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Abstract 
Certain applications, such as Windows 2000’s Remote Install service, can result in a set of files in 
which many different files have the same content. Using a traditional file system to store these files 
separately results in excessive use of disk and main memory file cache space.  Using hard or symbolic 
links would eliminate the excess resource requirements, but changes the semantics of having separate 
files, in that updates to one “copy” of a file would be visible to users of another “copy.”  We describe 
the Single Instance Store (SIS), a component within Windows® 2000 that implements links with the 
semantics of copies for files stored on a Windows 2000 NTFS volume.  SIS uses copy-on-close to 
implement the copy semantics of its links.  SIS is structured as a file system filter driver that 
implements links and a user level service that detects duplicate files and reports them to the filter for 
conversion into links.  Because SIS links are semantically identical to separate files, SIS creates them 
automatically when it detects files with duplicate contents.  This paper describes the design and 
implementation of SIS in detail, briefly presents measurements of a remote install server showing a 
58% disk space savings by using SIS, and discusses other possible uses of SIS. 
 

1. Introduction 
Some applications generate many files that have identical 
content.  These files are separate from one another, in the 
sense that they may have different path names, owners, 
access control lists, and may charge different users’ disk 
allocation quotas.  Most importantly, because the files are 
separate, writes to one file do not affect any other files.  
However, the fact that the files have identical contents 
presents an opportunity for the file system to save space 
on the disk and in the main memory file cache.  The 
Single Instance Store (SIS) is a pair of components in 
Microsoft  Windows® 2000 Server [Solomon 98] that 
automatically takes advantage of this opportunity.  This 
paper describes the design and implementation of SIS, 
and discusses its use in Windows 2000 as well as other 
potential uses for the technology. 
 
SIS is used in Windows 2000 to support the Remote 
Install Server [Microsoft 00].   Remote Install is an 
application that allows a server owner to configure a 
server with a set of machine images (installations of an 
operating system and an arbitrary set of applications), 
and to use these images to set up new machines quickly, 
without having to go through the usual installation 
processes.  Different machine images stored on a remote 
install server will have different files,  but there will be 
some duplicate files in the images.  Running SIS on a 
remote install server removes space used by the duplicate 
files, and allows a server to host more images with the 
same amount of disk and main memory file cache space. 
 

SIS is built in two components.  First is a kernel-level file 
system filter driver (called the SIS filter or just the filter) 
that transparently implements files that have identical 
contents but are stored only once on the disk; second is a 
user-level service (called the groveler) that is responsible 
for automatically finding identical files and reporting 
them to the filter for merging.  The filter’s basic 
technique is to handle reads by redirecting them to 
common files, and to handle writes using copy-on-close.  
The groveler runs as a low-importance service (daemon) 
that tracks changes to the file system, maintains a 
database of hashes of files in the file system, checks files 
with matching hashes to see if they are identical, and 
reports matching files to the filter for merging.  Unlike 
traditional file linking, SIS (via the groveler) 
automatically finds and merges files with duplicate 
contents.  This is sensible in SIS because SIS links 
(unlike hard or symbolic links) are semantically identical 
to independent files. 
 
SIS’s copy-on-close technique is similar to copy-on-
write, which has been used in various forms in computer 
systems for quite some time, most notably in virtual 
memory [Rashid 81] and database [Todd 96] systems.  In 
copy-on-write, at the time of a “copy” a link between the 
source and destination is established, and the actual 
copying of the data is postponed until either the source or 
destination is modified.  Crucial to the concept of copy-
on-write is that it is semantically identical to a normal 
copy, unlike linked-file or shared memory techniques.  
SIS’s copy-on-close differs from copy-on-write in that 
the copy is delayed beyond even the time of the first 
write until the complete set of updates are made to the 



file, and then only the portions of the file that haven’t 
been overwritten are copied.  This has two advantages 
over copy-on-write: there is no delay for the copy at the 
time of the first write, and there is no need to copy the 
portions of the file that are overwritten.   
 
While saving disk space is valuable, disk storage has 
been rapidly dropping in price per byte.  Some may argue 
that the disk space savings afforded by SIS, which in 
most cases will be much less than an order of magnitude, 
are uninteresting for all but the most space-consuming 
applications.  While this may be true, the reduction in 
size of the main memory file cache can have large 
performance effects.  This will become more pronounced 
as the ratio of processor, memory and network speeds to 
disk latency increases. 
 
The next section presents some background describing 
features in Windows 2000 on which SIS depends, and 
then goes on to describe SIS’s architecture and 
implementation in detail.  Section 3 briefly presents some 
performance measurements relating to the time and size 
overheads of SIS, and the disk space savings that was 
realized on a remote install server.  The section then 
discusses some potential uses for SIS beyond the remote 
install server.  Section 4 presents related work, section 5 

summarizes and section 6 describes the availability of the 
software and raw data. 

2. SIS Architecture and 
Implementation 

SIS has two responsibilities: implementing SIS links, and 
discovering files with identical content in order to merge 
them.  These two functions are provided by a kernel-level 
file system filter driver and a user-level service (daemon) 
respectively.  Figure 1 shows the top-level architecture of 
SIS.  This section lays out the basic concepts and terms 
used in describing SIS and its design, provides brief 
background on the Windows NT underpinnings used by 
SIS, and then describes the SIS architecture and design in 
detail. 
 
A user file managed by SIS is called a SIS link.  The SIS 
filter (the kernel mode portion of SIS) is responsible for 
assuring that users see appropriate behavior when 
accessing SIS links.  The filter keeps the data that backs 
SIS links in files in a special directory called the SIS 
Common Store.  SIS links may be created in two ways: A 
user may explicitly request a SIS copy of a file by issuing 
the SIS_COPYFILE file system control, or SIS may 
detect that two files have identical contents and merge 
them.  The groveler (so called because it grovels through 
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the file system contents) detects duplicate files.  All SIS 
functions are local to a particular NTFS volume, which 
may be accessed remotely in the same way as any other 
NTFS volume. 
 
The rest of this section describes how SIS is designed and 
constructed.  The first two subsections provide necessary 
background about unusual Windows 2000 and NTFS 
[Custer 94] facilities used in the implementation.  Section 
2.3 describes the SIS filter in detail, and section 2.4 
covers the groveler. 

2.1 The Windows 2000 Driver Model 
The privileged mode portion of Windows 2000 consists 
of a base kernel containing services such as scheduling, 
virtual memory support, thread and multi-processor 
synchronization, etc.; and a set of loadable drivers 
[Solomon 98;Baker 97;Nagar 97].  Windows 2000 
drivers may have more broad functionality than device 
drivers in traditional systems.  They implement file 
systems, network protocol stacks, RAID/Mirroring disk 
functionality [Patterson 88], virus protection, 
instrumentation, off-line file migration, and other similar 
functions as well as simply operating normal devices 
[Fisher 98].  Groups of these drivers are called stacks, 
although that term can be somewhat misleading, because 
their organization is not necessarily linear (imagine a 
RAID driver that talks to more than  one disk driver).  A 
driver that is inserted between the NT I/O system and the 
base file system driver is called a file system filter driver 
(or sometimes just a filter).  There are also other kinds of 
filter drivers that sit below the file system, but they are 
not relevant here. 
 
To first approximation, NT driver stacks work by passing 
around I/O Request Packets (IRPs), which are requests to 
do a specific operation, such as read, write, open or close.  
For instance, a file system driver might receive a read 
IRP specifying that a range of a file should be read into a 
certain virtual address in a process.  The file system 
would use its metadata to find the region(s) on disk 
holding the data for the given part of the file, modify the 
IRP to tell the disk driver what action to take, and then 
send the IRP down the stack to the disk driver, which 
would perform the actual I/O.  When a driver marks an 
IRP as completed, any drivers above it on the stack have 
the opportunity to inspect the IRP, see if it completed 
successfully, and take action including aborting the IRP 
completion or changing the completion status. 
 
The NT I/O manager sits at the top of all file system 
driver stacks.  It accepts system calls from user processes 
(or function calls from kernel-level components), 
translates handles into pointers to file objects, generates 
IRPs and sends them to the top member of the 

appropriate driver stack.  After the IRP completes, the 
I/O manager completes the initial request by completing 
the system or function call, or by other appropriate means 
in the case of asynchronous calls.  The I/O Manager (and 
SIS) also support the FastIO function-call driver 
interface, but that is beyond the scope of this paper. 
 
Windows 2000 supports memory mapped access to files.  
In this mode, a process or system component asks the 
system to map a portion of a file to a region of virtual 
memory.  When the process or component accesses a 
virtual address in a mapped range, it may take a page 
fault, which will result in the virtual memory manager 
generating an IRP for reading the appropriate data into a 
page, and sending this request to the file system driver 
stack.  This IRP is marked to indicate that it was 
generated by a page fault and that the file system should 
read data from the disk, rather than trying to obtain it 
from the system file cache.  Once the file system 
completes the request, the virtual memory manager maps 
the page at the appropriate virtual address in the process 
or system address space and restarts the faulting thread.  
When an access to a memory mapped file doesn’t result 
in a fault, the system is not immediately aware of it.  This 
has an important implication for SIS: If a user maps a 
page, takes a read fault on the page and then later writes 
to it, SIS will not have any way of knowing that the page 
has been written, and so will not be able to take any 
consistency actions at the time of the write.  Eventually, 
the virtual memory system will notice that the page is 
dirty and write it to disk, but the delay may be large.  A 
different memory manager could mark such a clean, 
mapped page read-only and send a notification to SIS 
when a write happens (much like the technique used in 
distributed shared memory systems [Li 86] or Accent and 
Mach [Rashid 81; Accetta 86]), but there is no support 
for this in the NT memory manager. 
 
The NT cache manager is a system component that 
maintains an in-memory cache of file contents.  There is 
a single cache manager and single pool of cache pages 
for all of the different file systems and volumes on a 
particular Windows 2000 system.  The cache manager 
operates by memory mapping files that are cached, and 
then using memory copy operations to/from the caller’s 
memory in response to read/write calls.  If the mapped 
page isn’t present, the copy results in a page fault, which 
retrieves the appropriate data from the file system.  The 
pages to which the cache manager has mappings are the 
same as the pages to which a user’s memory mapped file 
would point, so memory mapped files and regular 
read/write based IO are coherent with  one another.  
Misses in the cache result in page faults that are identical 
to those generated by user-level mapped accesses. 
 



Because of the NT driver model, it is possible to develop 
filters with complex functionality independently of the 
other components with which they interact.  The SIS 
filter was developed without any changes in NTFS, the 
NT I/O manager, virtual memory manager, cache 
manager or any other NT components. 

2.2 Sparse Files and Reparse Points in NTFS 
The Windows 2000 version of the Windows NT File 
System (NTFS) provides some new functionality that is 
used in the implementation of SIS: sparse files and 
reparse points.  This section briefly describes these 
features. 
 
A sparse file is a file that does not have physical disk 
space allocated for the entire file.  Parts of the file that 
are not allocated are logically filled with zeroes.  A file 
may be marked as sparse and extended without reserving 
disk space for the extension.  An existing sparse file may 
have regions within the file deleted by a special IO 
control call, releasing the disk space and (logically) 
filling the deleted region with zeroes.  A user can issue a 
different IO control that returns a description of the 
allocated and unallocated regions of a file.  A write to an 
unallocated region causes disk space to be allocated.  
Unless a user specifically looks at a file to determine if it 
is sparse, it appears to be a normal file, possibly with 
much of the file being filled with zeroes.  Users’ disk 
quotas are charged for the sparse files as if they are fully 
allocated, regardless of how much disk space is actually 
used.  Unallocated regions within files have a minimum 
granularity; the current implementation restricts them to 
aligned 64 Kbyte chunks. 
 
A reparse point is a generalization of a symbolic link.  A 
reparse point is placed on a file or directory by calling an 
IO control function.  The reparse point consists of two 
parts: the reparse tag and the reparse data.  The reparse 
tag is a 32 bit number that specifies the type of reparse 
point, and the reparse data is a variable size area that is 
not interpreted by the file system, but rather is used by a 
filter driver above NTFS that implements the 
functionality associated with the reparse point (or by the 
IO system in some special cases).  SIS has a reserved 32 
bit reparse tag. 
 
When NTFS receives an open file request for a file with a 
reparse point, instead of doing a normal file open, it fails 
the request with STATUS_REPARSE and returns the 
reparse tag and data along with the completed (failed) 
IRP.  Filters that use reparse points look for 
STATUS_REPARSE, and then check to see if the 
reparse tag is implemented by the filter.  If not, the filter 
passes the completion up the driver stack.  If the filter 
owns the tag, it can take whatever action is appropriate, 

based on the reparse data.  If no driver claims the IRP 
and so the STATUS_REPARSE is passed all the way to 
the top of the driver stack, an error is returned to the 
caller. 
 
There is an option flag bit for opens, 
FILE_OPEN_REPARSE_POINT, that specifies that 
reparse behavior should be suppressed.  Unlike Unix 
symbolic links, a file with a reparse point on it is still an 
otherwise normal file.  Specifying the flag tells NTFS 
that the file under the reparse point should be opened 
rather than returning a STATUS_REPARSE and letting 
the filters take action. 
 
To illustrate the reparse point functionality, imagine 
implementing symbolic links using a filter driver and 
reparse points.  The filter would have a reparse tag type 
allocated specifically for itself.  The contents of the 
reparse data for a symbolic link would be the pathname 
component to be substituted for the file or directory in 
question.  When the filter driver saw an open IRP 
complete with STATUS_REPARSE and the symbolic 
link tag, it would halt the completion process, modify the 
open request to have the pathname component from the 
reparse buffer replace the file name in the original open 
request, and send the request back to the file system for 
further processing.  If an application wanted to create a 
symbolic link, it could simply place the appropriate 
reparse point on the file in question.  To delete a 
symbolic link, it would open the link using 
FILE_OPEN_REPARSE_POINT (which would cause 
the open to complete without STATUS_REPARSE and 
thus prevent the filter driver from redirecting the open to 
the link target rather than the link) and then delete it in 
the normal way∗ . 

2.3 The SIS Filter 
The kernel portion of SIS is a filter driver that sits above 
NTFS.  It handles all normal file operations that happen 
on SIS links, such as read, write, open, close and delete.  
It also implements a pair of special IO controls for 
creating new SIS links: SIS_COPYFILE, and 
SIS_MERGE_FILES.  COPYFILE makes a SIS copy of 
a file, possibly turning the source file into a SIS link in 
the process.  MERGE_FILES is used by the groveler to 
tell the filter to merge two files together.  
SIS_COPYFILE is unprivileged and is available to any 
user who has read permission to the source file and write 
permission to the destination.  SIS_MERGE_FILES is 
privileged and only available to the groveler. 
                                                           
∗  Although the Win32 DeleteFile API [Microsoft 00a] 
takes a file name as its parameter, at the NT system 
interface level files are deleted by opening them and then 
sending down a delete call on the opened file handle. 



 
The remainder of this section describes the details of SIS 
link files, implementing reads and writes, handling 
memory mapped accesses to SIS files, copy-on-close, 
volume check and backing up SIS links. 

2.3.1 SIS Links 
SIS links usually do not contain any file data, but rather 
contain a reference to another file called a common store 
file.  Common store files contain the data for files 
managed by SIS, and are located in a protected directory.  
By having the data for SIS files located in the common 
store rather than in any particular link file, SIS avoids the 
problems that would arise when such a “primary” SIS file 
was deleted or overwritten. 
 
A SIS link is implemented as a sparse file of the size of 
the file it represents with (usually) no regions allocated.  
Because there are no regions allocated, the file uses only 
as much space as is needed for its directory entry.  A SIS 
link has a reparse point with a SIS tag. The contents of 
the data portion of a SIS reparse point are the name of a 
common store file that backs the contents of the link, a 
unique identifier for the link, a signature of the contents 
of the common store file backing the link, and some 
internal bookkeeping information.  The purpose for the 
signature is described below. 

 
Creation of a SIS link is fairly straightforward.  A user 
issues a COPYFILE request.  If the source file is not 
already a SIS link, its contents are copied to a newly 
allocated file in the common store, and the source file is 
converted into a link to that common store file.  The 
destination file is then created as a link to the (either pre-
existing or newly created) common store file.  SIS keeps 
some out of band information (called backpointers) 
associated with the common store file that contains the 
set of links that point to the common store file.  A 
COPYFILE request adds such a backpointer for the 
destination, and also for the source if it was not already a 
SIS link. 
 
The reason that SIS copies the contents of a non-SIS file 
into the common store rather than renaming the file is 
that it is possible to open NTFS files by file ID, which is 
a number associated with the file, somewhat akin to a 
Unix i-number.  When a file is renamed, its file ID stays 
the same.  Therefore, if SIS renamed the source file into 
the common store, users of the file ID would attempt to 
open the common store file rather than the link file.  By 
doing a real copy, the SIS filter avoids the problem, 
although this means that a SIS copy of a non-SIS file 
takes effort proportional to the size of the file.  An 
extension to NTFS that allowed moving the contents of a 
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file without moving its file ID would solve this problem, 
but it is not available at this time. 

2.3.2 Normal Operations on SIS Links 
When a user opens a SIS link, the filter intercepts the 
STATUS_REPARSE completion and resubmits the open 
request with the FILE_OPEN_REPARSE_POINT flag, 
resulting in the user’s handle pointing to the link file 
(rather than the common store file).  SIS also opens the 
common store file (if it has not already done so) and 
attaches some context to the user’s handle indicating that 
this is a handle to a SIS link, and which common store 
file backs the link. 
 
SIS must properly maintain coherency of SIS link files, 
meaning that users of a particular link must see all 
updates to that link, while seeing none of the updates to 
other links that are backed by the common store file.  It is 
also desirable for SIS to conserve file cache space when 
possible by having different links to the same common 
store file backed by the same cache memory.  
Associating the cache with the common store file would 
violate coherence, while associating it with the link file 
would not conserve file cache space.  Instead, SIS uses a 
hybrid of the two, where the caches associated with the 
links contain dirty (or potentially dirty) data and the 
caches associated with the common store files contain 
data that is known to be in common and clean. 
 
Figure 2 shows an example of the in-memory structures 
created when a SIS link is opened.  File objects are in-
memory kernel objects that correspond to file handles, 
and are created by the kernel when handles are opened.  
Associated with a file object is a cache (maintained by 
the kernel cache manager), some file system state that is 
used to find the file’s blocks on the disk (not shown), and 
(in the case of SIS links) a special context attached by 
SIS.  The SIS link context contains a map of the file 
showing each region as clean, dirty or faulted.  It also 
contains a pointer to a SIS common store context and 
some other various housekeeping information.  The 
common store context contains a pointer to a file object 
that corresponds to the particular common store file, 
which in turn has its own cache.  There is one handle and 
file object per successful CreateFile [Microsoft 00a] call, 
one SIS link context per open SIS link file (regardless of 
how many handles refer to it), and one common store 
context, file object and cache per common store file that 
has one or more open link(s) pointing to it. 
 
As Figure 2 illustrates, there are two separate data caches 
associated with each opened SIS link: one for the link 
itself and one for the common store file that backs the 
link.  In Figure 2, examples of these two caches for SIS 
link A are the boxes labeled “Cache of A” and “Cache of 

α” respectively.  As long as there are no writes and no 
mapped file accesses, the cache associated with the link 
file is empty, and all of the cached file data is in the 
cache associated with the common store file.  This is 
important in situations where more than one link to a 
particular common store file are is use at one time, 
because it reduces the cache requirements by up to a 
factor of the number of links to the common store file.  
This reduction in cache usage and the resultant ability to 
cache more file data in the saved memory is one of the 
main benefits of SIS to a file server. 
 
Reads and writes initiated by ReadFile and WriteFile 
system calls (as opposed to by mapped file accesses, 
including those by misses by the system cache manager) 
are simple for SIS to handle.  All writes are sent to the 
cache associated with the link file, and result in the 
written region of the file being marked dirty in the map in 
the SIS context associated with the link.  When a 
ReadFile call tries to read a portion of a SIS file, the filter 
checks the map and sends the read to the common store 
file if the region is clean, and to the link file if the region 
is dirty or faulted.  If the read spans multiple regions that 
are in different states, SIS splits the read into pieces and 
handles the pieces as appropriate. 

2.3.3 Memory Mapped Access to SIS Links 
Mapped file accesses present more of a challenge.  When 
a user (or the system cache manager) maps a file and 
touches a page for the first time, it will generate a page 
fault which will be translated by the NT IO system into a 
read request that is sent to SIS.  Read requests generated 
by page faults are specially marked, and the SIS filter can 
differentiate them from normal reads.  Once SIS provides 
the data, the virtual memory system will map the 
appropriate page, and future accesses (either reads or 
writes) will not generate any action that will be seen by 
SIS.  Other users who map and touch the same portion of 
the same file will be provided with a mapping to the 
same page, but the virtual memory system will not send a 
read to SIS, since it already has the data.  The virtual 
memory system can unmap and throw away any clean 
(unwritten) pages without notifying SIS, and it will 
asynchronously generate writes for dirty pages at its own 
pace.   
 
Because SIS cannot take any action when a mapped page 
is first written (because it doesn’t get any notification of 
the write), in order to maintain coherence mapped pages 
must be associated with the link file cache and not the 
common store; if not, then two users could map two 
different SIS links that share a common store file, and 
they would see each others changes, violating the basic 
SIS semantics.  We were unwilling to change the NT 



memory manager to generate write faults when a page is 
first written. 
 
Neither SIS’s clean nor dirty states provides correct 
behavior in the case of a page that has taken a mapped 
read fault.  Treating pages that have seen page faults as 
clean would result in normal (ReadFile) reads to those 
pages going to the common store file, which violates the 
coherence of normal reads with mapped writes.  Treating 
them as dirty causes another problem: if there has been 
no write to the page the virtual memory system will see 
the page as clean, and may discard it.  Sending a read to 
such a page would result in the user seeing a zero-filled 
portion of the link file, which is clearly wrong.  To 
handle this problem, SIS has a third page state, faulted.  
When a page is in the faulted state, it sends normal reads 
to the cache associated with the link file, and page-fault 
reads to the common store file.  Since a page-fault read 
will only happen if the page has been discarded by the 
virtual memory manager, when one occurs SIS concludes 
that the page has not been written and so it is safe to use 
the data from the common store file.  SIS directs all 
accesses (reads and writes, page-fault and normal) to 
dirty file regions to the link file. 

2.3.4 Copy-on-close 
After all users close a SIS file that has had writes to it, 
the filter fills in the remaining clean regions (if any) with 
the data from the common store file.  The actual copying 
happens in a system worker thread so as to not delay the 
close operation.  If disk space is exhausted during this 
process, the filter simply leaves the remainder of the file 
unfilled, and leaves the reparse point intact.  A 
subsequent open of this file results in the allocated 
regions of the file being marked dirty.  We could have 
chosen to forego filling the clean regions of a file, and 
instead left the link backed in part by the common store 
file.  If we had done so, we could have wound up in the 
odd situation of having SIS potentially increase the 
amount of disk space used in the system, by having files 
that are almost completely dirty backed by large and 
mostly unused common store files.  To avoid this 
situation, SIS does the copy-on-close when possible.  
 
Using copy-on-close rather than the more common copy-
on-write has several advantages.  The main one is that in 
many cases the file will be wholly overwritten, and so the 
copy can be avoided entirely.  In his recent study of 
Windows NT 4.0 file system behavior, Vogels [Vogels 
99] found that 79% of accesses to files were read only.  
Of the remaining accesses, 18% were write only and 3% 
were read/write.  Of the write only file accesses, 78% of 
them were whole file writes.  This means that of all files 
write accesses at least 67% were whole-file overwrites 
(conservatively assuming that none of the read/write files 

were wholly overwritten), and so copy-on-close would do 
no data copying.  A second advantage is that the 
straightforward implementation of copy-on-write would 
stop all accesses to the file after the first write until the 
copy is completed, which could be a long time for large 
files.  In an earlier paper [Douceur 99], we report that the 
distribution of files by size in Windows file systems is 
heavy-tailed, and so there are significant numbers of very 
large files; both we and Vogels found that about 20% of 
bytes are in files 4MB and larger, so it is reasonable to 
believe that writes to large files would not be unusual, 
and copy-on-write delays unacceptable.  A final 
advantage of copy-on-close is that it allows sharing of 
file cache space for file regions that are unwritten. 

2.3.5 Implementation Details and Backup 
When a SIS link is eliminated, either by deletion of the 
link or because of an overwrite, the filter removes the 
corresponding backpointer in the common store file.  
When all of the backpointers for a common store file are 
removed, the filter deletes the common store file. 
 
In certain circumstances, it is impossible for the SIS filter 
to prevent a user from writing an arbitrary reparse point.  
In theory, the user could write a SIS reparse point, which 
the filter would then use to read data for the user from the 
common store.  This would be a violation of security, 
since the user did not have to prove access permission for 
the common store file before writing the reparse point.  
In order to address this problem, SIS includes a signature 
of the common store file contents in the reparse data.  
The signature is a hash of the entire contents of the 
common store file; it is easy to compute given the data in 
the file, but impossible to compute without the contents 
of the file (and 64 bits in length so randomly guessing is 
difficult).  Each link file contains a copy of this signature 
in its reparse point.  The filter will refuse to open a link 
file that contains an invalid signature.  A reparse point 
that contains an appropriate signature proves that the user 
already knows the contents of the common store file (or 
has seen another reparse point that refers to the same 
contents, and so could have known the contents of the 
file).  Because all that a user gets by creating SIS link is 
the ability to read the common store file contents, there is 
no security breach.   
 
The SIS filter includes a facility called volume check for 
repairing inconsistencies in metadata, similar to the Unix 
fsck and Windows chkdsk programs.  Unlike these 
programs, however, SIS is able to do its repairs while the 
system is running, without having to disrupt service in 
any major way.  One limitation during a volume check is 
that if a user deletes what appears to be the last reference 
to a common store file the filter will not delete the 
common store file until the volume check completes, 



because it does not trust its backpointers during a volume 
check.  The volume check process will repair the 
backpointers for all common store files, and will delete 
any common store files that have no references.  NTFS 
provides a method for efficiently finding all SIS links on 
a volume, so the time to complete a volume check is 
proportional to the number of SIS links on the volume, 
not to the size or total number of files on the volume.  A 
volume check is initiated any time that the SIS filter 
notices an inconsistency. 
 
SIS provides a special interface to backup/restore 
applications that allows them to behave appropriately 
with SIS links [Bolosky 99].  The goal is to have exactly 
one copy of the SIS file content on the backup tape for 
each backed up set of SIS links that refer to a given 
common store file.  SIS provides a dynamically loaded 
library (DLL) for the backup/restore application.  The 
backup application calls the DLL when it encounters a 
SIS link, and the DLL tells backup if it needs to back up 
a common store file in response.  On restore of a SIS 
link, restore calls the DLL, which in turn looks to see if 
the appropriate common store file already exists or if it’s 
already reported that file to restore.  If not, then it reports 
the common store file corresponding to the link being 
restored.  Because common store files have universally 
unique file names, and their content never changes once 
the file is created, if the common store file still exists on 
the volume there is no need to restore over it; simply 
linking to it suffices. 

2.4 The Groveler 
The groveler is a user level process that finds duplicate 
files in the file system, and reports these files to the SIS 
filter for merging.  The essence of its task is efficiently to 
find the sets of matching files on a volume, and to keep 
the sets up to date as the volume changes.  It maintains a 
database of signatures of files on the volume, and uses 
NTFS 5.0’s update journal feature* to track files that have 
changed and to update their database entries. 
 
The groveler database contains two structures: a work 
queue, and a mapping of signatures to files.  The work 
queue contains work items of two types.  The first is to 
compute the signature of a file, and the second is to 
compare a file to any others with matching signatures.  
The groveler has a thread that runs periodically, reads 

                                                           
* The update journal [Microsoft 00a] is a feature whereby 
NTFS maintains a record of all recent updates to a 
volume in a ring buffer.  Each entry in the journal has a 
sequence number (USN, “update sequence number”), so 
it is possible for a user of the journal to determine if it 
has missed any entries because of a gap in the sequence 
numbers. 

entries from NTFS’s update journal and if appropriate 
makes entries on the groveler’s work queue.  If the 
groveler misses entries in the update journal, it detects 
this fact and re-scans the entire file system.  A second 
thread drains items from the work queue, either 
computing a signature or comparing a pair of files for 
each item.  It then updates the database, possibly instructs 
the filter to merge two files, and removes the item from 
the queue. 
 
The groveler uses a 128 bit file signature.  The first 64 
bits of the signature are the size of the file.  It is 
inexpensive to obtain the file size, and files with differing 
size obviously cannot be identical.  The remaining 64 bits 
are computed by running a hash function on a fixed 
portion of the file’s contents.  The groveler hashes two 4 
kilobyte chunks of file contents from the middle of the 
file (unless the file is less than or equal to 8 kilobytes in 
size, in which case it hashes the entire file).  Hashing 
only part of the file means that any differences in the 
portion of the file not hashed will not be detected by 
comparing the signatures.  However, restricting the hash 
limits the amount of work that the groveler does for large 
files. Even if the groveler hashed all of the file, the 
possibility of hash collisions would still exist, and in 
order to guarantee that it does not corrupt data it would 
be required to compare files byte-by-byte before linking 
them together.  Therefore, unless hashing a smaller 
portion of a file greatly increases the probability of hash 
collisions for unequal files, the optimization is 
worthwhile.  We have noted very few cases wherein 
files’ hashes match and the files’ contents do not, even 
though we only hash a constant amount of data per file. 
 
The groveler is set up to run as a low importance 
background task (unless disk space is tight).  The 
groveler is not particularly CPU intensive; most of the 
work it does is disk I/O.   As a result, simply running it at 
low scheduling priority does not prevent it from 
interfering with other, more important tasks.  The 
groveler uses a scheme where it tracks its own rate of 
progress, and slows down its run rate when its progress 
slows.  The premise is that if the groveler is running more 
slowly, it must be contending with some other, higher 
priority process for some resource.  The toolkit that 
implements this technique is called “MS Manners” and is 
described in detail in [Douceur 99a]. 
 
In order to do its work the groveler needs to open files, 
and in some cases to hold them open for a long time.  
This could cause problems for other users of the files 
who might want to have exclusive access to a file for 
some reason, and would have their opens fail with a 
sharing violation.  In order to mitigate this problem, the 
groveler takes a batch oplock on each file it opens 
immediately after opening it.  Oplocks [Microsoft 00a] 



are a facility by which the opener of a file can be notified 
when another user wants access to the file, and can take 
action before the other user’s action is completed or 
failed.  They were designed to allow effective local 
caching of files that are shared over a network while 
maintaining coherence.  However, in the case of SIS they 
allow the groveler to close a file that it is using without 
generating a sharing violation for another user of the file. 

3. Performance of and Uses for SIS 
In Windows 2000, SIS is deployed only on remote install 
servers, and then only on the volumes that contain the 
remote install system images.  While the initial release of 
SIS is used only for remote install servers, we believe 
that in the future it may be put to other uses.  We briefly 
present measurements that show that the per-link space 
overhead of a SIS link and the time to make a copy of a 
SIS link.  We measured a remote install server at 
Microsoft, and report on the disk space (though not file 
cache) savings that SIS provided for that server.  We also 
discuss using SIS on file servers that back the files of 
multiple users, and using SIS in a serverless, distributed 
file system that we have proposed elsewhere [Bolosky 
00]. 
 
We measured the time to make a SIS copy of a file that is 
already a SIS link using the SIS_COPYFILE API on a 
Gateway 2000 E-5000 Pentium II 300MHz  personal 
computer running Windows 2000, with 512 MB of 
memory, and a 9 GB ST39173N 7200 RPM Seagate 
Barracuda disk drive containing an aged file system and a 
9 GB ST19171W Seagate Barracuda 7200 RPM disk 
drive containing a clean file system.  We ran all tests with 
the network disconnected.  The clean file system was 
almost empty and newly formatted while the aged file 
system was 70% full and had been in use for several 
years, although it had been defragmented a few months 
before we ran the test.   
 
We determined the time to make a SIS link by creating a 
file, making one SIS copy of it to make the source file a 
SIS link, making 10,000 SIS copies of the file, noting the 
wall clock time for the execution and dividing by 10,000.  
We ran the 10,000 copy measurement 100 times on each 
of the two file systems.  In each instance, we discarded 
the first 10,000 copy run so that we would be running 
with the file caches hot. 
 
In our tests (using a file about 1.6MB in size), a SIS copy 
took 4.3ms (+/- 290µs at 99% confidence) on the clean 
file system and 8.6ms (+/- 220µs at 99% confidence) on 
the used file system to copy the file.  It is difficult to say 
how much of the difference is due to the state of the file 
system and how much is due to the fact that the dirty file 
system is running on an older model of disk.  The reason 

that the copy is this slow is that there is a synchronous 
disk write in the SIS backpointer update, which is 
necessitated by the inability of several NTFS metadata 
updates to be grouped into a single atomic transaction.   
Copying the same 1.6MB file using a normal file copy 
took about 260ms per copy on the clean file system. 
 
 We also measured the space cost to create a SIS link by 
noting the amount of free disk space, making a large 
number (10,000) of SIS links, noting the amount of free 
space again, and dividing by the number of links.  The 
overhead was about 300 bytes/link for all power-of-ten 
file sizes from 100 to 108 bytes. 
 
We measured a remote install server at Microsoft that is 
used to install various versions of Windows NT for 
testing purposes (of the systems being installed, not the 
server).  This server contains 20 different images of 
Windows NT of various flavors: both Windows 2000 
Professional and Server, and different internal builds of 
the system, including the last five builds before the final 
Windows 2000 product, the release version of Windows 
2000, and a build from after the Windows 2000 release.  
The remote install volume on this server contained about 
112,000 files, and a logical 7.5 GB of file contents.  Of 
this, 45,000 files (39%) and 6.0GB (80%) were in SIS 
links, backed by 1.6GB in 13,000 common store files.  
The overall space savings from SIS was 58%.  In a field 
deployment, one would expect to see fewer different 
versions of the operating system with more different sets 
of applications installed, which we expect would result in 
better space savings. 
 
We would have liked to measure the advantage in buffer 
cache usage for a remote install server running SIS.  
Unfortunately, we did not have the ability to take traces 
of a real remote install server in action.  While we could 
have used synthetic workload traces to simulate such a 
server, barring real measurements there is no good way to 
determine the parameters for the workload generator.  
Because cache performance is strongly (and non-linearly) 
influenced by the working set size, the exact workload 
parameters would almost wholly determine the results of 
such a simulation.  Therefore, lack of real parameters 
makes the synthetic workload exercise at best 
meaningless, and more likely misleading.  
 
SIS could be used for file servers that store the files of 
groups of users, such as is typically done with NFS 
[Pawlowski 94; Sandberg 85], AFS [Howard 88], Coda 
[Satya 90; Kistler 91] or any of a number of comparable 
systems.  In fact, the original reason for building SIS was 
to support the remote boot server, a similar idea for 
Windows 2000, but remote boot was cut from the final 
product for schedule reasons.   
 



In [Bolosky 00] we measured the contents of a number of 
desktop personal computer file systems at Microsoft and 
observed the duplication of contents among them.  We 
found that the level of duplication depends on the number 
of file systems grouped together, with the percentage of 
reclaimable space growing roughly with the log of the 
number of file systems.  Grouping 100 randomly selected 
file systems gave a little better than 30% space savings.  
At 1000 file systems the savings was just under 50%.  
Our model predicts a little better than 60% savings at 
10,000 file systems.  File systems of people with similar 
job functions (e.g. software developer, secretary, 
manager) were more alike than the randomly selected 
groups of file systems quoted above.  We are unaware of 
any comparable study or raw data for any other 
environment, but we expect that there may be significant 
differences on other operating systems or even for 
institutions other than Microsoft. 
 
The file system that we propose in [Bolosky 00] is 
intended to provide a shared name space and common 
access to storage for tens of thousands of users using only 
the desktop workstations of those users.  One issue in 
such a design is providing availability of files on 
machines that are much less available than managed 
servers.  Our approach is to replicate the file contents 
across the machines in the hope that the system can find 
at least one copy of a file on a machine that is up.  The 
number of replicas that can be made strongly 
(exponentially) influences the probability that a file will 
be available.  By using SIS (or a similar technique) the 
total size of the stored file content can be reduced, and 
hence the number of copies that will fit on the available 
disk space will be increased, greatly improving the 
overall availability of the system.  That is, even if SIS 
only provides modest space savings, these savings can 
result in greatly improved system performance. 

4. Related Work 
There are a number of different uses of copy-on-write in 
computer systems.  Mostly they share the same 
characteristics: A traditional copy would be expensive in 
time or space (or both); the semantics presented to the 
user are those of a copy, rather than a link; and, the 
expectation of the system designer is that the copy-on-
write will rarely happen.  Typically, the cost of the initial 
“copy” followed by the copy-on-write is higher than just 
eagerly evaluating the copy, but this is made up for by 
the common case in which the copy-on-write never 
happens [Fitzgerald 86]. 
 
Copy-on-write has been used in virtual memory systems 
as least as far back as Accent [Rashid 81] and Mach 
[Accetta 86;Young 87].  These systems allowed 
processes (including file systems) to send messages to 

one another with copy semantics, but used the virtual 
memory system to map the same memory into both 
processes’ address spaces.  If a process subsequently 
wrote into the memory, the system took a protection 
fault, made a copy of the page in question, and mapped 
the newly copied page into the faulting process’s address 
space with write permission. 
 
The Microsoft Exchange Server [Todd 96] (a multi-user 
mail server) uses copy-on-write techniques for mail 
messages that are sent to multiple recipients, and even 
calls the technique “Single Instance Store.”  This mail 
system allows recipients to modify mail messages after 
they’re received, which triggers the copy-on-write.  It 
does not have an equivalent of the groveler; if two 
identical messages are in a server, but they were not 
generated as copies of one another, the server will never 
merge them. 
 
Apollo systems used access control lists (ACLs) that 
described the lists of users who had access to particular 
files.  These ACLs were immutable.  The salacl 
command looked through the sets of ACLs existing in the 
system, and combined those that matched [Leach 98], 
functionality that is similar to the groveler, but the 
because the ACLs were immutable there was no need for 
the copy-on-close function of the SIS filter. 
 
Many file systems support various types of links with 
semantics differing from SIS links.  In particular, Unix 
file systems [McKusick 84] typically support both hard 
and symbolic links.  These types of links differ from SIS 
links in that writes through one link to an object are 
visible through a different link.  NTFS [Custer 94] 
supports hard links that are similar to those in Unix.  
None of these systems automatically detect and merge 
files with identical contents, because such an action does 
not make sense when links have different semantics from 
separate files. 
 
It is common practice to aggregate files of many users 
onto a central file server, which may be implemented as a 
single machine or a cluster.  NFS [Sandberg 85], Sesame 
[Thompson 85], AFS [Howard 88], the Sprite file system 
[Ousterhout 88], Coda [Sayta 90], Ficus [Guy 90] , Swift 
[Cabrera 91], Zebra [Hartman 93], the Microsoft file 
systems using the Server/Redirector network remoting 
services [Solomon 98], and a host of others too numerous 
to mention all are variations on the theme of a centralized 
network file server that often will combine the files from 
many users on many client machines onto a single file 
system. 
 
There are number of serverless (ie., decentralized) 
distributed file systems similar to the one that we 
mention at the end of Section 3.  Chief among them are 



Frangipani [Thekkath 97], and xFS [Anderson 95].  They 
differ from our proposed file system in a number of 
ways, among them that they assume that the machines 
that implement the system are secure, and are more 
highly available than is reasonable to expect from 
desktop workstations. 

5. Summary 
SIS is a component of Windows 2000 that detects files 
that have identical contents and merges them into SIS 
links, special links that present the semantics of separate 
files while in most cases using the disk and file cache 
space of a single file (plus a small disk overhead per link 
that does not depend on the size of the underlying file).  
In Windows 2000 SIS is used as part of the remote install 
server, which is a way of setting up machines to a pre-
determined configuration without having to go through 
the normal set-up process. 
 
SIS is implemented as a file system filter driver and a 
user-level service.  The filter driver implements the links 
and copy-on-close when a file is modified, presenting the 
semantics of an independent copy to the user of the link.  
The user-level service watches changes to the file system, 
computes signatures for newly-changed files, compares 
files with matching signatures and reports matching files 
to the filter for merging. 
 
The cost of making SIS copies of files that are already 
SIS links is small and independent of the size of the file.  
The disk-space overhead of a SIS link is about 300 bytes 
regardless of the size of the file to which the link refers.  
In most instances, copying a SIS file takes about 8.6ms 
on the (pretty slow) machine and thoroughly aged file 
system on which we took our measurements.  We were 
unable to measure the impact of SIS on file cache usage 
in a real installation, but hypothesize that in some cases it 
may significantly improve performance by reducing the 
cache working set  below the available memory size. 
 
We speculate that SIS could be useful in contexts other 
than the remote install server, in particular a distributed, 
serverless file system built on ordinary workstations.  
Because that file system’s performance is strongly 
influenced by the amount of free disk space available, 
using SIS to reduce the effective disk space usage 
provides large benefits in availability. 

6. Availability 
SIS ships with Microsoft Windows 2000 as part of the 
Remote Installation Services.  The source code is 
available with a Windows 2000 source license, which is 
available from Microsoft on a case-by-case basis.  A 
suitably sanitized version of the raw data used in 

[Douceur 99] and [Bolosky 00] is available by request 
from John Douceur, johndo@microsoft.com, on a set of 
CD ROMs.  It is much too big to place on the net for 
download. 
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