
Single Instance Storage in Windows� 2000
by William J. Bolosky, Scott Corbin, David Goebel*, and John R. Douceur

Microsoft Research, *Balder Technology Group, Inc.
{bolosky, scottc, v-davidg, johndo}@microsoft.com

Abstract
Certain applications, such as Windows 2000’s Remote Install service, can result in a set of files in
which many different files have the same content. Using a traditional file system to store these files
separately results in excessive use of disk and main memory file cache space. Using hard or symbolic
links would eliminate the excess resource requirements, but changes the semantics of having separate
files, in that updates to one “copy” of a file would be visible to users of another “copy.” We describe
the Single Instance Store (SIS), a component within Windows® 2000 that implements links with the
semantics of copies for files stored on a Windows 2000 NTFS volume. SIS uses copy-on-close to
implement the copy semantics of its links. SIS is structured as a file system filter driver that
implements links and a user level service that detects duplicate files and reports them to the filter for
conversion into links. Because SIS links are semantically identical to separate files, SIS creates them
automatically when it detects files with duplicate contents. This paper describes the design and
implementation of SIS in detail, briefly presents measurements of a remote install server showing a
58% disk space savings by using SIS, and discusses other possible uses of SIS.

1. Introduction
Some applications generate many files that have identical
content. These files are separate from one another, in the
sense that they may have different path names, owners,
access control lists, and may charge different users’ disk
allocation quotas. Most importantly, because the files are
separate, writes to one file do not affect any other files.
However, the fact that the files have identical contents
presents an opportunity for the file system to save space
on the disk and in the main memory file cache. The
Single Instance Store (SIS) is a pair of components in
Microsoft Windows® 2000 Server [Solomon 98] that
automatically takes advantage of this opportunity. This
paper describes the design and implementation of SIS,
and discusses its use in Windows 2000 as well as other
potential uses for the technology.

SIS is used in Windows 2000 to support the Remote
Install Server [Microsoft 00]. Remote Install is an
application that allows a server owner to configure a
server with a set of machine images (installations of an
operating system and an arbitrary set of applications),
and to use these images to set up new machines quickly,
without having to go through the usual installation
processes. Different machine images stored on a remote
install server will have different files, but there will be
some duplicate files in the images. Running SIS on a
remote install server removes space used by the duplicate
files, and allows a server to host more images with the
same amount of disk and main memory file cache space.

SIS is built in two components. First is a kernel-level file
system filter driver (called the SIS filter or just the filter)
that transparently implements files that have identical
contents but are stored only once on the disk; second is a
user-level service (called the groveler) that is responsible
for automatically finding identical files and reporting
them to the filter for merging. The filter’s basic
technique is to handle reads by redirecting them to
common files, and to handle writes using copy-on-close.
The groveler runs as a low-importance service (daemon)
that tracks changes to the file system, maintains a
database of hashes of files in the file system, checks files
with matching hashes to see if they are identical, and
reports matching files to the filter for merging. Unlike
traditional file linking, SIS (via the groveler)
automatically finds and merges files with duplicate
contents. This is sensible in SIS because SIS links
(unlike hard or symbolic links) are semantically identical
to independent files.

SIS’s copy-on-close technique is similar to copy-on-
write, which has been used in various forms in computer
systems for quite some time, most notably in virtual
memory [Rashid 81] and database [Todd 96] systems. In
copy-on-write, at the time of a “copy” a link between the
source and destination is established, and the actual
copying of the data is postponed until either the source or
destination is modified. Crucial to the concept of copy-
on-write is that it is semantically identical to a normal
copy, unlike linked-file or shared memory techniques.
SIS’s copy-on-close differs from copy-on-write in that
the copy is delayed beyond even the time of the first
write until the complete set of updates are made to the

file, and then only the portions of the file that haven’t
been overwritten are copied. This has two advantages
over copy-on-write: there is no delay for the copy at the
time of the first write, and there is no need to copy the
portions of the file that are overwritten.

While saving disk space is valuable, disk storage has
been rapidly dropping in price per byte. Some may argue
that the disk space savings afforded by SIS, which in
most cases will be much less than an order of magnitude,
are uninteresting for all but the most space-consuming
applications. While this may be true, the reduction in
size of the main memory file cache can have large
performance effects. This will become more pronounced
as the ratio of processor, memory and network speeds to
disk latency increases.

The next section presents some background describing
features in Windows 2000 on which SIS depends, and
then goes on to describe SIS’s architecture and
implementation in detail. Section 3 briefly presents some
performance measurements relating to the time and size
overheads of SIS, and the disk space savings that was
realized on a remote install server. The section then
discusses some potential uses for SIS beyond the remote
install server. Section 4 presents related work, section 5

summarizes and section 6 describes the availability of the
software and raw data.

2. SIS Architecture and
Implementation

SIS has two responsibilities: implementing SIS links, and
discovering files with identical content in order to merge
them. These two functions are provided by a kernel-level
file system filter driver and a user-level service (daemon)
respectively. Figure 1 shows the top-level architecture of
SIS. This section lays out the basic concepts and terms
used in describing SIS and its design, provides brief
background on the Windows NT underpinnings used by
SIS, and then describes the SIS architecture and design in
detail.

A user file managed by SIS is called a SIS link. The SIS
filter (the kernel mode portion of SIS) is responsible for
assuring that users see appropriate behavior when
accessing SIS links. The filter keeps the data that backs
SIS links in files in a special directory called the SIS
Common Store. SIS links may be created in two ways: A
user may explicitly request a SIS copy of a file by issuing
the SIS_COPYFILE file system control, or SIS may
detect that two files have identical contents and merge
them. The groveler (so called because it grovels through

User Mode

User Process

User Process …

Normal File System APIs

SIS Groveler

SIS Copy API

Other Filter(s)

SIS Filter

Other Filter(s)

NTFS

Disk Driver

Special SIS Groveler API

Figure 1: SIS Architecture

NT I/O System

Kernel

Executive
Kernel Run Time

File System Run Time
Virtual Memory

File Cache Manager

Page Fault Handler

Kernel Mode

Driver Stack

the file system contents) detects duplicate files. All SIS
functions are local to a particular NTFS volume, which
may be accessed remotely in the same way as any other
NTFS volume.

The rest of this section describes how SIS is designed and
constructed. The first two subsections provide necessary
background about unusual Windows 2000 and NTFS
[Custer 94] facilities used in the implementation. Section
2.3 describes the SIS filter in detail, and section 2.4
covers the groveler.

2.1 The Windows 2000 Driver Model
The privileged mode portion of Windows 2000 consists
of a base kernel containing services such as scheduling,
virtual memory support, thread and multi-processor
synchronization, etc.; and a set of loadable drivers
[Solomon 98;Baker 97;Nagar 97]. Windows 2000
drivers may have more broad functionality than device
drivers in traditional systems. They implement file
systems, network protocol stacks, RAID/Mirroring disk
functionality [Patterson 88], virus protection,
instrumentation, off-line file migration, and other similar
functions as well as simply operating normal devices
[Fisher 98]. Groups of these drivers are called stacks,
although that term can be somewhat misleading, because
their organization is not necessarily linear (imagine a
RAID driver that talks to more than one disk driver). A
driver that is inserted between the NT I/O system and the
base file system driver is called a file system filter driver
(or sometimes just a filter). There are also other kinds of
filter drivers that sit below the file system, but they are
not relevant here.

To first approximation, NT driver stacks work by passing
around I/O Request Packets (IRPs), which are requests to
do a specific operation, such as read, write, open or close.
For instance, a file system driver might receive a read
IRP specifying that a range of a file should be read into a
certain virtual address in a process. The file system
would use its metadata to find the region(s) on disk
holding the data for the given part of the file, modify the
IRP to tell the disk driver what action to take, and then
send the IRP down the stack to the disk driver, which
would perform the actual I/O. When a driver marks an
IRP as completed, any drivers above it on the stack have
the opportunity to inspect the IRP, see if it completed
successfully, and take action including aborting the IRP
completion or changing the completion status.

The NT I/O manager sits at the top of all file system
driver stacks. It accepts system calls from user processes
(or function calls from kernel-level components),
translates handles into pointers to file objects, generates
IRPs and sends them to the top member of the

appropriate driver stack. After the IRP completes, the
I/O manager completes the initial request by completing
the system or function call, or by other appropriate means
in the case of asynchronous calls. The I/O Manager (and
SIS) also support the FastIO function-call driver
interface, but that is beyond the scope of this paper.

Windows 2000 supports memory mapped access to files.
In this mode, a process or system component asks the
system to map a portion of a file to a region of virtual
memory. When the process or component accesses a
virtual address in a mapped range, it may take a page
fault, which will result in the virtual memory manager
generating an IRP for reading the appropriate data into a
page, and sending this request to the file system driver
stack. This IRP is marked to indicate that it was
generated by a page fault and that the file system should
read data from the disk, rather than trying to obtain it
from the system file cache. Once the file system
completes the request, the virtual memory manager maps
the page at the appropriate virtual address in the process
or system address space and restarts the faulting thread.
When an access to a memory mapped file doesn’t result
in a fault, the system is not immediately aware of it. This
has an important implication for SIS: If a user maps a
page, takes a read fault on the page and then later writes
to it, SIS will not have any way of knowing that the page
has been written, and so will not be able to take any
consistency actions at the time of the write. Eventually,
the virtual memory system will notice that the page is
dirty and write it to disk, but the delay may be large. A
different memory manager could mark such a clean,
mapped page read-only and send a notification to SIS
when a write happens (much like the technique used in
distributed shared memory systems [Li 86] or Accent and
Mach [Rashid 81; Accetta 86]), but there is no support
for this in the NT memory manager.

The NT cache manager is a system component that
maintains an in-memory cache of file contents. There is
a single cache manager and single pool of cache pages
for all of the different file systems and volumes on a
particular Windows 2000 system. The cache manager
operates by memory mapping files that are cached, and
then using memory copy operations to/from the caller’s
memory in response to read/write calls. If the mapped
page isn’t present, the copy results in a page fault, which
retrieves the appropriate data from the file system. The
pages to which the cache manager has mappings are the
same as the pages to which a user’s memory mapped file
would point, so memory mapped files and regular
read/write based IO are coherent with one another.
Misses in the cache result in page faults that are identical
to those generated by user-level mapped accesses.

Because of the NT driver model, it is possible to develop
filters with complex functionality independently of the
other components with which they interact. The SIS
filter was developed without any changes in NTFS, the
NT I/O manager, virtual memory manager, cache
manager or any other NT components.

2.2 Sparse Files and Reparse Points in NTFS
The Windows 2000 version of the Windows NT File
System (NTFS) provides some new functionality that is
used in the implementation of SIS: sparse files and
reparse points. This section briefly describes these
features.

A sparse file is a file that does not have physical disk
space allocated for the entire file. Parts of the file that
are not allocated are logically filled with zeroes. A file
may be marked as sparse and extended without reserving
disk space for the extension. An existing sparse file may
have regions within the file deleted by a special IO
control call, releasing the disk space and (logically)
filling the deleted region with zeroes. A user can issue a
different IO control that returns a description of the
allocated and unallocated regions of a file. A write to an
unallocated region causes disk space to be allocated.
Unless a user specifically looks at a file to determine if it
is sparse, it appears to be a normal file, possibly with
much of the file being filled with zeroes. Users’ disk
quotas are charged for the sparse files as if they are fully
allocated, regardless of how much disk space is actually
used. Unallocated regions within files have a minimum
granularity; the current implementation restricts them to
aligned 64 Kbyte chunks.

A reparse point is a generalization of a symbolic link. A
reparse point is placed on a file or directory by calling an
IO control function. The reparse point consists of two
parts: the reparse tag and the reparse data. The reparse
tag is a 32 bit number that specifies the type of reparse
point, and the reparse data is a variable size area that is
not interpreted by the file system, but rather is used by a
filter driver above NTFS that implements the
functionality associated with the reparse point (or by the
IO system in some special cases). SIS has a reserved 32
bit reparse tag.

When NTFS receives an open file request for a file with a
reparse point, instead of doing a normal file open, it fails
the request with STATUS_REPARSE and returns the
reparse tag and data along with the completed (failed)
IRP. Filters that use reparse points look for
STATUS_REPARSE, and then check to see if the
reparse tag is implemented by the filter. If not, the filter
passes the completion up the driver stack. If the filter
owns the tag, it can take whatever action is appropriate,

based on the reparse data. If no driver claims the IRP
and so the STATUS_REPARSE is passed all the way to
the top of the driver stack, an error is returned to the
caller.

There is an option flag bit for opens,
FILE_OPEN_REPARSE_POINT, that specifies that
reparse behavior should be suppressed. Unlike Unix
symbolic links, a file with a reparse point on it is still an
otherwise normal file. Specifying the flag tells NTFS
that the file under the reparse point should be opened
rather than returning a STATUS_REPARSE and letting
the filters take action.

To illustrate the reparse point functionality, imagine
implementing symbolic links using a filter driver and
reparse points. The filter would have a reparse tag type
allocated specifically for itself. The contents of the
reparse data for a symbolic link would be the pathname
component to be substituted for the file or directory in
question. When the filter driver saw an open IRP
complete with STATUS_REPARSE and the symbolic
link tag, it would halt the completion process, modify the
open request to have the pathname component from the
reparse buffer replace the file name in the original open
request, and send the request back to the file system for
further processing. If an application wanted to create a
symbolic link, it could simply place the appropriate
reparse point on the file in question. To delete a
symbolic link, it would open the link using
FILE_OPEN_REPARSE_POINT (which would cause
the open to complete without STATUS_REPARSE and
thus prevent the filter driver from redirecting the open to
the link target rather than the link) and then delete it in
the normal way∗ .

2.3 The SIS Filter
The kernel portion of SIS is a filter driver that sits above
NTFS. It handles all normal file operations that happen
on SIS links, such as read, write, open, close and delete.
It also implements a pair of special IO controls for
creating new SIS links: SIS_COPYFILE, and
SIS_MERGE_FILES. COPYFILE makes a SIS copy of
a file, possibly turning the source file into a SIS link in
the process. MERGE_FILES is used by the groveler to
tell the filter to merge two files together.
SIS_COPYFILE is unprivileged and is available to any
user who has read permission to the source file and write
permission to the destination. SIS_MERGE_FILES is
privileged and only available to the groveler.

∗ Although the Win32 DeleteFile API [Microsoft 00a]
takes a file name as its parameter, at the NT system
interface level files are deleted by opening them and then
sending down a delete call on the opened file handle.

The remainder of this section describes the details of SIS
link files, implementing reads and writes, handling
memory mapped accesses to SIS files, copy-on-close,
volume check and backing up SIS links.

2.3.1 SIS Links
SIS links usually do not contain any file data, but rather
contain a reference to another file called a common store
file. Common store files contain the data for files
managed by SIS, and are located in a protected directory.
By having the data for SIS files located in the common
store rather than in any particular link file, SIS avoids the
problems that would arise when such a “primary” SIS file
was deleted or overwritten.

A SIS link is implemented as a sparse file of the size of
the file it represents with (usually) no regions allocated.
Because there are no regions allocated, the file uses only
as much space as is needed for its directory entry. A SIS
link has a reparse point with a SIS tag. The contents of
the data portion of a SIS reparse point are the name of a
common store file that backs the contents of the link, a
unique identifier for the link, a signature of the contents
of the common store file backing the link, and some
internal bookkeeping information. The purpose for the
signature is described below.

Creation of a SIS link is fairly straightforward. A user
issues a COPYFILE request. If the source file is not
already a SIS link, its contents are copied to a newly
allocated file in the common store, and the source file is
converted into a link to that common store file. The
destination file is then created as a link to the (either pre-
existing or newly created) common store file. SIS keeps
some out of band information (called backpointers)
associated with the common store file that contains the
set of links that point to the common store file. A
COPYFILE request adds such a backpointer for the
destination, and also for the source if it was not already a
SIS link.

The reason that SIS copies the contents of a non-SIS file
into the common store rather than renaming the file is
that it is possible to open NTFS files by file ID, which is
a number associated with the file, somewhat akin to a
Unix i-number. When a file is renamed, its file ID stays
the same. Therefore, if SIS renamed the source file into
the common store, users of the file ID would attempt to
open the common store file rather than the link file. By
doing a real copy, the SIS filter avoids the problem,
although this means that a SIS copy of a non-SIS file
takes effort proportional to the size of the file. An
extension to NTFS that allowed moving the contents of a

Handle 1 to Link
File A, contents α

Handle 3 to Link File
B, contents α

Handle 4 to Link File C,
contents β

User Mode

Kernel Mode

File Object 1 File Object 3 File Object 4

Cache of A Cache of B Cache of C

SIS Common Store
context α

File Object α

Cache of α

SIS Link
Context A

SIS Link
Context B

Cache of β

SIS Link
Context C

SIS Common
Store context β

File Object β

Figure 2: Example layout of SIS Contexts and Caching

Handle 2 to
Link File A

File Object 2

file without moving its file ID would solve this problem,
but it is not available at this time.

2.3.2 Normal Operations on SIS Links
When a user opens a SIS link, the filter intercepts the
STATUS_REPARSE completion and resubmits the open
request with the FILE_OPEN_REPARSE_POINT flag,
resulting in the user’s handle pointing to the link file
(rather than the common store file). SIS also opens the
common store file (if it has not already done so) and
attaches some context to the user’s handle indicating that
this is a handle to a SIS link, and which common store
file backs the link.

SIS must properly maintain coherency of SIS link files,
meaning that users of a particular link must see all
updates to that link, while seeing none of the updates to
other links that are backed by the common store file. It is
also desirable for SIS to conserve file cache space when
possible by having different links to the same common
store file backed by the same cache memory.
Associating the cache with the common store file would
violate coherence, while associating it with the link file
would not conserve file cache space. Instead, SIS uses a
hybrid of the two, where the caches associated with the
links contain dirty (or potentially dirty) data and the
caches associated with the common store files contain
data that is known to be in common and clean.

Figure 2 shows an example of the in-memory structures
created when a SIS link is opened. File objects are in-
memory kernel objects that correspond to file handles,
and are created by the kernel when handles are opened.
Associated with a file object is a cache (maintained by
the kernel cache manager), some file system state that is
used to find the file’s blocks on the disk (not shown), and
(in the case of SIS links) a special context attached by
SIS. The SIS link context contains a map of the file
showing each region as clean, dirty or faulted. It also
contains a pointer to a SIS common store context and
some other various housekeeping information. The
common store context contains a pointer to a file object
that corresponds to the particular common store file,
which in turn has its own cache. There is one handle and
file object per successful CreateFile [Microsoft 00a] call,
one SIS link context per open SIS link file (regardless of
how many handles refer to it), and one common store
context, file object and cache per common store file that
has one or more open link(s) pointing to it.

As Figure 2 illustrates, there are two separate data caches
associated with each opened SIS link: one for the link
itself and one for the common store file that backs the
link. In Figure 2, examples of these two caches for SIS
link A are the boxes labeled “Cache of A” and “Cache of

α” respectively. As long as there are no writes and no
mapped file accesses, the cache associated with the link
file is empty, and all of the cached file data is in the
cache associated with the common store file. This is
important in situations where more than one link to a
particular common store file are is use at one time,
because it reduces the cache requirements by up to a
factor of the number of links to the common store file.
This reduction in cache usage and the resultant ability to
cache more file data in the saved memory is one of the
main benefits of SIS to a file server.

Reads and writes initiated by ReadFile and WriteFile
system calls (as opposed to by mapped file accesses,
including those by misses by the system cache manager)
are simple for SIS to handle. All writes are sent to the
cache associated with the link file, and result in the
written region of the file being marked dirty in the map in
the SIS context associated with the link. When a
ReadFile call tries to read a portion of a SIS file, the filter
checks the map and sends the read to the common store
file if the region is clean, and to the link file if the region
is dirty or faulted. If the read spans multiple regions that
are in different states, SIS splits the read into pieces and
handles the pieces as appropriate.

2.3.3 Memory Mapped Access to SIS Links
Mapped file accesses present more of a challenge. When
a user (or the system cache manager) maps a file and
touches a page for the first time, it will generate a page
fault which will be translated by the NT IO system into a
read request that is sent to SIS. Read requests generated
by page faults are specially marked, and the SIS filter can
differentiate them from normal reads. Once SIS provides
the data, the virtual memory system will map the
appropriate page, and future accesses (either reads or
writes) will not generate any action that will be seen by
SIS. Other users who map and touch the same portion of
the same file will be provided with a mapping to the
same page, but the virtual memory system will not send a
read to SIS, since it already has the data. The virtual
memory system can unmap and throw away any clean
(unwritten) pages without notifying SIS, and it will
asynchronously generate writes for dirty pages at its own
pace.

Because SIS cannot take any action when a mapped page
is first written (because it doesn’t get any notification of
the write), in order to maintain coherence mapped pages
must be associated with the link file cache and not the
common store; if not, then two users could map two
different SIS links that share a common store file, and
they would see each others changes, violating the basic
SIS semantics. We were unwilling to change the NT

memory manager to generate write faults when a page is
first written.

Neither SIS’s clean nor dirty states provides correct
behavior in the case of a page that has taken a mapped
read fault. Treating pages that have seen page faults as
clean would result in normal (ReadFile) reads to those
pages going to the common store file, which violates the
coherence of normal reads with mapped writes. Treating
them as dirty causes another problem: if there has been
no write to the page the virtual memory system will see
the page as clean, and may discard it. Sending a read to
such a page would result in the user seeing a zero-filled
portion of the link file, which is clearly wrong. To
handle this problem, SIS has a third page state, faulted.
When a page is in the faulted state, it sends normal reads
to the cache associated with the link file, and page-fault
reads to the common store file. Since a page-fault read
will only happen if the page has been discarded by the
virtual memory manager, when one occurs SIS concludes
that the page has not been written and so it is safe to use
the data from the common store file. SIS directs all
accesses (reads and writes, page-fault and normal) to
dirty file regions to the link file.

2.3.4 Copy-on-close
After all users close a SIS file that has had writes to it,
the filter fills in the remaining clean regions (if any) with
the data from the common store file. The actual copying
happens in a system worker thread so as to not delay the
close operation. If disk space is exhausted during this
process, the filter simply leaves the remainder of the file
unfilled, and leaves the reparse point intact. A
subsequent open of this file results in the allocated
regions of the file being marked dirty. We could have
chosen to forego filling the clean regions of a file, and
instead left the link backed in part by the common store
file. If we had done so, we could have wound up in the
odd situation of having SIS potentially increase the
amount of disk space used in the system, by having files
that are almost completely dirty backed by large and
mostly unused common store files. To avoid this
situation, SIS does the copy-on-close when possible.

Using copy-on-close rather than the more common copy-
on-write has several advantages. The main one is that in
many cases the file will be wholly overwritten, and so the
copy can be avoided entirely. In his recent study of
Windows NT 4.0 file system behavior, Vogels [Vogels
99] found that 79% of accesses to files were read only.
Of the remaining accesses, 18% were write only and 3%
were read/write. Of the write only file accesses, 78% of
them were whole file writes. This means that of all files
write accesses at least 67% were whole-file overwrites
(conservatively assuming that none of the read/write files

were wholly overwritten), and so copy-on-close would do
no data copying. A second advantage is that the
straightforward implementation of copy-on-write would
stop all accesses to the file after the first write until the
copy is completed, which could be a long time for large
files. In an earlier paper [Douceur 99], we report that the
distribution of files by size in Windows file systems is
heavy-tailed, and so there are significant numbers of very
large files; both we and Vogels found that about 20% of
bytes are in files 4MB and larger, so it is reasonable to
believe that writes to large files would not be unusual,
and copy-on-write delays unacceptable. A final
advantage of copy-on-close is that it allows sharing of
file cache space for file regions that are unwritten.

2.3.5 Implementation Details and Backup
When a SIS link is eliminated, either by deletion of the
link or because of an overwrite, the filter removes the
corresponding backpointer in the common store file.
When all of the backpointers for a common store file are
removed, the filter deletes the common store file.

In certain circumstances, it is impossible for the SIS filter
to prevent a user from writing an arbitrary reparse point.
In theory, the user could write a SIS reparse point, which
the filter would then use to read data for the user from the
common store. This would be a violation of security,
since the user did not have to prove access permission for
the common store file before writing the reparse point.
In order to address this problem, SIS includes a signature
of the common store file contents in the reparse data.
The signature is a hash of the entire contents of the
common store file; it is easy to compute given the data in
the file, but impossible to compute without the contents
of the file (and 64 bits in length so randomly guessing is
difficult). Each link file contains a copy of this signature
in its reparse point. The filter will refuse to open a link
file that contains an invalid signature. A reparse point
that contains an appropriate signature proves that the user
already knows the contents of the common store file (or
has seen another reparse point that refers to the same
contents, and so could have known the contents of the
file). Because all that a user gets by creating SIS link is
the ability to read the common store file contents, there is
no security breach.

The SIS filter includes a facility called volume check for
repairing inconsistencies in metadata, similar to the Unix
fsck and Windows chkdsk programs. Unlike these
programs, however, SIS is able to do its repairs while the
system is running, without having to disrupt service in
any major way. One limitation during a volume check is
that if a user deletes what appears to be the last reference
to a common store file the filter will not delete the
common store file until the volume check completes,

because it does not trust its backpointers during a volume
check. The volume check process will repair the
backpointers for all common store files, and will delete
any common store files that have no references. NTFS
provides a method for efficiently finding all SIS links on
a volume, so the time to complete a volume check is
proportional to the number of SIS links on the volume,
not to the size or total number of files on the volume. A
volume check is initiated any time that the SIS filter
notices an inconsistency.

SIS provides a special interface to backup/restore
applications that allows them to behave appropriately
with SIS links [Bolosky 99]. The goal is to have exactly
one copy of the SIS file content on the backup tape for
each backed up set of SIS links that refer to a given
common store file. SIS provides a dynamically loaded
library (DLL) for the backup/restore application. The
backup application calls the DLL when it encounters a
SIS link, and the DLL tells backup if it needs to back up
a common store file in response. On restore of a SIS
link, restore calls the DLL, which in turn looks to see if
the appropriate common store file already exists or if it’s
already reported that file to restore. If not, then it reports
the common store file corresponding to the link being
restored. Because common store files have universally
unique file names, and their content never changes once
the file is created, if the common store file still exists on
the volume there is no need to restore over it; simply
linking to it suffices.

2.4 The Groveler
The groveler is a user level process that finds duplicate
files in the file system, and reports these files to the SIS
filter for merging. The essence of its task is efficiently to
find the sets of matching files on a volume, and to keep
the sets up to date as the volume changes. It maintains a
database of signatures of files on the volume, and uses
NTFS 5.0’s update journal feature* to track files that have
changed and to update their database entries.

The groveler database contains two structures: a work
queue, and a mapping of signatures to files. The work
queue contains work items of two types. The first is to
compute the signature of a file, and the second is to
compare a file to any others with matching signatures.
The groveler has a thread that runs periodically, reads

* The update journal [Microsoft 00a] is a feature whereby
NTFS maintains a record of all recent updates to a
volume in a ring buffer. Each entry in the journal has a
sequence number (USN, “update sequence number”), so
it is possible for a user of the journal to determine if it
has missed any entries because of a gap in the sequence
numbers.

entries from NTFS’s update journal and if appropriate
makes entries on the groveler’s work queue. If the
groveler misses entries in the update journal, it detects
this fact and re-scans the entire file system. A second
thread drains items from the work queue, either
computing a signature or comparing a pair of files for
each item. It then updates the database, possibly instructs
the filter to merge two files, and removes the item from
the queue.

The groveler uses a 128 bit file signature. The first 64
bits of the signature are the size of the file. It is
inexpensive to obtain the file size, and files with differing
size obviously cannot be identical. The remaining 64 bits
are computed by running a hash function on a fixed
portion of the file’s contents. The groveler hashes two 4
kilobyte chunks of file contents from the middle of the
file (unless the file is less than or equal to 8 kilobytes in
size, in which case it hashes the entire file). Hashing
only part of the file means that any differences in the
portion of the file not hashed will not be detected by
comparing the signatures. However, restricting the hash
limits the amount of work that the groveler does for large
files. Even if the groveler hashed all of the file, the
possibility of hash collisions would still exist, and in
order to guarantee that it does not corrupt data it would
be required to compare files byte-by-byte before linking
them together. Therefore, unless hashing a smaller
portion of a file greatly increases the probability of hash
collisions for unequal files, the optimization is
worthwhile. We have noted very few cases wherein
files’ hashes match and the files’ contents do not, even
though we only hash a constant amount of data per file.

The groveler is set up to run as a low importance
background task (unless disk space is tight). The
groveler is not particularly CPU intensive; most of the
work it does is disk I/O. As a result, simply running it at
low scheduling priority does not prevent it from
interfering with other, more important tasks. The
groveler uses a scheme where it tracks its own rate of
progress, and slows down its run rate when its progress
slows. The premise is that if the groveler is running more
slowly, it must be contending with some other, higher
priority process for some resource. The toolkit that
implements this technique is called “MS Manners” and is
described in detail in [Douceur 99a].

In order to do its work the groveler needs to open files,
and in some cases to hold them open for a long time.
This could cause problems for other users of the files
who might want to have exclusive access to a file for
some reason, and would have their opens fail with a
sharing violation. In order to mitigate this problem, the
groveler takes a batch oplock on each file it opens
immediately after opening it. Oplocks [Microsoft 00a]

are a facility by which the opener of a file can be notified
when another user wants access to the file, and can take
action before the other user’s action is completed or
failed. They were designed to allow effective local
caching of files that are shared over a network while
maintaining coherence. However, in the case of SIS they
allow the groveler to close a file that it is using without
generating a sharing violation for another user of the file.

3. Performance of and Uses for SIS
In Windows 2000, SIS is deployed only on remote install
servers, and then only on the volumes that contain the
remote install system images. While the initial release of
SIS is used only for remote install servers, we believe
that in the future it may be put to other uses. We briefly
present measurements that show that the per-link space
overhead of a SIS link and the time to make a copy of a
SIS link. We measured a remote install server at
Microsoft, and report on the disk space (though not file
cache) savings that SIS provided for that server. We also
discuss using SIS on file servers that back the files of
multiple users, and using SIS in a serverless, distributed
file system that we have proposed elsewhere [Bolosky
00].

We measured the time to make a SIS copy of a file that is
already a SIS link using the SIS_COPYFILE API on a
Gateway 2000 E-5000 Pentium II 300MHz personal
computer running Windows 2000, with 512 MB of
memory, and a 9 GB ST39173N 7200 RPM Seagate
Barracuda disk drive containing an aged file system and a
9 GB ST19171W Seagate Barracuda 7200 RPM disk
drive containing a clean file system. We ran all tests with
the network disconnected. The clean file system was
almost empty and newly formatted while the aged file
system was 70% full and had been in use for several
years, although it had been defragmented a few months
before we ran the test.

We determined the time to make a SIS link by creating a
file, making one SIS copy of it to make the source file a
SIS link, making 10,000 SIS copies of the file, noting the
wall clock time for the execution and dividing by 10,000.
We ran the 10,000 copy measurement 100 times on each
of the two file systems. In each instance, we discarded
the first 10,000 copy run so that we would be running
with the file caches hot.

In our tests (using a file about 1.6MB in size), a SIS copy
took 4.3ms (+/- 290µs at 99% confidence) on the clean
file system and 8.6ms (+/- 220µs at 99% confidence) on
the used file system to copy the file. It is difficult to say
how much of the difference is due to the state of the file
system and how much is due to the fact that the dirty file
system is running on an older model of disk. The reason

that the copy is this slow is that there is a synchronous
disk write in the SIS backpointer update, which is
necessitated by the inability of several NTFS metadata
updates to be grouped into a single atomic transaction.
Copying the same 1.6MB file using a normal file copy
took about 260ms per copy on the clean file system.

 We also measured the space cost to create a SIS link by
noting the amount of free disk space, making a large
number (10,000) of SIS links, noting the amount of free
space again, and dividing by the number of links. The
overhead was about 300 bytes/link for all power-of-ten
file sizes from 100 to 108 bytes.

We measured a remote install server at Microsoft that is
used to install various versions of Windows NT for
testing purposes (of the systems being installed, not the
server). This server contains 20 different images of
Windows NT of various flavors: both Windows 2000
Professional and Server, and different internal builds of
the system, including the last five builds before the final
Windows 2000 product, the release version of Windows
2000, and a build from after the Windows 2000 release.
The remote install volume on this server contained about
112,000 files, and a logical 7.5 GB of file contents. Of
this, 45,000 files (39%) and 6.0GB (80%) were in SIS
links, backed by 1.6GB in 13,000 common store files.
The overall space savings from SIS was 58%. In a field
deployment, one would expect to see fewer different
versions of the operating system with more different sets
of applications installed, which we expect would result in
better space savings.

We would have liked to measure the advantage in buffer
cache usage for a remote install server running SIS.
Unfortunately, we did not have the ability to take traces
of a real remote install server in action. While we could
have used synthetic workload traces to simulate such a
server, barring real measurements there is no good way to
determine the parameters for the workload generator.
Because cache performance is strongly (and non-linearly)
influenced by the working set size, the exact workload
parameters would almost wholly determine the results of
such a simulation. Therefore, lack of real parameters
makes the synthetic workload exercise at best
meaningless, and more likely misleading.

SIS could be used for file servers that store the files of
groups of users, such as is typically done with NFS
[Pawlowski 94; Sandberg 85], AFS [Howard 88], Coda
[Satya 90; Kistler 91] or any of a number of comparable
systems. In fact, the original reason for building SIS was
to support the remote boot server, a similar idea for
Windows 2000, but remote boot was cut from the final
product for schedule reasons.

In [Bolosky 00] we measured the contents of a number of
desktop personal computer file systems at Microsoft and
observed the duplication of contents among them. We
found that the level of duplication depends on the number
of file systems grouped together, with the percentage of
reclaimable space growing roughly with the log of the
number of file systems. Grouping 100 randomly selected
file systems gave a little better than 30% space savings.
At 1000 file systems the savings was just under 50%.
Our model predicts a little better than 60% savings at
10,000 file systems. File systems of people with similar
job functions (e.g. software developer, secretary,
manager) were more alike than the randomly selected
groups of file systems quoted above. We are unaware of
any comparable study or raw data for any other
environment, but we expect that there may be significant
differences on other operating systems or even for
institutions other than Microsoft.

The file system that we propose in [Bolosky 00] is
intended to provide a shared name space and common
access to storage for tens of thousands of users using only
the desktop workstations of those users. One issue in
such a design is providing availability of files on
machines that are much less available than managed
servers. Our approach is to replicate the file contents
across the machines in the hope that the system can find
at least one copy of a file on a machine that is up. The
number of replicas that can be made strongly
(exponentially) influences the probability that a file will
be available. By using SIS (or a similar technique) the
total size of the stored file content can be reduced, and
hence the number of copies that will fit on the available
disk space will be increased, greatly improving the
overall availability of the system. That is, even if SIS
only provides modest space savings, these savings can
result in greatly improved system performance.

4. Related Work
There are a number of different uses of copy-on-write in
computer systems. Mostly they share the same
characteristics: A traditional copy would be expensive in
time or space (or both); the semantics presented to the
user are those of a copy, rather than a link; and, the
expectation of the system designer is that the copy-on-
write will rarely happen. Typically, the cost of the initial
“copy” followed by the copy-on-write is higher than just
eagerly evaluating the copy, but this is made up for by
the common case in which the copy-on-write never
happens [Fitzgerald 86].

Copy-on-write has been used in virtual memory systems
as least as far back as Accent [Rashid 81] and Mach
[Accetta 86;Young 87]. These systems allowed
processes (including file systems) to send messages to

one another with copy semantics, but used the virtual
memory system to map the same memory into both
processes’ address spaces. If a process subsequently
wrote into the memory, the system took a protection
fault, made a copy of the page in question, and mapped
the newly copied page into the faulting process’s address
space with write permission.

The Microsoft Exchange Server [Todd 96] (a multi-user
mail server) uses copy-on-write techniques for mail
messages that are sent to multiple recipients, and even
calls the technique “Single Instance Store.” This mail
system allows recipients to modify mail messages after
they’re received, which triggers the copy-on-write. It
does not have an equivalent of the groveler; if two
identical messages are in a server, but they were not
generated as copies of one another, the server will never
merge them.

Apollo systems used access control lists (ACLs) that
described the lists of users who had access to particular
files. These ACLs were immutable. The salacl
command looked through the sets of ACLs existing in the
system, and combined those that matched [Leach 98],
functionality that is similar to the groveler, but the
because the ACLs were immutable there was no need for
the copy-on-close function of the SIS filter.

Many file systems support various types of links with
semantics differing from SIS links. In particular, Unix
file systems [McKusick 84] typically support both hard
and symbolic links. These types of links differ from SIS
links in that writes through one link to an object are
visible through a different link. NTFS [Custer 94]
supports hard links that are similar to those in Unix.
None of these systems automatically detect and merge
files with identical contents, because such an action does
not make sense when links have different semantics from
separate files.

It is common practice to aggregate files of many users
onto a central file server, which may be implemented as a
single machine or a cluster. NFS [Sandberg 85], Sesame
[Thompson 85], AFS [Howard 88], the Sprite file system
[Ousterhout 88], Coda [Sayta 90], Ficus [Guy 90] , Swift
[Cabrera 91], Zebra [Hartman 93], the Microsoft file
systems using the Server/Redirector network remoting
services [Solomon 98], and a host of others too numerous
to mention all are variations on the theme of a centralized
network file server that often will combine the files from
many users on many client machines onto a single file
system.

There are number of serverless (ie., decentralized)
distributed file systems similar to the one that we
mention at the end of Section 3. Chief among them are

Frangipani [Thekkath 97], and xFS [Anderson 95]. They
differ from our proposed file system in a number of
ways, among them that they assume that the machines
that implement the system are secure, and are more
highly available than is reasonable to expect from
desktop workstations.

5. Summary
SIS is a component of Windows 2000 that detects files
that have identical contents and merges them into SIS
links, special links that present the semantics of separate
files while in most cases using the disk and file cache
space of a single file (plus a small disk overhead per link
that does not depend on the size of the underlying file).
In Windows 2000 SIS is used as part of the remote install
server, which is a way of setting up machines to a pre-
determined configuration without having to go through
the normal set-up process.

SIS is implemented as a file system filter driver and a
user-level service. The filter driver implements the links
and copy-on-close when a file is modified, presenting the
semantics of an independent copy to the user of the link.
The user-level service watches changes to the file system,
computes signatures for newly-changed files, compares
files with matching signatures and reports matching files
to the filter for merging.

The cost of making SIS copies of files that are already
SIS links is small and independent of the size of the file.
The disk-space overhead of a SIS link is about 300 bytes
regardless of the size of the file to which the link refers.
In most instances, copying a SIS file takes about 8.6ms
on the (pretty slow) machine and thoroughly aged file
system on which we took our measurements. We were
unable to measure the impact of SIS on file cache usage
in a real installation, but hypothesize that in some cases it
may significantly improve performance by reducing the
cache working set below the available memory size.

We speculate that SIS could be useful in contexts other
than the remote install server, in particular a distributed,
serverless file system built on ordinary workstations.
Because that file system’s performance is strongly
influenced by the amount of free disk space available,
using SIS to reduce the effective disk space usage
provides large benefits in availability.

6. Availability
SIS ships with Microsoft Windows 2000 as part of the
Remote Installation Services. The source code is
available with a Windows 2000 source license, which is
available from Microsoft on a case-by-case basis. A
suitably sanitized version of the raw data used in

[Douceur 99] and [Bolosky 00] is available by request
from John Douceur, johndo@microsoft.com, on a set of
CD ROMs. It is much too big to place on the net for
download.

Acknowledgments
We would like to thank Cedric Krumbein, Mihai
Popescu-St ne�ti, Drew McDaniel, Steven West, Galen
Hunt and Yi-Min Wang for their help in implementing
and testing the SIS components. Some of the early
conceptual work on SIS was done in conjunction with
Rick Rashid, Nathan Myhrvold and Terri Watson Rashid.
Rob Short and Chuck Lenzmeier were invaluable in
navigating the politics of the Windows NT group. Brian
Andrew provided help in understanding NTFS and its
behaviors, and provided useful suggestions as to how to
implement SIS. Steven West and Matthew Stevens
provided access to remote install servers so that they
could be measured. Felipe Cabrera commented on the
SIS/backup interactions.

References
[Accetta 86] M. Accetta, R. Baron, W. Bolosky, D. Golub,

R. Rashid, A. Tevanian, and M.Young.
“Mach: A New Kernel Foundation for UNIX
Development,” In Proceedings of the Summer
USENIX, July, 1986.

[Anderson 95] T. Anderson, M. Dahlin, J. Neefe, D.
Patterson, D. Roselli, and R. Wang.
“Serverless Network File Systems,” In
Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pp. 109—126,
December 1995.

[Baker 97] A. Baker. The Windows NT Device Driver
Book, Prentice Hall PTR, 1997.

[Bolosky 99] W. Bolosky. “The SIS/Backup Interface,”
available upon request from Steve Olsson,
solsson@microsoft.com.

[Bolosky 00] W. Bolosky, J. Douceur, D. Ely and M.
Theimer. “Evaluation of Desktop PCs as
Candidates for a Serverless, Distributed File
System,” to appear in Proceedings of ACM
SIGMETRICS 2000.

[Cabrera 91] L. Cabrera and D. D. E. Long. “Swift: Using
Distributed Disk Striping to Provide High I/O
Data Rates,” Computing Systems, 4(4):405—
436, Fall 1991.

[Custer 94] H. Custer. Inside the Windows NT File
System. Microsoft Press, 1994.

[Douceur 99] J. Douceur and W. Bolosky. “A Large-Scale
Study of File System Contents,” in
Proceedings of ACM SIGMETRICS ’99, pp.
59—70, May 1999.

[Douceur 99a] J. Douceur and W. Bolosky, “Progress-based
regulation of low-importance processes,” in
Proceedings of the 17th ACM Symposium on
Operating Systems Principles, pp. 247—260,
December, 1999.

[Fisher 98] L. Fisher. The Windows NT Installable File
System Kit. A Microsoft product that can be
ordered from
http://www.microsoft.com/hwdev/ntifskit.

[Fitzgerald 86] R. Fitzgerald and R. Rashid, “The Integration
of Virtual Memory Management and
Interprocess Communication in Accent,”
ACM Transactions on Computer Systems,
4(2):147—177, May, 1986.

[Guy 90] R. G. Guy, J. S. Heidemann, W. Mak, T. W.
P., Jr, G. J. Popek, and D. Rothmeier,.
“Implementation of the Ficus Replicated File
System,” Proc. of the Summer 1990 USENIX
Conference, pp. 63—71, June, 1990.

[Hartman 93] J. H. Hartman and J. K. Ousterhout. “The
Zebra Striped Network File System,” In
Proceedings of the 14th ACM Symposium on
Operating Systems Principles, pp. 29—43,
December, 1993.

[Howard 88] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M.
West. “Scale and Performance in a
Distributed File System,” ACM Transactions
on Computer Systems, 6(1):51—81, February
1988.

[Kistler 91] J. Kistler and M. Satyanarayanan.
“Disconnected Operation in the Coda File
System,” In Proceedings of the 13th ACM
Symposium on Operating Systems Principles,
pp. 213—225, October, 1991.

[Leach 98] P. Leach. Personal communication. He said
this is only documented in the manuals, not
any other published sources, and these
manuals are now hard to find.

[Li 86] K. Li and P. Hudak. “Memory Coherence in
Shared Virtual Memory Systems,” In
Proceedings of the 5th Symposium on
Principles of Distributed Computing, pp.
229—239, August 1986.

[McKusick 84] M. K. McKusick, W. N. Joy, S. J. Leffler, and
R. S. Fabry. “A Fast File System for Unix,”
ACM Tranactions on Computer Systems,
2(3):181—197, August, 1984.

[Microsoft 00] Microsoft Windows 2000 Server online help
file. Microsoft Corporation, February 2000.

[Microsoft 00a] Microsoft Developer Network Library. A
product available from Microsoft. See
http://msdn.microsoft.com/. January, 2000.

[Nagar 97] R. Nagar. Windows NT File System Internals.
O’Reilly, 1997.

[Ousterhout 88] J. Ousterhout, A. Cherenson, F. Douglis, M.
Nelson and B. Welch. “The Sprite Network
Operating System,” IEEE Computer
21(2):23—36, February, 1988.

[Patterson 88] D. A. Patterson, G. Gibson, and R. H. Katz.
“A Case for Redundant Arrays of Inexpensive
Disks (RAID),” In Proceedings of the 1988
ACM Conference on Management of Data
(SIGMOD), pp. 109—116, June 1988.

[Pawlowski 94] B. Pawlowski, C. Juszczak, P. Staubach, C.
Smith, D. Lebel and D. Hitz. “NFS Version 3
Design and Implementation,” In Proceedings

of the Summer USENIX Conference, pp 137—
152, June 1994.

[Sandberg 85] R. Sandberg, D. Goldberg, S. Kleiman, D.
Walsh, and B. Lyon. “Design and
Implementation of the Sun Network
Filesystem,” In Proceedings of the Summer
USENIX Conference, pp. 119—130, June
1985.

[Rashid 81] R. Rashid and G. Robertson. “Accent: A
Communication Oriented Network Operating
System Kernel,” In Proceedings of the 8th
ACM Symposium on Operating Systems
Principles, pp. 64—75, December, 1981.

[Satya 90] M. Satyanarayanan, J. Kistler, P. Kumar, M.
Okasaki, E. Siegel, and D. Steere. “Coda: A
Highly Available Filesystem for a Distributed
Workstation Environment,” IEEE
Transactions on Computers, 39(4), April
1990.

[Solomon 98] D. Solomon. Inside Windows NT, Second
Edition. Microsoft Press, 1998.

[Thekkath 97] C. Thekkath, T. Mann and E. Lee.
“Frangipani: A Scalable Distributed File
System,” In Proceedings of the 16th ACM
Symposium on Operating Systems Principles,
pp. 224—237, December, 1997.

[Thompson 85] M. R. Thompson, R. D. Sansom, M. B. Jones,
and R. F. Rashid. “Sesame: The Spice File
System,” Carnegie-Mellon University
Computer Science Technical Report CMU-
CS-85-172, Carnegie-Mellon University,
Pittsburgh, PA. 1985

[Todd 96] G. Todd, et al. Microsoft Exchange Server
Survival Guide. Sams Publishing, 1996.

[Vogels 99] W. Vogels. “File system usage in Windows
NT 4.0,” In Proceedings of the 17th ACM
Symposium on Operating Systems Principles,
pp. 93—109, December, 1999.

[Young 87] M. Young, A. Tevanian, R. Rashid, D. Golub,
J. Eppinger, J. Chew, W. Bolosky, D. Black,
and R. Baron. “The Duality of Memory and
Communication in the Implementation of a
Multiprocessor Operating System,”
Proceedings of the 11th ACM Symposium on
Operating Systems Principles, pp. 63—76,
November, 1987.

