesting, but since they only test
a few applications (attrib, chkdsk, comp, expand, f
find, help, label, and replace) and most commonly us
Windows applications are based on graphic interface
we felt a need for more extensive testing.

Random testing has also been used to test the UN
system call interface. The “crashme” utility[2] effec
tively exercises this interface, and is actively used
Linux kernel developments.

SOURCE CODE

The source and binary code for the fuzz tools for Win
dows NT is available from our Web page at
ftp://grilled.cs.wisc.edu/fuzz .

ACKNOWLEDGMENTS

We thank Susan Hazlett for her help with running th
initial fuzz tests on Windows NT, and John Gardner J
for helping with the initial evaluation of the Fuzz NT
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 10

,

tool. We also thank Philip Roth for his careful reading
of drafts of this paper. Microsoft helped us in this study
by providing a pre-release version of Windows 2000.
The paper referees, and especially Jim Gray, provided
great feedback during the review process.

This work is supported in part by Department of
Energy Grant DE-FG02-93ER25176, NSF grants CDA-
9623632 and EIA-9870684, and DARPA contract
N66001-97-C-8532. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon.

REFERENCES

[1] M. Carey, D. DeWitt, and J. Naughton, “The 007
Benchmark”, 1993 ACM SIGMOD International
Conference on Management of Data, May 26-28, 1993,
Washington, D.C. pp. 12-21.

[2] G.J. Carrette, “CRASHME: Random Input Testing”,
http://people.delphi.com/gjc/crashme.html ,
1996.

[3] J. W. Duran and S.C. Ntafos, “An Evaluation of Random
Testing”, IEEE Transactions on Software Engineering
SE-10, 4, July 1984, pp. 438-444.

[4] S. Garfinkel and G. Spafford,Practical UNIX &
Internet Security, O’Reilly & Associates, 1996.

[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the
Robustness of Windows NT Software”,1998
International Symposium on Software Reliability
Engineering (ISSRE’98), Paderborn, Germany,
November 1998.

[6] A. Ghosh, V. Shah, and M. Schmid, “An Approach for
Analyzing the Robustness of Windows NT Software”,
21st National Information Systems Security Conference,
Crystal City, VA, October 1998.

[7] G. Meyers, The Art of Software Testing, Wiley
Publishing, New York, 1979.

[8] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, J. Steidl, “Fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and
Services”, University of Wisconsin-Madison, 1995.
Appears (in German translation) as “Empirische Studie
zur Zuverlasskeit von UNIX-Utilities: Nichts dazu
Gerlernt”,iX, September 1995.
ftp://grilled.cs.wisc.edu/technical_papers

/fuzz-revisted.ps .

[9] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study
of the Reliability of UNIX Utilities”, Communications of
the ACM 33, 12, December 1990, pp. 32-44. Also
appears in German translation as “Fatale
Fehlerträchtigkeit: Eine Empirische Studie zur
Zuverlassigkeit von UNIX-Utilities”,iX (March 1991).

ftp://grilled.cs.wisc.edu/technical_papers

/fuzz.ps.

[10] C. Petzold,Programming Windows, 5th ed., Microsoft
Press, Redmond, WA, 1999.

[11] J. Richter, Advanced Windows, 3rd ed., Microsoft
Press, Redmond, WA, 1997.

[12] D. Solomon,Inside Windows NT, 2nd ed., Microsoft
Press, Redmond, WA, 1998.

[13] J. A. Whittaker and A. Jorgensen, “Why Software Fails”
Technical Report, Florida Institute of Technology, 1999,
http://se.fit.edu/papers/SwFails.pdf .
Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

	An Empirical Study of the Robustness of Windows NT Applications Using Random Testing ��
	Abstract
	1 Introduction
	2 Random Testing on the Windows NT Platform
	Figure�1: Windows NT Architectural Components for User Input
	Figure�2: Insertion of Random Input

	3 Experimental Method
	3.1 Applications and Platform
	3.2 The Fuzz Testing Tool
	1. Obtain the process ID of the application to be tested (either by launching the application its...
	2. Determine the main window of the target application along with its desktop placement coordinates.
	3. Using one of SendMessage, PostMessage, or keybd_event and mouse_event, deliver random input to...

	3.3 The Tests

	4 Results
	4.1 Quantitative Results
	Figure�3: Summary of Windows NT 4.0 Test Results l = Crash, m = Hang. Note that if an application...
	Figure�4: Summary of Windows 2000 Test Results l = Crash, m = Hang. Note that if an application b...

	4.2 Causes of Crashes
	Emacs Crash Analysis
	Mozilla Crash Analysis

	5 Analysis and Conclusions
	1. Full testing of the applications on Windows 2000: This goal is not hard to achieve, and we ant...
	2. Explanation of the random Win32 message results: We were surprised that the PostMessage and Se...
	3. Explanation of the Windows NT 4.0 vs. Windows 2000 results: Given that we test identical versi...

	6 Related Work
	Source Code
	Acknowledgments
	References
	[1] M. Carey, D. DeWitt, and J. Naughton, “The 007 Benchmark”, 1993 ACM SIGMOD International Conf...
	[2] G.J. Carrette, “CRASHME: Random Input Testing”, http://people.delphi.com/gjc/crashme.html, 1996.
	[3] J. W. Duran and S.C. Ntafos, “An Evaluation of Random Testing”, IEEE Transactions on Software...
	[4] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security, O’Reilly & Associates, 1996.
	[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the Robustness of Windows NT Software”, 1998 Inter...
	[6] A. Ghosh, V. Shah, and M. Schmid, “An Approach for Analyzing the Robustness of Windows NT Sof...
	[7] G. Meyers, The Art of Software Testing, Wiley Publishing, New York, 1979.
	[8] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, “Fuzz Revi...
	[9] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study of the Reliability of UNIX Utilities”...
	[10] C. Petzold, Programming Windows, 5th ed., Microsoft Press, Redmond, WA, 1999.
	[11] J. Richter, Advanced Windows, 3rd ed., Microsoft Press, Redmond, WA, 1997.
	[12] D. Solomon, Inside Windows NT, 2nd ed., Microsoft Press, Redmond, WA, 1998.
	[13] J. A. Whittaker and A. Jorgensen, “Why Software Fails”, Technical Report, Florida Institute ...

