May 17, 2000 Page 1

An Empirical Study of the Robustness of Windows NT Applications Using
Random Testing

Justin E. Forrester Barton P. Miller
{fforrest,bart}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Abstract applications than the first study, including some com-
mon X-Window applications. This newer study found
We report on the third in a series of studies on the reliability of failure rates similar to the original study. Specifically, up
application programs in the face of random input. In 1990 andto 40% of standard command line UNIX utilities
1995, we studied the reliability of UNIX application programs, crashed or hung when given random input and 25% of
both command line and X-Window based (GUI). In this study, the X-Window applications tested failed to deal with the

we apply our testing techniques to applications running on th& angom input. In our current (2000) study, we find simi-
Windows NT operating system. Our testing is simple black-boxlar results for applications running on Windows NT.
random input testing; by any measure, it is a crude technique, . s .
but it seems to be effective at locating bugs in real programs. ~ OUr measure of reliability is a primitive and simple
one. A program passes the test if it responds to the input
We tested over 30 GUI-based applications by subjecting then@nd is able to exit normally; it fails if it crashes (termi-
to two kinds of random input: (1) streams of valid keyboard andnated abnormally) or hangs (stops responding to input
mouse events and (2) streams of random Win32 messages. Weithin a reasonable length of time). The application
have built a tool that helps automate the testing of Windows NTdoes not have to respond sensibly or according to any
applications. With a few simple parameters, any applicationformal specification. While the criterion is crude, it
can be tested. offers a mechanism that is easy to apply to any applica-
tion, and any cause of a crash or hang should not be
Using our random testing techniques, our previous UNIX-. y 9

based studies showed that we could crash a wide variety ollgnored in any program. Simple fuzz testing does not

command-line and X-window based applications on severaer_Iace more e).(tenswe fqrmal test!ng procedures. .BUt
UNIX platforms. The test results are similar for NT-based Curiously, our simple testing technique seems to find
applications. When subjected to random valid input that coulddugs that are not found by other techniques.
be produced by using the mouse and keyboard, we crashed 21% Our 1995 study of X-Window applications pro-
of applications that we tested and hung an additional 24% o¥/ided the direction for the current study. To test X-Win-
applications. When subjected to raw random Win32 messagesgjow applications, we interposed our testing program
we crashgd or h.ung. all thg applicationg that we tested. ,W‘?Jetween the application (client) and the X-window dis-
report which _appllcatlons failed under which tests, and prowdeplay server. This allowed us to have full control of the
some analysis of the failures. input to any application program. We were able to send
completely random messages to the application and also
1 INTRODUCTION to send random streams of valid keyboard and mouse
We report on the third in a series of studies on the reli-events. In our current Windows NT study, we are able to
ability of application programs in the face of random accomplish the same level of input control of an applica-
input. In 1990 and 1995, we studied the reliability of tion by using the Windows NT event mechanisms
UNIX command line and X-Window based (GUI) appli- (described in Section 2).
cation programs[8,9]. In this study, we apply our tech- Subjecting an application to streams of random
niques to applications running on the Windows NT valid keyboard and mouse events tests the application
operating system. Our testing, callatzztesting, uses under conditions that it should definitely tolerate, as
simple black-box random input; no knowledge of the they could occur in normal use of the software. Subject-
application is used in generating the random input. ing an application to completely random (often invalid)
Our 1990 study evaluated the reliability of standardinput messages is a test of the general strength of error
UNIX command line utilities. It showed that 25-33% of checking. This might be considered an evaluation of the
such applications crashed or hung when reading randorgoftware engineering discipline, with respect to error
input. The 1995 study evaluated a larger collection ofhandling, used in producing the application.

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 2

Five years have passed since our last study, durinthe software vendors/authors in the form of specific bug
which time Windows-based applications have clearlyreports. In the Windows environment, we have only lim-
come to dominate the desktop environment. Windowsted access (thus far) to the source code of the applica-
NT (and now Windows 2000) offers the full power of a tions. As a result, we have been able to perform this
modern operating system, including virtual memory, analysis on only two applications: emacs, which has
processes, file protection, and networking. We felt it waspublic source code, and the open source version of
time to do a comparable study of the reliability of appli- Netscape Communicator (Mozilla).

cations in this environment. Section 2 describes the details of how we perform
Our current study has produced several mainrandom testing on Windows NT systems. Section 3 dis-
results: cusses experimental method and Section 4 presents the

O 21% of the applications that we tested on NT 4.0results from those experiments. Section 5 offers some
crashedwhen presented with random, valid key- analysis of the results and presents associated commen-
board and mouse events. Test results for applicatary. Related work is discussed in Section 6.
tions run on NT 5.0 (Windows 2000) were similar.

0 An additional 24% of the applications that we 2 RANDOM TESTING ON THE WINDOWS NT

testechungwhen presented with random valid key- PLATFORM

poard and mouse events. Tests results for_appllcac—)ur goal in using random testing is to stress the applica-
tions run on NT 5.0 (Windows 2000) were similar. tion program. This testing required us to simulate user
[0 Up to 100% of the applications that we tested failedjnpyt in the Windows NT environment. We first describe
(crashed or hung) when presented with completelythe components of the kernel and application that are
random input streams consisting of random Win32jolved with processing user input. Next, we describe

messages. how application programs can be tested in this environ-
0 We noted (as a result of our completely randomment.
input testing) thatiny application running on Win- In the 1995 study of X-Window applications, ran-

dows platforms is vulnerable to random input 4om yser input was delivered to applications by insert-
streams generated by any other application runningng random input in the regular communication stream
on the same system. This appears to be a flaw in thgetween the X-Window server and the application. Two
Win32 message interface. types of random input were used: (1) random data
0 Our analysis of the two applications for which we streams and (2) random streams of valid keyboard and
have source code shows that there appears to beraouse events. The testing using random data streams
common careless programming idiom: receiving asent completely random data (not necessarily conform-
Win32 message and unsafely using a pointer oling to the window system protocol) to an application.
handle contained in the message. While this kind of input is unlikely under normal operat-
The results of our study are significant for severaling conditions, it provided some insight into the level of
reasons. First, reliability is the foundation of security[4]; testing and robustness of an application. It is crucial for
our results offer an informal measure of the reliability of a properly constructed program to check values obtained
commonly used software. Second, we expose severdfom system calls and library routines. The random
bugs that could be examined with other more rigorousvalid keyboard and mouse event tests are essentially
testing and debugging techniques, potentially enhancingesting an application as though a monkey were at the
software producers’ ability to ship bug free software. keyboard and mouse. Any user could generate this
Third, they expose the vulnerability of applications thatinput, and any failure in these circumstances represents
use the Windows interfaces. Finally, our results form aa bug that can be encountered during normal use of the
guantitative starting point from which to judge the rela- application.
tive improvement in software robustness. We used the same basic principles and categories in
In the 1990 and 1995 studies, we had access to ththe Windows NT environment, but the architecture is
source code of a large percentage of the programs th&lightly different. Figure 1 provides a simplified view of
we tested, including applications running on severalthe components used to support user input in the Win-
vendors’ platforms and GNU and Linux applications. dows NT environment[10,11,12].
As a result, in addition to causing the programs to hang ~ We use an example to explain the role of each com-
or crash, we were able to debug most applications tgonent in Figure 1. Consider the case where a user
find the cause of the crash. These causes were then catgicks on a link in a web browser. This action sets into
gorized and reported. These results were also passed taotion the Windows NT user input architecture. The

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 3

Application Thread

Win32
message Thread Message Queue

A Application Program

@ Raw Input Thread (RIT)
Eﬂ System Event Queue

Window Manager (Win32 USER)

Device Driver

1/O System
.

Windows NT Kernel Mode

Keyboard/Mouse

Figure 1: Windows NT Architectural Components for User Input

mouse click first generates a processor interrupt. The At this point, the application can receive and pro-
interrupt is handled by the I/O System in the base of thecess the message. The Win32 Application Program
Windows NT kernel. The I/O System hands the mousenterface (API) provides th&etMessage function for
interrupt to the mouse device driver. The device driverapplications to retrieve messages that have been posted
then computes the parameters of the mouse click, sucto their message queues. Application threads that create
as which mouse button has been clicked, and adds awindows generally enter a “message loop”. This loop
event to the System Event Queue (the event queue of thesually retrieves a message, does preliminary process-

Window Manager) by calling thenouse_event func- ing, and dispatches the message to a registered callback
tion. At this point, the device driver's work is complete function (sometimes calledwindow procedurgthat is
and the interrupt has been successfully handled. defined to process input for a specific window. In the

After being placed in the System Event Queue, thecase of the web browser example, the Win32 message
mouse event awaits processing by the kernel's Ravgoncerning the mouse click would be retrieved by the
Input Thread (RIT). The RIT first converts the raw sys- application via a call toGetMessage and then dis-
tem event to a Win32 message. A Win32 message is thBatched to the window procedure for the web browser
generic message structure that is used to provide applwindow. The window procedure would then examine
cations with input. The RIT next delivers the newly cre- the parameters of th&/M_LMOUSEBUTTOND@veéNsage
ated Win32 message to the event queue associated witg determine that the user had clicked the left mouse but-
the window. In the case of the mouse click, the RIT will ton at a given set of coordinates in the window and that
create a Win32 message with the the click had occurred over the web link.
WM_LMOUSEBUTTONDQ®éMtifier and current mouse Given the above architecture, it is possible to test
coordinates, and then determine that the target windovapplications using both random events and random
for the message is the web browser. Once the RIT hagvin32 messages. Testing with random events entails
determined that the web browser window should receivenserting random system events into the system event
this message, it will call théostMessage function. queue. Random system events simulate actual keystroke
This function will place the new Win32 message in theor mouse events. They are added to the system via the
message queue belonging to the application thread thaame mechanism that the related device driver uses,
created the browser window.

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 4

Application Thread

Win32
message

Thread Message Queue
Application Program

Random Win32
Messages
(for completely
random messages)

Raw Input Thread (RIT)

wsem 1) System Event Queue
Random System

Events Window Manager (Win32 USER)
(for random valid

keyboard & mouse))
events) Device Driver

1/0O System

Windows NT Kernel Mode

Keyboard/Mouse

Figure 2: Insertion of Random Input
namely themouse_event and keybd_event func- 3 EXPERIMENTAL METHOD

tions. . L
We describe the applications that we tested, the test

The second random testing mechanism InVOIVesenvironment, our new testing tool (calléaz?, and the

sending rar_1dom Win32 messages to an appllcatlo_ ests that we performed. We then discuss how the data
Random Win32 messages combine random but vali

. as collected and analyzed.
message types with completely random contents
(pz_arameters)._ Delivering thes_e messages is possible b}l’.l Applications and Platform
using the Win32 API functionPostMessage . The o
PostMessage function delivers a Win32 message to a W& selected a group of over 30 application programs.
message queue corresponding to a selected window anyhile we tried to select applications that were represen-
returns. Note that there is similar functionRostMes- tative of a variety of computing tasks, the selection was
sage , calledSendMessage , that delivers a Win32 mes- also influenced by what software was commonly used in
sage and waits for the message to be processed fullj’€ Computer Sciences Department at the University of
before returning. Win32 messages are of a fixed size ani/isconsin. The software includes word processors, Web
format. These messages have three fields, a message RfPWsers, presentation graphics editors, network utili-
field and two integer parameters. Our testing producedi€S, Spread sheets, software development environments,
random values in each of these fields, constraining th@nd others. In addition to functional variety, we also

first field (message D) to the range of valid messageStrove to test applicatio_ns from a variety of vendors,
ID’s. including both commercial and free software.

Figure 2 shows where each random testing mecha- The operating system on which we ran and tested
nism fits into the Windows NT user input architecture, the applications was Windows NT 4.0 (build 1381, ser-

Notice in Figure 2 that under both testing condi- vice pack 5). To insure thaF our results were tlme_ly, we
tions, the target application is unable to distinguish mes:cested a subset of the applications on the new Windows

sages sent by our testing mechanisms from thosgOOO system (version 5.00.2195). For the 14 applica-

actually sent by the system. This distinction is essentiap.on.S that we re-tested on Windows 2000, we obtained
y y y similar results to those tested under NT 4.0. The hard-

to create an authentic test environment.

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 5

ware platform used for testing was a collection of stan-» 500,000 random Win32 messages sent via the
dard Intel Pentium Il PCs. SendMessage API call,

. 500,000 random Win32 messages sent via the
3.2 The Fuzz Testing Tool PostMessage API call, and
The mechanism we used for testing applications was g

new tool, calleduzz that we built for applications run-

ning on the Windows NT platform. Fuzz produces The first two cases use completely random input and the

repeatable sequences of random input and delivers themird case uses streams of valid keyboard and mouse
as input to running applications via the mechanisms

described in Section 2. Its basic operation is as foIIows:eventS')]
The quantity of messages to send was determined

1. Optam the process ID of the a_lppl_lcat!on to be teSteqjuring preliminary testing. During that testing, it
(either by launching the application itself or by an gnheared that if the application was going to fail at all, it
explicit command line parameter). would do so within the above number of messages or

2. Determine the main window of the target applica- events. Each of the three tests detailed above was per-
tion along with its desktop placement coordinates. formed with two distinct sequences of random input

3. Using one ofSendMessage, PostMessage , or (with different random s_eer), and three test trials were
keybd event andmouse_event , deliver random conduced for each appllcatlon_and_ random sequence, for
input to the running application. fatotal of 18 runs for each application. 'I_'he same random

input streams were used for each application.

25,000 random system events introduced via the
mouse_event andkeybd _event API calls.

Fuzz is invoked from a command line; it does not
use a GUI so that our interactions with the tool do no
interfere with the testing of the applications. The first4 RESULTS
version of our Windows NT fuzz tool had a GUI inter- We first describe the basic success and failure results
face but the use of the GUI for the testing tool interferedobserved during our tests. We then provide analysis of
with the testing of the applications. As a result, we the cause of failures for two applications for which we
changed fuzz to operate from a command line. The fuzhave source code.
command has the following format:

fuzz [-ws] [-wp] [-v] [-i pid] [-n 4.1 Quantitative Results

#msgs] [-c] [-] [-e seed] [-a appl cmd The outcome of each test was classified in one of three

line] categories: the application crashed completely, the
Where -ws is random Win32 messages usisgnd- application hung (stopped responding), or the applica-
Message, -wp is random Win32 messages usiPgst- tion processed the input and we were able to close the

Message, and-v is random valid mouse and keyboard application via normal application mechanisms. Since
events. One of these three options must be specified. the categories are simple and few, we were able to cate-
The-i option is used to start testing an already- gorize the success or failure of an application through
running application with the specified process ID, and simple inspection. In addition to the quantitative results,
a tells fuzz to launch the application itself. The we report on diagnosis of the causes of the crashes for
option controls the maximum number of messages thathe two applications for which we have source code.
will be sent to the application, ané allows the seed Figure 3 summarizes the results of the experiments
for the random number generator to be set. for Windows NT 4.0 and Figure 4 has results for a sub-
The-l and-c options provide finer control of the Set of the applications tested on Windows 2000. If an
SendMessage and PostMessage tests, but were not application failed on any of the runs in a particular cate-
used in the tests that we report in this paper. Null paramgory (column), the result is listed in the table. If the
eters can be included in the tests with and @application neither crashed nor hung, it passed the tests
WM_COMMANRessages (control activation messagedand has no mark in the corresponding column).

such as button clicks) can be included with The overall results of the tests show that a large
number of applications failed to deal reasonably with
3.3 The Tests random input. Overall, the failure rates for the Win32

Our tests were divided into three categories according t§1€SSage tests were much greater than those for the ran-
the different input techniques described in Section 2. Adiom valid keyboard and mouse event tests. This was to

such, the application underwent a battery of randorP€ €xpected, since several Win32 message types include
tests that included the following: pointers as parameters, which the applications appar-

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 6

Application Vendor SendMessage PostMessage Rangg;?] t\s/ alid
Access 97 Microsoft . . O
Access 2000 Microsoft . . O
Acrobat Reader 4.0 Adobe Systems . .

Calculator 4.0 Microsoft °

CD-Player 4.0 Microsoft . .

Codewarrior Pro 3.3 Metrowerks . . °
Command AntiVirus 4.54 Command Software Systems . .

Eudora Pro 3.0.5 Qualcomm)) O

Excel 97 Microsoft o o

Excel 2000 Microsoft . .

FrameMaker 5.5 Adobe Systems .

FreeCell 4.0 Microsoft o o

Ghostscript 5.50 Aladdin Enterprises . .

Ghostview 2.7 Ghostgum Software Pty . .

GNU Emacs 20.3.1 Free Software Foundation . °

Internet Explorer 4.0 Microsoft . . °
Internet Explorer 5.0 Microsoft . .

Java Workshop 2.0a Sun Microsystems . O
Netscape Communicator 4.7 Netscape Communications . . °
NotePad 4.0 Microsoft . .

Paint 4.0 Microsoft ° °

Paint Shop Pro 5.03 Jasc Software O

PowerPoint 97 Microsoft O O O
PowerPoint 2000 Microsoft O

Secure CRT 2.4 Van Dyke Technologies . .

Solitaire 4.0 Microsoft .

Telnet 5 for Windows MIT Kerberos Group .

Visual C++ 6.0 Microsoft . . .
Winamp 2.5c Nullsoft | .

Word 97 Microsoft . . °

Word 2000 Microsoft ° . °
WordPad 4.0 Microsoft . . °
WS_FTP LE 4.50 Ipswitch . . 0
Percent Crashed 72.7% 90.9% 21.2%
Percent Hung 9.0% 6.0% 24.2%
Total Percent Failed 81.7% 96.9% 45.4%

Figure 3: Summary of Windows NT 4.0 Test Results
e = Crash,0 = Hang.
Note that if an application both crashed and hung, only the crash is reported.
ently de-reference blindly. The NT 4.0 tests using theone application was able to successfully withstand the
SendMessage API function produced a crash rate of PostMessage test.
over 72%, 9% of the applications hung, and a scant 18% The random valid keyboard and mouse event
SUCCGSSfU”y dealt with the random input. The tests USing'esuh:S, while somewhat improved over the random

the PostMessage API function produced a slightly \Win32 message test, produced a significant number of
higher crash rate of 90% and a hang rate of 6%. Only

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 7

Application Vendor SendMessage PostMessage Rang\(;grl] t\s/ i
Access 97 Microsoft . .

Access 2000 Microsoft . . °
Codewarrior Pro 3.3 Metrowerks °

Excel 97 Microsoft . .

Excel 2000 Microsoft . .

Internet Explorer 5 Microsoft . .

Netscape Communicator 4.7 Netscape Communications . . °

Paint Shop Pro 5.03 Jasc Software O
PowerPoint 97 Microsoft O
PowerPoint 2000 Microsoft O O

Secure CRT 2.4 Van Dyke Technologies . .

Visual C++ 6.0 Microsoft . . °

Word 97 Microsoft . ° °

Word 2000 Microsoft . . °

Percent Crashed 71.4% 71.4% 42.9%
Percent Hung 14.3% 0.0% 21.4%
Total Percent Failed 85.7% 71.4% 64.3%

Figure 4: Summary of Windows 2000 Test Results
e = Crash,0 = Hang
Note that if an application both crashed and hung, only the crash is reported.

crashes. Fully 21% of the applications crashed and 24%he file w32fns.c , the message handler

hung, leaving only 55% of applications that were able to(w32_wnd_proc) is a standard Win32 callback func-

successfully deal with the random events. This result igion. This callback function tries to de-reference its third
especially troublesome because these random evenpgrameteriparam); note that there is no error checking
could be introduced by any user of a Windows NT sys-or exception handling to protect this de-reference.

tem using only the mouse and keyboard. LRESULT CALLBACK

The Windows 2000 tests have similar results to w32 _wnd_proc (hwnd, msg, wParam, IParam)
those performed on NT 4.0. We had not expected to see {
a significant difference between the two platforms, and e
these results confirm this expectation. POINT *pos;
pos = (POINT *)IParam;

4.2 Causes of Crashes e
if (TrackPopupMenu((HMENU)wParam,

While source code was not available to us for most flags, pos->x, pos->y, 0, hwnd,

applications, we did have access to the source code of NULL))

two applications: the GNU Emacs text editor and the

open source version of Netscape Communicator }

(Mozilla). We were able to examine both applications to The pointer was a random value produced by fuzz, and
determine the cause of the crashes that occurred duringierefore was invalid; this de-reference caused an access

testing. violation. It is not uncommon to find failures caused by
) using an unsafe pointer; our previous studies found such
Emacs Crash Analysis cases, and these cases are also well-documented in the

We examined the emacs application after it crashediterature [13]. From our inspection of other crashes

from the random Win32 messages. The cause of thébased only on the machine code), it appears that this
crash was simple: casting a parameter of the Win3®roblem is the likely cause of many of the random

message to a pointer to a structure and then trying to déVin32 message crashes.

reference the pointer to access a field of the structure. In

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 8

Mozilla Crash Analysis messages to any other application program. There is

We also examined the open source version of Netscap'%mhing in the Win32 interface that provides any type of

Communicator, called Mozilla, after it crashed from the protection. Modern operation systems should provide

random Win32 messages. The cause of the crash wdgore durable firewalls. Second, these results point to a

similar to that of the emacs crash. The crash occurred iy €€d for more d|SC|pI|_ne n software design. Major inter-
file nswindow.cpp , function nswindow::Process- aces between application software components and

Message. This function is designed to respond to between the application and the operating system should

Win32 messages posted to the application’s windows. Ir?ontam thorough checks of return values and result

fashion similar to the GNU emacs example, a parameteparameters. Our inspection of crz_ashes and the d_iagnosis
of the function (Param in this case) is assumed to be a of the source code shows the blind de-referencing of a

valid window handle. poin_ter to be dangerous. A simple actio_n, such as pro-
tecting the de-reference with an exception handler (by
using the Windows NT Structured Exception Handling
nsWindow* control = facility, for example), could make a qualitative improve-
(nsWindow*)::GetWindowLong(ment in reliability.
(HWND)IParam, GWL_USERDATA);
if (control) {
control->SetUpForPaint(
(HDC)wParam);

As a side note, many of those applications that did
detect the error did not provide the user with reasonable
or pleasant choices. These applications did not follow
with an opportunity to save pending changes made to
the current document or other open files. Doing a best-
effort save of the current work (in a new copy of the user
file) might give the user some hope of recovering lost
work. Also, none of the applications that we tested
%aved the user from seeing a dialog pertaining to the
cause of the crash that contained the memory address of
the instruction that caused the fault, along with a hexa-
Hecimal memory dump. To the average application user,
this dialog is cryptic and mysterious, and only serves to
confuse them.

Our final piece of analysis concerns operating sys-
tem crashes. Occasionally, during our UNIX study, tests
The goal of this study was to provide a first look at theresulted in OS crashes. During this Windows NT study,
general reliability of a variety of application programs the operating system remained solid and did not crash as
running on Windows NT. We hope that this study a result of testing. We should note, however, that an
inspires the production of more robust code. We firstearly version of the fuzz tool for Windows NT did result
discuss the results from the previous section then proin occasional OS crashes. The tool contained a bug that
vide some editorial discussion. generated mouse events only in the top left corner of the

The tests of random valid keyboard and mouseScreen. For some reason, these events would occasion-

events provide the best sense of the relative reliability olly crash Windows NT 4.0, although not in a repeatable
application programs. These tests simulated only ranfashion.

dom keystrokes, mouse movements, and mouse button These results seem to inspire comments such as “Of
clicks. Since these events could be caused by a usecpurse! Everyone knows these applications are flaky.”
they are of immediate concern. The results of these testBut it is important to validate such anecdotal intuitions.
show that many commonly-used desktop applicationslhese results also provide a concrete basis for compar-
are not as reliable as one might hope. ing applications and for tracking future (we hope)

The tests that produced the greatest failure rates afgprovements.
the random Win32 message tests. In the normal course Our results also lead to observations about current
of events, these messages are produced by the kernsbftware testing methodology. While random testing is
and sent to an application program. It is unlikely far from elegant, it does bring to the surface application
(though not impossible) that the kernel would send meserrors, as evidenced by the numerous crashes encoun-
sages with invalid values. Still, these tests are interestingered during the study. While some of the bugs that pro-
for two reasons. First, they demonstrate the vulnerabilityduced these crashes may have been low priority for the
of this interface. Any application program can sendsoftware makers due to the extreme situations in which

The value is passed as an argument to Ge#win-
dowLong function, which is used to access application
specific information associated with a particular win-

duced by fuzz, so thesetWindowLong function is
retrieving a value associated with a random window.
The application then casts the return value to a pointe
and attempts to de-reference it, thereby causing th
application to crash.

5 ANALYSIS AND CONCLUSIONS

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000 Page 9

they occur, a simple approach to help find bugs shoul®s RELATED WORK

certainly not be overlooked. .
y Random testing has been used for many years. In some

The lack of general access to application sourchayS’ it is looked upon as primitive by the testing com-

code prevented us from making a more detailed repoq'nunity. In his book on software testing[7], Meyers says

(J thﬁ causetsh of plrograrlp filluretsr.] ?NU Emacsl atn hat randomly generated input test cases are “at best, an
d_02| awer_l?h_ el.Of?ty(j‘%P ications that we \;velr_e athet F)tinefficient and ad hoc approach to testing”. While the
lagnose. -1his fimited diaghosis was usetul in that |1 type of testing that we use may e hoc we do seem

% be able to find bugs in real programs. Our view is that

records. In our 1990 and 1995.5tUd'e5’ We Were given s ndom testing is one tool (and an easy one to use) in a
reasonable access to application source code by thgrger software testing toolkit

almost all the UNIX vendors. As a result, we provided A | d . blished b

bug fixes in addition to our bug reports. Today’s soft- n eadr {Iytaa;pergonlra?h cimttedstlrl[g v;/gs pl: IShe h y

ware market makes this access to application sourcguran an afos[3]. In tha study, test Inpuls are cno-
sen at random from a predefined set of test cases. The

code more difficult. In some extreme cases (as with thors found that random testing fared well wh
database systems, not tested in this study), even the agithors found that random testing tared well when com-

of reporting bugs or performance data is forbidden bypared to the standard partition testing practice. They
the licence agreements [1] (and the vendors aggressive t(;re a.ble LO trhaclzj c![owg' subtle bugs eta S|clj)./t.thatl v¥ourl]d
pursue this restriction). While vendors righteously erwise be hard 1o discover using traditional tech-

defend such practices, we believe this works counter tg!laues. They found random testing to be a COSt. gffectwe
producing reliable systems. testing strategy for many programs, and identified ran-

Will the results presented in this paper make a dif dom testing as a mechanism by which to obtain reliabil-
: “ity estimates. Our technique is both more primitive and
ference? Many of the bugs found in our 1990 UNIX y d P

. . easier to use than the type of random testing used by
study were still present in 1995. Our 1995 study foundDuran and Ntafos; we cannot use programmer knowl-

L . . Edge to direct the tests, but do not require the construc-
ability than those of the commercial vendors. FoIIowmg,[ion of test cases

that study, we noted a subsequent overall improvement .
in software reliability (by our measure). But, as long as Two papers have bgen pubhshgd t_)y Gheshl_on
random black-box testing of applications running on

vendors and, more importantly, purchasers value fea-". . .
P Y, P 6\N|ndows NT[5,6]. These studies are extensions of our

tures over reliability, our hope for more reliable applica- .)
. . Y P PP earlier 1990 and 1995 Fuzz studies[8,9]. In the NT stud-
tions remains muted.) .
0 funity f vsi . in thi ies, the authors tested several standard command-line
. [ipgr uni yl or lmgre analysis remans in s sities. The Windows NT utilities fared much better
project. Our goals include their UNIX counterparts, scoring less than 1% failure
1. Full testing of the applications on Windows 2000: rate. This study is interesting, but since they only tested
This goal is not hard to achieve, and we anticipatea few applications (attrib, chkdsk, comp, expand, fc,
having the full results shortly. find, help, label, and replace) and most commonly used

2. Explanation of the random Win32 message results¥Vindows applications are based on graphic interfaces,
We were surprised that theostMessage and W€ felt a need for more extensive testing.
SendMessage results differed. This difference may Random testing has also been used to test the UNIX
be caused by the synchronous vs. asynchronousystem call interface. The “crashme” utility[2] effec-
nature ofPostMessage andSendMessage, or the tively exercises this interface, and is actively used in
priority difference between these two types of mes-Linux kernel developments.
sages (or other reasons that we have not identified).
We are currently exploring the reasons for this dif- SOURCE CODE

ference. The source and binary code for the fuzz tools for Win-

3. Explanation of the Windows NT 4.0 vs. Windows dows NT is available from our Web page at:
2000 results: Given that we test identical versionsp:/grilled.cs.wisc.edu/fuzz
of the applications on Windows NT 4.0 and Win-
dows 2000, our initial guess was that the resultspA ckNOWLEDGMENTS
would be identical. The differences could be due to

several reasons, including timing, size of the screenYVe thank Susan Hazlett for her help with running the
or system dependent DLLs. We are Currenﬂylmnal fuzz tests on Windows NT, and John Gardner Jr.

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

May 17, 2000

tool. We also thank Philip Roth for his careful reading
of drafts of this paper. Microsoft helped us in this study
by providing a pre-release version of Windows 2000.[10]
The paper referees, and especially Jim Gray, provided
great feedback during the review process. [11]
This work is supported in part by Department of
Energy Grant DE-FG02-93ER25176, NSF grants CDA-[12]
9623632 and EIA-9870684, and DARPA contract
N66001-97-C-8532. The U.S. Government is authorize
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon.

13]

REFERENCES

[1] M. Carey, D. DeWitt, and J. Naughton, “The 007
Benchmark”, 1993 ACM SIGMOD International
Conference on Management of DaMay 26-28, 1993,

Washington, D.C. pp. 12-21.

G.J. Carrette, “"CRASHME: Random Input Testing”,
http://people.delphi.com/gjc/crashme.html ,
1996.

J. W. Duran and S.C. Ntafos, “An Evaluation of Random
Testing”, IEEE Transactions on Software Engineering
SE-1Q 4, July 1984, pp. 438-444.

S. Garfinkel and G. SpaffordPractical UNIX &
Internet Security, O'Reilly & Associates, 1996.

A. Ghosh, V. Shah, and M. Schmid, “Testing the
Robustness of Windows NT Software”,1998
International Symposium on Software Reliability
Engineering (ISSRE'98) Paderborn, Germany,
November 1998.

A. Ghosh, V. Shah, and M. Schmid, “An Approach for

Analyzing the Robustness of Windows NT Software”,

21st National Information Systems Security Conference
Crystal City, VA, October 1998.

G. Meyers, The Art of Software Testing, Wiley
Publishing, New York, 1979.

B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy,
A. Natarajan, J. Steidl, “Fuzz Revisited: A Re-
examination of the Reliability of UNIX Utilities and
Services”, University of Wisconsin-Madison, 1995.
Appears (in German translation) as “Empirische Studie
zur Zuverlasskeit von UNIX-Utilities: Nichts dazu
Gerlernt”,iX, September 1995.
ftp://grilled.cs.wisc.edu/technical_papers

[fuzz-revisted.ps

B. P. Miller, L. Fredriksen, B. So, “An Empirical Study
of the Reliability of UNIX Utilities”, Communications of
the ACM 33, 12, December 1990, pp. 32-44. Also
appears in German translation as “Fatale
Fehlertrachtigkeit: Eine Empirische Studie zur
Zuverlassigkeit von UNIX-Utilities”,iX (March 1991).

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

Page 10

ftp://grilled.cs.wisc.edu/technical_papers
ffuzz.ps.

C. PetzoldProgramming Windows, 5th ed., Microsoft
Press, Redmond, WA, 1999.

J. Richter, Advanced Windows 3rd ed., Microsoft
Press, Redmond, WA, 1997.

D. Solomon,Inside Windows NT, 2nd ed., Microsoft
Press, Redmond, WA, 1998.

J. A. Whittaker and A. Jorgensen, “Why Software Fails”,
Technical ReportFlorida Institute of Technology, 1999,
http://se.fit.edu/papers/SwFails.pdf .

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

	An Empirical Study of the Robustness of Windows NT Applications Using Random Testing ��
	Abstract
	1 Introduction
	2 Random Testing on the Windows NT Platform
	Figure�1: Windows NT Architectural Components for User Input
	Figure�2: Insertion of Random Input

	3 Experimental Method
	3.1 Applications and Platform
	3.2 The Fuzz Testing Tool
	1. Obtain the process ID of the application to be tested (either by launching the application its...
	2. Determine the main window of the target application along with its desktop placement coordinates.
	3. Using one of SendMessage, PostMessage, or keybd_event and mouse_event, deliver random input to...

	3.3 The Tests

	4 Results
	4.1 Quantitative Results
	Figure�3: Summary of Windows NT 4.0 Test Results l = Crash, m = Hang. Note that if an application...
	Figure�4: Summary of Windows 2000 Test Results l = Crash, m = Hang. Note that if an application b...

	4.2 Causes of Crashes
	Emacs Crash Analysis
	Mozilla Crash Analysis

	5 Analysis and Conclusions
	1. Full testing of the applications on Windows 2000: This goal is not hard to achieve, and we ant...
	2. Explanation of the random Win32 message results: We were surprised that the PostMessage and Se...
	3. Explanation of the Windows NT 4.0 vs. Windows 2000 results: Given that we test identical versi...

	6 Related Work
	Source Code
	Acknowledgments
	References
	[1] M. Carey, D. DeWitt, and J. Naughton, “The 007 Benchmark”, 1993 ACM SIGMOD International Conf...
	[2] G.J. Carrette, “CRASHME: Random Input Testing”, http://people.delphi.com/gjc/crashme.html, 1996.
	[3] J. W. Duran and S.C. Ntafos, “An Evaluation of Random Testing”, IEEE Transactions on Software...
	[4] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security, O’Reilly & Associates, 1996.
	[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the Robustness of Windows NT Software”, 1998 Inter...
	[6] A. Ghosh, V. Shah, and M. Schmid, “An Approach for Analyzing the Robustness of Windows NT Sof...
	[7] G. Meyers, The Art of Software Testing, Wiley Publishing, New York, 1979.
	[8] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, “Fuzz Revi...
	[9] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study of the Reliability of UNIX Utilities”...
	[10] C. Petzold, Programming Windows, 5th ed., Microsoft Press, Redmond, WA, 1999.
	[11] J. Richter, Advanced Windows, 3rd ed., Microsoft Press, Redmond, WA, 1997.
	[12] D. Solomon, Inside Windows NT, 2nd ed., Microsoft Press, Redmond, WA, 1998.
	[13] J. A. Whittaker and A. Jorgensen, “Why Software Fails”, Technical Report, Florida Institute ...

