i

The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop
San Diego, California, September 14-18, 1998

Using Tcl to Script CORBA Interactions in a Distributed System

Michael L. Miller
Advanced Micro Devices
Srikumar Kareti
Honeywell Technology Center

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Using Tcl to Script CORBA Interactionsin a
Distributed System

Michad L. Miller
#Advanced Micro Devices, MS 608, 5204 E. Ben White Blvd., Austin, TX 78741

Srikumar Kareti

*Honeywell Technology Center, 3660 Technology Dr., MN 65-2600,
Minneapolis, MN 55429

current Manufacturing Execution System (MES) that

ABSTRACT would support deployment of Advanced Process
In this paper we present the extensive use of a Control applications quickly and easily into our
scripting language (Tc) to run human Semiconductor manufacturing facilities (fabs). AMD
readable/editable scripts in a CORBA distributed internally developed a functional specification for
batch environment. The developed system is the such a system, which was completed in mid-1995.
“Advanced Process Control Framework” as outlinedThe National Institute for Standards and Technology
in the “APC Framework Initiative” which is a (NIST), a section of the Department of Commerce,
research and development project undertaken bgnnounced shortly thereafter an Advanced
AMD and Honeywell under the support of the U.S.Technology Program (ATP) competition. Under this
Department of Commerce, National Institute of ATP, NIST would cost-share up to 49% of a research
Standards and Technology. The APC Frameworland development project that would further
System has been deployed in AMD’s fab 25 and iglevelopment in the area of MES systems and
fully functional. The paper discusses the issuedntegration. The NIST program provides multi-year
involved in developing scripting mechanism which iscost-share funding to industry-led joint ventures to
capable of both interacting with other CORBA pursue research and development (R&D) projects with
components and handling various data structureBigh-payoff potential for the nation. Its goal is to
which are otherwise not addressable by the underlyingccelerate technologies that are unlikely to be
scripting language. The flexibility and extendibility of developed in time to compete in rapidly changing
the Tcl scripting language makes it easy to extend theorld markets without such a partnership between
core language. The paper also establishes the need fBglustry and the Federal government.

thread-safeness of Tcl. Examples of various datayp in partnership with Honeywell, a leading
manipulation operations, calls to different CORBA ;onirol systems supplier, and SEMATECH. the
components, and calls that help in synchronization argynsortium of US semiconductor manufacturers,

discussed. proposed the APC Framework Initiative (APCFI).

1. BACKGROUND 1.1 APCFI Project

The goals of the Advanced Process Control

In order to fully describe how Tcl is being used in our L))
CORBA environment, it is first necessary to give Framework Initiative project (APCFI) were outlined

some background into the project and the distributed! the program proposal presented to NIST (National
system that we are developing. Starting in 1994I1nst|tute for Standards an.d Technology) in Octobgr,
AMD identified the need for an extension to our 995. These goals were to: enable effective integration

Further author information -
& Email: michael.miller@amd.com; Telephone: 512-602-3959; Fax: 512-602-5299
® Email: skareti @htc.honeywell.com; Telephone: 612-951-7302; Fax: 612-951-7438

of “Advanced Process Control” applications into aimplementation of CORBA to develop APC.
semiconductor fab to improve manufacturing capital

productivity, product consistency, and product yields;1.3 Overview of the APC Framework

establish integration technology for multi-supplier)

“Plug-and-play’ APC applications; and to The APC Framework has beep deS|gned_ to work along
demonstrate commercial viability of the APC Witha fab's MES (Manufacturing Execution System —
Framework and its components. To sum up, the maifif AMD’s case, this it WorkStream by Cafiem)

goal of the APCFI projects was to develop a systen@nd CEls (Configurable Equipment Interface) to
that would significantly reduce the time, cost, andProvide APC functionality. It is composed of not one

integration efforts needed to deploy APC solutions. ~ large program, but a number of smaller, specialized
pieces that work together. The “interchangeable parts”

The scope of the APCFI projects includes support fopf the APC Framework are called components. These

Fault Detection applications spanning multiple yhere each component is

processes and fab tools and utilizid&garty control

software, such as Modelw&re Matlab®, Matlab 1) Anindependently running entity

Toolkits, Mathematica®, and LabView”. 2) Provides a subset of the overall APC
In order to validate the design and implementation of Framework functionality

the APC Framework, a number of control projects 3) May be provided by a different vendor

were selected for early deployment into one of AMD’s

semiconductor fabs using initial versions of the APCThe APC Framework standard describes the

Framework. functionality, interface, and behavior of each
component. The central component at run-time is the
Plan Execution Manager, which utilizes Tcl and is

CORBA (Common Object Request Broker described in the next section.
Architecture) is a specification of an “architecture for

an open software bus on which object components 2. THE PLAN EXECUTION
written by different vendors can interoperate across MANAGER

networks and operating systems” (Orfali et. al., 1996).

It is used by the APC Framework to allow theTq support the goals of the APCFI project, it was
distributed components of the —framework t0necessary to develop a system that would be flexible
communicate. In specific we used Orbix, IONA'S engugh to support just about any supervisory-level

Manufactur- Components of the s e
ing APC Framework \ T
Execution \ '
System o
: APC :

Framework .

(MES)
7 | @
" @vce?
Configurable - .

Equipment
Interface

(CEI)
3rd party

control
Fab <j> Sensors software
Tool

Figure 1: Therelationship of the APC Framework to other software systems.

12 CORBA

(e.g. Run-to-Run) control application. To this end, savvy, and so Python represented a language that
rather than trying to pre-define a generic sequence of would require much more up-front learning on the
system interactions that would be used at run-time, the part of the users before it could be used effectively.
project chose to use a scripting approach to allow the The basic Python language, however, did have some
maximum flexibility in how the system was used. support for more sophisticated C & C++ data
The Plan Exeattion Manager (PEM o PE) structures, and was well-suited for use as an embedded
component is the “choreographer’ of the AF)Clanguage in a C++ application. Python also seemed
Framework. It is in charge of doing “APC” at runtime extensible, although some of the overhead of reference
for a particular process or metrology tool. To do this’countmg, etc., would add some additional work to any

it has the ability to ecess all of the capabilities of extensions being built. Finally, Pythqn d|c_l not have
any support for CORBA communications in its core,

each of the other components in the APC Framework, L .
. ; ut there was some work ongoing in this area by
It executes, or interprets, APC Plans (a collection ol ihers

Tcl scripts), which specify the actions to be taken
before and/or after a lot is processed on a fab tool. ThEerl also had good facilities to support custom user
Tcl scripts define not only what the APC Frameworkextensions to the language. However, it suffered as

does, but in what order they are carried out. well in ease-of-use — the reviewers felt that Perl was
syntactically more complex than some other
21 WhyTcl? languages, like Tcl, and hence would be more difficult

to learn by the script writers. Perl also lacks key
When the project needed to define the scriptingacilites which make its use in an embedded
language that would be used to drive the systemppjication much more complex than either Tcl or
activities at run-time, a number of possibilities werepython. Finally, even though Perl seemed to have
evaluated. Tcl, Perl, and Python were examined, agyfficient capabilities to support some of the more
well as developing a custom language. The latter wagomplex data structures that the APC Framework

quickly dropped because of the rich set of well testegyould use, it lacked any CORBA capabilities.
scripting languages readily available and the fact that

project resources could be better spent developingCl had an advantage over both Perl and Python in its
other functionality in the system. simpler syntax and hence easier learning curve for

new users. Even better was its support for use as an
Some of the comparison criterion used were: ease-Ogmbedded interpreter in a C/C++ application. Since it
use, ability to embed in a C++ application, yas developed from the start for use as an embedded
extensibility, support for CORBA, and support for C janguage, its facilities were better than both Perl and
structures. The first criterion, ease-of-use, Wwaspython. While there was not any support for CORBA
perhaps the most important. Since the script writergr gata structures per-se in the Tcl core language,
would be programming novices, ease-of-use and ghere were already-developed extensions that would
shallow learning curve were critical to the project'sprovide this functionality. Even though the project
success among the users. As the scripting languaggade the decision not to use these extensions in favor
was to be embedded into a CORBA C++ server, thef creating our own, the fact that some form of this

chosen scripting language had to be able to bgapanility existed already made it easier for the project
embedded into a C++ application. Extensibility wasto roll our own. Overall, Tcl's ease-of-use and

an important consideration, since the chosen languaggnpeddability made it the best choice for the APC
was unlikely to have all of the functionality that would Frgmework.

be required. Finally, since the scripts would need to

access CORBA functionality and manipulate data inp 2 Use of Tcl in the Plan Execution M anager

C-like structures, the ability of the language to Component

accommodate these was important.

Python, while it had many features that lent itself to:/r\mlgegEtl\t}letI%tt) grc;(;eesgﬁgrl;le;;ﬂoggerr?icr?:geh;nifr?r;gf

use in an object-oriented environment such as Wagrocessing the PEM pulls up a Plan Executor (PE)
being defined for the APC Framework, also carried biect to execute the “APC Plan” for that run. The

some drawbacks. Foremost amongst these drawbacg

L) .]San Executor runs various scripts designed by the
was the fact that the scripting language itself is VeNo ocess Engineer’ (a.k.a. scrith) Writer)g and fZeds

object-oriented. The users that would become th%ack correction information to the machine to help

main users of this scripting language were not Objectr'naintain consistent performance of the machine. The

process engineer is typically a chemical engineer and porting ptTcl from unix to NT, but the eminent
henceit greatly helpsto have the scripting languageto release of Tcl 8.1 made this unnecessary.
be readable and English like. There are three types of
Scripts: Main Scripts, Sub Scripts, and Event Scripts.
These scripts are used in an APC application to define
the sequence of actions that the APC Framework
performs. The scripts are bundled together in an APC 3. TCL EXTENTIONSFOR APC
Plan: one (and only one) Main Script, zero or more
Sub Scripts, and zero or more Event Scripts. The Even though Tcl was chosen to be the scripting
Main Script is used likethe mai n function in C —itis language used in the PEM component, in its basic
the first script run by the system when it executes &rm it did not have all of the functionality needed by
Plan. The subscripts are used to define procedures thidis project. Among the added functionality was: Tcl
the main or event scripts may use. The event scrip8¢ripts needed to be able to be run in parallel (1 main,
are executed in response to certain events should thewltiple sub and event scripts); they needed to
happen in the system. communicate data and synchronization information
. . . with each other; these scripts needed to create,
When the PE is called to execute a Plan, it begins bé’nderstand and interpret complex data structures; the

creating a Tcl Interpreter for the main script in a neWscripts needed to communicate to the rest of the world
process thread. This interpreter is initialized and th

APC ion loaded. N he PE defi I of h‘?/ia CORBA; and, finally, since some setup tasks
extension loaded. Next, the efines all of t ?CORBA calls) might take a considerable amount of

When the main script completes, all of the Tcl
interpreters are deleted.

(usmg.TcI _Eva] Fil e.), one at a time. The§e such tasks in the “background” (another Tcl
subscripts contain routines common to all the SCript§nerpreter run in another process thread) and let the
Finally, the PE executes the main SsCript, ON€.jing script continue until it was in need of the data
line/command at a time. This is done so _that the P om the background task. Existing Tcl extensions,
can respond to other requests that may interrupt tha,n g with the possibility of building our own, were
execution of the main script between execution of 5 ated. The extensions/modifications to Tel that

each Tcl command. We allow the user to be able t,,nqrteq all of this functionality is discussed below.
write the command in more than one line as long as

he maintains “Tcl-like” syntax. 31 Complicationsusing Tcl

While the main script is executing, the PE may . .)

receive notifiation of certain events happening in theIn _|ts core.form, TCI_Ut'I'_ZeS all data in Fhe form of
system. If there is an event script defined for thaStrings. This makgs life simple for the_scnptwrlter, bUt
event, the PE will execute it in a manner similar to the"@!Ses complications wh(_an trying to interoperate in a
execution of main scripts. Each of the main script ancﬁj'St”bUted CORBA environment _that uses more
the Event scripts has an interpreter of their own. EacfOMPlex data structures. Extensions do exist for

Interpreter runs in its own process thread and Caﬁreating/handling other data structures, but they

communicate via shared data and mutex-like Iocks.aCked the ability to handle the CORBA data types

This clearly marks the need for a thread safe scriptin llow th : : d
tool. In the previous versions of Tcl, we were forced to; oW e Seript wtiter 10 consiruct hew data strucures

use simple mutex locks around the Tcl library, rather ©" the fly”. While this is desirable in the general

than spending the time modifying the Tcl core to pesense, the APC Framework utilizes a fixed set of data

thread-safe. The latest version of Tcl (8.1) promises t<§'[ructures, so this added flexibility is not needed and
be thread safe. which will make the use of multiple'n fact adds to the learning curve for the script writer.
interpreters in separate process threads much easierIEdS for tpes(;e reaso?s that the dec'ds'orf‘ was madeh to
use. This is a performance gain for the APCFI SysterWL'f[eh ah ')ée hset dod Sewdcomman ‘Q% t;qm scr;tc '
because the locks we used to make Tcl thread safé"'ch na tfe adae ha vanta?g- 0” emgr]] a de to
were very coarse grain. It is not very uncommon tghcorporate features that would a ow the i ata}
have about five plans running at a time, each jstructures to be shared between scripts running in
parallel and each of the PEs having a main script anaeparate interpreters. Our extensions are based on

multiple event scripts all running in parallel. The YS'N9 the Tcl _Set AssocDat a and

need for thread safeness was high enough to considef! —Get AssocDat a calls to store and retrieve the
data structures when needed.

at we required. Also, these extensions were built to

In addition, the Tcl core does not have the ability to
perform CORBA invocations. We were aware of
initial developments extending Tcl to allow CORBA
calls, but these packages were either not on the needed
version of Tcl or on the necessary platform. Also, as
was the case with the data structure extensions, the
CORBA extensions provided general facilities for
constructing and making a CORBA call to a server.
While this provides more capability to the script
writer, it carries with it a high price in terms of script
complexity. Again, the set of CORBA methods that
the script would need to access would be finite and
fixed, so this type of general CORBA capahilities was
not needed. Finally, we wanted to have a higher level
of abstraction where we would make multiple CORBA
calsin the same Tcl command rather than have one
call to each CORBA invocation. By writing our own
CORBA extension specifically for this project, we had
that flexibility.

Finally, Tcl has no smple mechanism to support
communication between Tcl interpreters running in

different threads. In fact, until recently the Tcl core
itself was not thread-safe. ptTcl, a multi-threaded
verson of Tcl, was available for Sun Solaris. It
provided not only the ability to launch multiple
interpreters in separate threads, but to also
communicate with those separate interpreters,
However, we did not try to port it to NT dueto lack of
time and resources. Instead, we built into our
extensions the ability to use mutex locks between
interpreters and to copy data into and out of a
common memory space.

3.2 Dataobject-related commands

The firgt additions to the Tcl language made by this
project were commands that give the script writer the
ability to create, manipulate, and delete all of the
different data structures/objects that the APC
Framework uses. In general, there are two types of
data objects: pure structures and sequences of
structures. One new command was defined for each

is one of these types

ContextSequence
ak.a. DataTagSequence

<seq>

is one of these types ... is one of these types ...
short sequence<short>
long sequence<long>
ushort sequence<ushort>
ulong sequence<ulong>
float sequence<float>
double sequence<double>
boolean sequence<boolean>
char sequence<char>
octet sequence<octet>
string sequence<string>

2a

DataTagPair
ak.a. Tag
a.k.a. DataTag
name value
‘ String ‘ ‘ PrimitiveValue ‘
2b

Figure 2: Value (a), DataTagPair (b) and DataTagSequence (b) data structures

Command Arguments Returns Comments
DTPai r
create Nane Type val ue Create DataTagPair
DTPkey
get DTPkey Nane Return the contents of DataTagPair
[Prim/
Seq.] Type
val ue
get val uekey DTPkey Vkey Put the contents of the DataTagPairs’s
PrimitiveValue in a new Value called
Vkey
set Name Type val ue Set contents of existing DataTagPair
DTPkey
del ete DTPkey Delete the DataTagPair

Table 1: The DTPair Command

Command Arguments Returns Comments
DTSeq
create <DTPkey> DTSkey Create a DataTagSequence using a list of
DataTagPair keys
creat ebyval ues | <Nanme Type Create a DataTagSequence using a list of
val ue> DTSkey contents of DataTagPairs
I ength DTSkey Length Return the number of elements
nanes DTSkey <nanes> Get all names of DataTagPairsin the
DataT agSequence
geti I ndex DTSkey Nane Return the contents of DataTagPair at
DTPkey [Prim/ index
Seq.] Type
val ue
get dt pai r key Name DTSkey Create anew DataTagPair using the
element at the index
getval ue Nanme DTSkey Nane Return the contents of the DataTagPair
[Prim/ from DataTagSequence with Name
Seq.] Type
val ue
get val uekey DTPkey Vkey Same as above but store the Value against
the key
add DTSkey Add a DataTagPair to the sequence
renove [I ndex | Nane] Remove the DataTagPair at index | or with
DTSkey name N and store it back
del ete DTSkey

Table 2: DT Seq (DataT agSequence) command

data object type. This command uses the first
argument as a switch to define what to do with that
object: in general, to create it, get its contents, set its
contents, and delete it. A particular instance of a data
object is referenced by a unique name — like a variabl
name. This name, or key, is passed as an argument
each of the new commands.

The first two lines create “DataTagPairs” with keys
(variable names) ‘testTagl’ and ‘testTag2’. Line 3
recalls from memory the ‘testTagl’ and ‘testTag2’
DataTagPairs and forms the DataTagSequence with
e tag ‘testDTSeq'. Lines 4 and 5 show some simple
s?eps to do an operation on a data structure and
display the results; in this case, get the length
Figure 2 shows an example of some of the data objec{aumber of elements) of the DataTagSequence and
used by the APC Framework - the Value,printitout.
DataTagPair, and DataTagSequence structures. Tables
1 and 2 list the commands used tocess the Infrastructurefor accessing different data
DataTagPair and DataTagSequence as an example. structures

APC has a well defined hierarchy of well defined data

Example code to pass non-string variablesin Tcl d
types. To be able to handle all these different types of

DTPair create “Length” “long” 50
testTagl

DTPair create “Width” “float”
25.5 testTag2

DTSeq create ‘“testTagl testTag2”
testDTSeq

set n [DTSeq length testDTSeq]

puts "Length of DTSeq (should be
2):$n"

data structures, we have a global map (an object that
keeps a list of names and associated data) for each of
the different data types. When create operation is
called for any particular data type, the created data
type is stored in the map against the name/key passed
in as an argument. The key is then used in any routine
to pull the data from the map. The mechanism is local
to each script executor and there is no naming conflict
across scripts in the same plan. Also, each data
structure has its own map and hence no naming
conflict exists across different data types. Finally, to
support sharing data between scripts in the same APC

Plan, a plan-level map is used, and each script can
copy data to and from that map.

3.3 CORBA method invocation commands

The second major category of new Tcl commands
provides the script writer with the ability to invoke
methods on other components of the APC Framework
via CORBA. In a manner similar to the way data
object commands were defined, one command per IDL
interface was created. Each command uses the first
argument as a switch to select what functionality of
that component will be accessed. In general, one
switch was defined for each logical interaction. These
logical interactions were defined at the granularity
that a script writer would need, and no finer. In some
cases, there is a one-to-one correspondence between
command + option and CORBA method, and in other
cases many CORBA calls are wrapped together in one
option.

By combining CORBA method invocations into a

logical function, the extended scripting language can
be kept relatively simple. The script writer doesn't

deal directly with CORBA methods, just functionality

that he/she needs to use.

3.4 Miscellaneous commands

In addition to commands to manipulate data objects
and invoke methods on distributed objects, other
utility commands were added. One need was for
synchronization and communication between the
main and event scripts. For synchronization the PE
uses simple mutex locks — one script can set a lock
and wait for another script (running in another

process thread) to release the lock. In addition, the PE
controls a global memory area that is separate from
the memory used by each of the scripts. In order to
exchange data, the scripts use this global memory
through a new command which was added to allow

Table 3 below shows an example command — thishe scripts to copy data to or from this global memory.

command handles interactions with the DataStor
component. This is a good example where one optio
for instance $tore’, results in multiple CORBA
calls. In the case ofstore’, the script uses the
‘store’ option to put data into a database in a specifi

The example below illustrates two scripts using locks
Yo synchronize their activities.

(I:Example scripts

way. The C++ implementation of that command first<main script>

invokes a ‘find’ command on the Data Store

component to find if there is any similar data already

stored in the database. If there is data already there,
then the command uses a second CORBA method to
replace the existing data with the new data. On the
other hand, if nothing appropriate is in the database,
the command uses an alternative CORBA method on

Lock create Al arnkEvent Lock
Lock wait Al arnEvent Lock 180
if([Lock status]) {

event received

the Data Store to create a new data set in the database. "’

} else {
Command/Option | Arguments Returns Description
Dat aSt or e
store [temp | pern] stores data in DataStore
DTSKey NVSKey
retrieve [tenp | pern {[Prim/ retrieves only the exact matching data from the
DTSKey [N | Seq.] DataStore
NVSKey] Type
val ue}
query [tenp | perm “contents returns all partially-matching data stored in the
DTSK of stored DataStore
data”
delete [temp | perm] deletes data stored in the DataStore
DTSK

Table 3: Example CORBA method invocation command from the APC Framewor k

tinmed out }
<main script>

} set fork_vait [Fork setup_plugin

<event script> ‘example_plugin’]

do sone processing # do other things
Lock unl ock Al arnEvent Lock
now wait for the background

In this example, the main script needs to wait until the task to finish

event script has run past a certain point before it

continues executing. To accomplish this, the main #(if it hasn't already)

script cr_eates a lock called ‘AlarmEventLock’ and _ Lock wait $fork wait

then waits for it to be released. When the event script B

reaches theock unl ock command, it releases the The command Fork runs ‘setup_plugin
‘AlarmEventLock’, which allows the main scriptto ~ “example_plugin” ” in the separate Tcl shell.
continue. In case the event script never releases the Prior to executing the command in the separate Tcl
lock for whatever reason, the main script times out interpreter, the subscript file is evaluated in order to
after 180 seconds and continues with the rest of the define any needed subroutines. The command also
script. returns the name of the lock which will be released

._once the command has completed execution.
In some cases, there are time-consuming activities

that the scripts need to perform. These time-

consuming commands typically contain CORBA calls, 4. SUMMARY AND CONCLUSIONS
but in general can be any activity. In order to provide

potential performance improvements, these timeTcl has proven to be a great base language upon
consuming activites can be performed in thewhich to build a CORBA scripting language. While
“background” for the cases where the command need§e fact that in general Tcl deals only in strings may
to be completed before some point is reached, but n§eem to hamper its use in such a distributed
necessarily in a deterministic order. A new commandnvironment, the addition of specific commands that
was written that allows a script writer to execute a Tcideal with the data types of interest keeps the command
command in a separate Tcl interpreter. This newpyntax and scripting smple and easy to learn.

interpreter is created and executed in a separatg,q biggest drawback of embedding Tdl in such a
process thread from the calling script. This gives the, iti-threaded component as the PE is its lack of
calling script the ability to continue executing, Wh”ethread-safety which has begun to be addressed

the separate interpreter handles the slower aCtiVitie%Iiminating the need for extensive modification of the
Only a single command is allowed to be executed ifry core or locks around the library calls.

this manner, but that command can be a procedure . . _
call, so just about any activities can be performedWhile this project started with Tcl 7.6, we have kept
This mechanism is ideal for slow setup processes ariéP to date with the recent Tcl releases. However, we

databaseaess. have not been able to rewrite the extensions to utilize
the object interfaces added in Tcl 8.0, so much
Example code improvements could be made to the APC extensions.

<sub-script>
) ACKNOWLEDGEMENTS
proc setup_plugin {nane} {

Portions of thiswork was performed under the support
of the US Department of Commerce, National
Ingtitute of Standards and Technology.

set ex_plugin [Plugln Setup
$nane]

Move gl obal ex_plugin
ex_pl ugi n_gl obal

REFERENCES
1. Orfdi, R., Harkey, D., Edwards, J., The Essential Distributed Objects Survival Guide, (Wiley, 1996).

