
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Using Content-Derived Names for Package Management in Tcl

Ethan L. Miller and Kennedy Akala
University of Maryland Baltimore County

Jeffrey K. Hollinsworth
University of Maryland, College Park

k-
and
e,

s

s
cl

y
r-
ter
ary
at
tion
ing

an

the
 the

y.
the
h as

im-
ue
on

s)
is
ing
u-

Using Content-Derived Names for Package Management in Tcl

ABSTRACT

Managing different versions of library routines has long
been a problem, both for Tcl and for other languages
that permit code reuse and modification (i.e., all com-
puter languages that the authors are aware of). This
problem is particularly difficult for Tcl because it allows
libraries (in the form of packages) to be dynamically
loaded as needed. While this feature is very convenient
— users need only keep a single copy of each library to
use it in many programs — it can lead to code compati-
bility and distribution problems.

This paper presents a solution for this problem — using
content-derived names (CDNs) to name Tcl packages.
Using this solution, a program can simultaneously use
two different versions of a single package. In addition,
the Tcl interpreter can easily find instances of a missing
package over the network and download them, making
them available to a running application. Because con-
tent-derived names are computed using a cryptographi-
cally strong hash over the text of a package, this process
is safe from spoofing and other attacks based on provid-
ing the wrong library. Thus, a user may download miss-
ing packages from any server willing to provide them
without fear of virus or trojan horse attacks.

1 Introduction
The proliferation of complex software libraries has
made development easier in Tcl as well as in other lan-
guages by providing high-level functionality to applica-
tion programmers. However, these libraries also
complicate matters by introducing potential incompati-
bilities between an application and the packages that it
wants to use. While Tcl can use the package statement
to deal with this problem, there are still many shortcom-
ings that need to be addressed. This paper discusses an
extension to traditional Tcl packages that eases the dis-
tribution of large Tcl applications and allows the inclu-
sion of two different versions of the same library, as
may be required by large applications that include pack-
ages that themselves require packages. Additionally, the
tcdn (Tcl Content-Derived Name) mechanism permits

applications to automatically download needed pac
ages over the network, even from untrusted hosts,
insert them into running code. Using this packag
application distribution changes from a tar file with
dozens of Tcl files and a README list of required pack-
ages to a single “root” Tcl file. All of the remaining
code can be dynamically fetched as needed.

In additional to making distribution of application
much easier, tcdn permits many versions of package
to coexist peacefully on a single machine. The T
package mechanism currently allows this, but onl
supports “exact” or “later than” testing for package ve
sion numbers. In our experience, however, the “la
than” approach is dangerous; often, changes in a libr
from version 2.x to 2.(x+1) break some applications th
used the earlier version. In such a case, the applica
designer is deluged with requests to squash bugs. Us
the tcdn system, however, a developer can supply
application and specify exactly which packages and files
must be used with it. Since the developer controls
environment more precisely, she is better able to test
application’s behavior.

The tcdn package provides a third benefit: securit
Content-derived names are computed by hashing
contents of a Tcl package using a secure hash suc
MD5 [6] or SHA-1 [1] and recording the (relatively
short) result in the file that uses the package. It is a s
ple matter for a Tcl file to recompute the hash val
before importing a file, guaranteeing that the applicati
is indeed using the appropriate file.

2 Background
While the idea of using content-derived names (CDN
for configuration management of executable code
new, there has been previous work in the areas of us
explicitly managed version numbers to provide config
ration management. The tcdn package builds on this
work as well as research in secure hash functions.

Ethan L. Miller & Kennedy Akala
Computer Science & Electrical Engineering Department

University of Maryland Baltimore County
1000 Hilltop Circle

Baltimore, MD 21250
{elm,kakala1}@csee.umbc.edu

Jeffrey K. Hollingsworth
Computer Science Department

University of Maryland
College Park, MD 20742

hollings@cs.umd.edu
- 1 -This paper was originally published in the Sixth Annual Tcl/Tk Workshop ‘98 Proceedings, September 1998.

-
d

ed
n
he
all

”
ers
n-
n-
rs

ity
n-
ith

n a
r-
,

out

t

ith
on
h-
o
 of

. In
nly

ot

m
b-

that
 Of
um-
 of
e.

c-
 on
5
i-
be
t
ate
d.

o-
it is
2.1 Configuration Management

Most of the research in configuration management has
concentrated on managing the construction of applica-
tions from a source code repository. This approach can
work well with object code binaries, producing a single
monolithic executable object that may be distributed. If
this is the case, there is no need for further management
of multiple versions of the same code. While the soft-
ware developer must keep track of many versions of
code, the end user need not. As a result, much commer-
cial software is distributed this way.

Increasingly, however, software developers are provid-
ing their applications as a collection of code objects.
The use of dynamically linked libraries in Unix,
MacOS, and Windows facilitates programs’ use of stan-
dard code. With script-based languages such as Tcl,
though, distribution of applications as dozens or hun-
dreds of individual files is practically guaranteed. Man-
aging these files can cause big problems, as the authors
have experienced when installing programs on their per-
sonal computers. Each application provides the libraries
that it needs in the versions that it prefers, overwriting
any existing versions of the libraries. Of course, this
approach causes some existing programs to fail because
their preferred version of the library has been erased by
a later installation. Tcl provides a mechanism to avoid
this, but its use requires detailed knowledge of package
search paths. Additionally, file names can become a
problem because different versions usually use the same
file names, and package search paths can become
exceedingly long. van der Hoek, et. al. [3] addressed
this problem of “software release management” by sug-
gesting a system to support software acquisition by
ensuring that the correct versions of dependent packages
are acquired with the primary package. However, their
approach relies on a centralized software repository and
explicit administration of version numbers for all pack-
ages. In contrast, our approach is completely decentral-
ized and allows anyone to install a new application by
simply entering a short (less than 50 characters) string
of hexadecimal digits and a location from which to
retrieve the object.

2.2 Package Versions in Tcl

Tcl has a mechanism to accommodate packages with
different version numbers that permits applications to
request a package with a specific version number or any
version number “later than” a specific version. A piece
of code may request a package using a package
require statement; this causes Tcl to search through
the package index file for an entry that provides the
package. This index is built by searching files for

package provide statements. The index file is con
structed by looking through files in the order specifie
by a Tcl specific variable, and it must be construct
statically (though it could be run automatically when a
unknown function is encountered). Nonetheless, t
standard Tcl approach requires that a user install
required packages before running an application.

While this approach can work with “well-behaved
packages, it presents several difficulties. First, us
must make sure that all files are available before ru
ning the application. While attendees at the Tcl/Tk co
ference may have no difficulty doing this, average use
will have somewhat more trouble. Package availabil
is only the start, though. Another issue is version ma
agement. Use of versions greater than the one w
which the application was tested can cause bugs i
program. While developers would like to think that ve
sion 2.2 is fully backward compatible with version 2.1
this is often not the case.

To address this problem, developers who care ab
their code working should use the exact option to the
package require statement, allowing them to tes
their code with all of the files that it will use. This
approach introduces another problem, however. W
complex code, it is possible that a single applicati
may require two versions of a single package. The hig
level code may not even be aware of this conflict if tw
packages themselves each require a different version
the same lower-level package, as shown in Figure 1
Tcl, this conflict cannot be easily resolved because o
one of the package require statements will be able
to load the desired package. The developer of “ro
object” may not even know of the conflict if she
received the code for the two top-level packages fro
different sources. This can also introduce naming pro
lems for unwary code designers because it requires
every version of a package have a unique file name.
course, this can be done by appending the version n
ber to every file in a package, leading to the problem
deleting old files when the package using them is gon

2.3 Secure Hash Functions

A key feature of tcdn is the use of a secure hash fun
tion to assign a unique name to an object based solely
its content. Digital signature algorithms such as MD
[6] and SHA-1 [1] are one-way functions that take arb
trary data and produce a result that is very likely to
different from that of any other (different) inpu
sequence. Our implementation uses MD5 to gener
CDNs, but other algorithms could easily be substitute

Because it is NP-hard to find another object that pr
duces the same digital signature as a given object,
- 2 -

sed
ote
ed
e
of

ph
on-
 2.
o

e
es.

e

he

he
the

cl
 to
 is
f a

oft-
ell

to
 (a
unlikely that two objects will have the same signature,
either by chance or by malicious construction of an
object. For the 128-bit signature provided by MD5, the

chance of two objects out of having the same sig-

nature is approximately . By increasing the signa-
ture length to 256 bits, the chance of collision drops to

 for unique objects [4].

The use of secure hash functions provides another bene-
fit beyond conflict-free naming, however. It allows
applications to ensure that the code they are loading is
authentic, preventing the introduction of trojan horses.
This concept is also discussed in [5]. If a developer has a
virus-free environment (and we hope that they do), the
hash values that they compute will be those for correctly
working code. If a virus later infects any piece of code,
the secure hash will change and the loader will be able
to reject the package, instead choosing to download a
new version from the network.

3 Tcdn Design
The basic concept underlying tcdn is that a complex
software installation can be thought of as a directed
graph of procedure calls, and that procedures are
grouped together into Tcl packages. The user does not
care about internal package names; names are for the
convenience of developers only. While external func-
tion names are important to those using a package, the
name of the package itself is still largely irrelevant —
just a word to be typed into a package require
statement.

Tcdn provides all of its benefits by converting package
names from a name and version number meaningful to a

developer into a content-derived name that ca n be u
to check package integrity and support secure rem
retrieval. Since this name is probabilistically guarante
not to conflict with other package names, it may b
shared between different computers without fear
name duplication.

3.1 High-Level Design

The goal of tcdn is to convert a directed package gra
such as that in Figure 1 into a package graph using c
tent-derived names, such as that shown in Figure
Unlike the graph in Figure 1, which might have tw
z.tcl files (one for version 3.1 and one for 4.0), th
graph in Figure 2 has unique names for all packag
Moreover, the code for foo-1.2 includes tcdn-
package require statements that reference th
packages that it uses — in this case,
1ee91c2024d8dbe901a33bf3b3200afe
and
42faca939af96f68ac164858cffdbc96 .
Because the content-derived name for foo-1.2 is a
cryptographic hash over its entire code, including t
statements that reference the packages used by foo-
1.2 , it is impossible for a malicious user to change t
references to the two packages without changing
hash, and thus the CDN, of foo-1.2 .

More generally, the user need only trust a single T
package, that which contains the routine that is called
start the whole application. If the name for that object
obtained from a trusted source (perhaps as part o
financial transaction in which a user purchases the s
ware), the user can obtain the root object itself, as w
as all objects it requires, from any computer willing
provide them. If the user does not trust other servers

Figure 1. Package requirement conflicts in a complex application.

Root object

Package Foo v-1.2 Package Bar v-2.0

Package X v-2.2

Package Z v-3.1

Package Y v-1.0

Package Z v-4.0

10
15

10
9–

10
14–

10
30
- 3 -

ite
at

ere
age
re-
m-

an
ed
ec-
t.

ely
w-
w

 a

n

ce
g

-

wise precaution today), she can check the cryptographic
hash of a downloaded object against the name she pro-
vided. If they do not match, the object is faulty.

3.2 What the Developer Sees

A developer need not radically change the way she
writes code to benefit from tcdn. Instead, she needs to
follow a few simple rules. First, each package must have
its own namespace. This namespace must be named so
that its name is different from that of every other pack-
age, including different versions of this package. If two
version of a package share the same namespace, they
cannot each use different versions of underlying CDN-
identified packages in a single program. Giving differ-
ent versions of a package each a unique namespace is
not difficult, however, because the version information
can be appended to the namespace name to guarantee a
unique name.

The second restriction on developers is that packages
may not use mutual recursion. In other words, if pack-
age A requires package B, package B may not in turn
require package A. The simplest way around this prob-
lem is to break up one of the packages into two pieces,
removing the cycle in the package graph. An alternative
solution would be to combine packages A and B into a
single, larger package.

If the programmer follows the above guidelines, she
may use the tools described in Section 4.1 to convert her
code into tcdn packages, making them available over the
Web.

3.3 What the User Sees

The user’s view of a large Tcl application is greatly sim-
plified using tcdn . Rather than having to download

and place dozens of files, some of which may overwr
previous files, he simply requests a single object th
automatically fetches other objects over the Web. Th
is no longer a need to add a new directory to the pack
search path for the new application, and users who p
fer the old package may continue to use it with no na
ing conflicts.

4 Tcdn Details
The tcdn package includes two pieces: code run by
application developer to generate the content-deriv
names and rewrite packages, and runtime functions n
essary to locate and load packages named by conten

4.1 Developing Code for tcdn

Packages to be turned into tcdn packages are in larg
the same way as “normal” packages. There are, ho
ever, a few restrictions that must be followed to allo
CDNs to work. The restrictions are:
• All package require statements must be placed

in the appropriate namespace.
• Each package must be contained in a single file. As

result, each file must have a package provide
statement.

• There cannot be any circular dependencies betwee
packages.

• All package code should be enclosed in a namespa
with a unique name. This can be done by appendin
the version number to the “original” namespace
name. If this is not done, most of the tcdn function-
ality will still be available, including the ability to
fetch missing packages from a remote server. How
ever, a single program will not be able to simulta-
neously use different versions of a particular
package.

Figure 2. Packages converted to tcdn format. Note that each package has a unique 32 character name.

Root object

Package Foo v-1.2 Package Bar v-2.0

Package X v-2.2

Package Z v-3.1

Package Y v-1.0

Package Z v-4.0

405a625358bb111cd1a0e2c774748058

d433ae84aa08ef40483e97591c8ea68b 369d24597e3104eb353404d8dc4bb1a4

53f2f70276ef70c63f21c9199575bf4a1ee91c2024d8dbe901a33bf3b3200afe

42faca939af96f68ac164858cffdbc96 df29ffcdd7f1c49f716df798084c72f4
- 4 -

en
tri-

that
hus,
no
le
n-
n
e.
ec-
ill
the
sers
ave
k
e

is
la-

the
is
ory
,

-
is

ify

Once the code is complete, a tool is used to rewrite all of
the package names into content-derived names. This is
accomplished using a Tcl procedure with similar seman-
tics to pkg_mkIndex . The routine to perform name
conversion is called as follows:
tcdn::tcdnify <destination> <source files...>
This call operates on all of the source files named in the
command, and places the resulting CDN files into the
directory named by <destination> .

After converting files with tcdnify , packages may
then be distributed to other developers who can use the
package with tcdn::tcdnpackage require or to end
users. Of course, this distribution may include all of the
files if desired, and this option is necessary if the desti-
nation will not have Web access. A much more attrac-
tive option, however, is to distribute the package by
simply providing the content-derived name (the entire
object can be sent, but is not necessary) to the user.
Future invocations will then automatically fetch the
desired objects from either your Web server or any other
Web server that has a copy of the file. The user is
assured of receiving the correct file because her com-
puter can compute an MD5 hash over the downloaded
file; only if the file matches is it used.

4.2 The tcdnify Process

Packages in tcdn are named using a secure hash run
over the entire body of the package. This name is then
embedded into all files that require the package.

The tcdnify procedure has three steps. First, it cre-
ates a list of packages, resolving any source statements
it finds. Next, it orders the packages by their dependen-
cies on each other. If package A requires package B,
then package B must be converted first because the
secure hash for package A depends on the content-
derived name for package B. A sample dependency
graph for the packages listed in Figures 1 and 2 is shown
in Figure 3. The order in which files are processed is
noted next to each file. Note that, in all cases, a package
is processed after all of its children have been processed.

Once the files have been ordered, tcdnify runs
through a loop for each package in order. For each pack-
age, all package require statements are converted to tcd-
npackage require statements with the appropriate CDNs,
and then the entire file is hashed with MD5. The result is
stored in the specified destination directory.

Perhaps the most difficult part of this process is ordering
the packages by their dependencies. While this could
have been left out by simply requiring the user to con-
vert a single package at a time, we felt that it was impor-
tant to make the process as automatic as possible. As a

result, a developer need only run tcdnify on an entire
project to prepare it for distribution. Once this has be
done, the resulting files can be made available for dis
bution via http or ftp , with only the root object dis-
tributed to potential users.

4.3 File System Independence

By assigning content-derived names, we guarantee
each version of each package has a unique name. T
we can store all packages in a single directory with
fear of name conflicts. Of course, the efficiency of a fi
system may drop when handling directories with pote
tially thousands of files, but this problem has bee
solved in the SGI XFS file system [7] and elsewher
This arrangement eliminates the need for users to sp
ify information about where the software packages w
reside, and makes it simpler for a designer to test
software because she no longer has to worry about u
with different package search paths. The authors h
had difficulties with Tcl software that refuses to wor
until the ordering of a search path is changed; w
believe that this approach to software distribution
flawed because it limits usage to those who are re
tively good at software installation.

Because all package files reside in a single directory,
application will work regardless of what that directory
actually named. There is no need to embed direct
information directly or indirectly into programs; instead
the tcdn system has a single directory (or list of direc
tories, if desired) in which it looks for components. Th
directory (list) is stored in tcdn::tcdndirs , but it is
relatively immune to user error. Should the user spec
an incorrect (but readable and writable) directory, tcdn

Figure 3. Sample package dependency graph.

Root object

Package Foo v-1.2 Package Bar v-2.0

Package X v-2.2

Package Z v-3.1

Package Y v-1.0

Package Z v-4.0

1

2

3

4

5

6

7

- 5 -

tly
use
d

or
ly.
rs
run

age
le,
ld
-

nd

 the

il
is
his

e,
ck-

an

ly.
al
e

t
of

N-
ere
n a
y
ld
rse
re
 to
his

 an
h

will merely download “missing” packages, even if they
are stored elsewhere in the local system.

Unfortunately, this approach does not work for software
developers who need to be able to modify packages
because it forces name changes when the contents of a
package change. However, it can be used for developers
who wish to use other packages unchanged, and works
very well for the majority of users who simply want
their application to work without the need for painful
installation.

4.4 Locating Packages

Perhaps the best feature of the tcdn package is that it
permits automatic downloading of missing packages. If
a required package is not found in the single directory
that holds CDN-named packages, it may be fetched
from a remote Web server using http . This can be
done without the user’s knowledge; the only evidence
that the network was consulted is the increased delay.

When tcdn attempts to load a package, it first looks in
the directories specified by tcdndirs. If the package is
not found there, it proceeds to query each of the URLs
contained in the list variable tcdn::tcdnservers .
This list is searched in order, so it is likely that a site
may put its own package cache server first before the
“home” site or more comprehensive, but more distant
caches. Additionally, the application itself can append
values to tcdnservers , enabling an application to
specify a Web server from which its component pack-
ages may be obtained.

By using this two-level approach, a site may maintain a
cache of Tcl packages for use by many machines at the
site. If the object is not available there, tcdn can go to
either a public server with many packages (the equiva-
lent of sunsite , perhaps) or to the developer’s site to
download the object directly from its source.

The integrity of packages found on the Web is of utmost
concern because it is far too easy to implement a Tcl tro-
jan horse. Thus, tcdn checks the integrity of any down-
loaded package (and, optionally, any tcdn package
including those found locally) by hashing it and com-
paring its hash to its name. Files that do not hash prop-
erly are simply discarded, though it would be a simple
extension to add Tcl code to send mail to a system
administrator noting that a “bad tcdn package file”
was received, alerting her of potential dangers. Note that
if an integrity check fails, the package is treated as if it
were never there. Thus, tcdn can go on to other servers
listed in tcdnservers and check them to find a good
package. If no valid package is found locally or on any
server, tcdn throws an error.

Another advantage of this scheme is that it is not stric
necessary to even be able to store the file in order to
it. Instead, Tcl can dynamically load in the downloade
file but never store it on disk. This approach is poor f
machines with disks that can cache the file local
However, it may be advantageous for Tcl interprete
with no persistent local storage, such as those that
inside a Web browser.

5 Using TCDN
This section describes the actual installation and us
of the tcdn package. Because the package is simp
and places relatively few limitations on its use, it shou
be straightforward to use it with existing code. How
ever, it will work best if developers follow a few simple
guidelines for writing packages.

5.1 Installing tcdn

The tcdn package was written so that it can coexist a
work with the existing package system. The tcdn pack-
age links the two worlds, and is both a tcdn package
and a regular package. In fact, it is necessary to use
regular package mechanism to install and use the tcdn
package. Usually, a system wide installation will enta
placing the package in directories where writing
restricted, much as with any other normal package. T
is only required for the initial installation of tcdn .
Since the tcdn package is itself a CDN-based packag
all later updates can be made automatically. Any pa
age or application that uses the tcdn package needs to
include a package require tcdn command. Fol-
lowing this, the package or application can use
upgraded tcdn package if it is available by including a
tcdnpackage require statement. The semantics
of using a CDN-named package will be covered short
For now, the important thing to know is that the origin
version of the tcdn package can be replaced at run tim
by any newer version if one is available.

The initial installation will also require a small amoun
of setup. The most important (and so far only) step
this setup is deciding where the downloaded CD
named packages will reside. The surprising answer h
is that the CDN-named packages should be stored i
completely public directory, readable and writable b
all. Usually, this would be a problem because it wou
open the end user up to all manner of trojan ho
attacks. If tcdn were not in use and packages we
stored in this manner then any user would be able
replace a package with whatever they wanted. T
would be like making /bin world writable! Tcdn pro-
tects against this by making sure that the package
application is loading really is the right one. Wit
- 6 -

s.
-
t.
this
ld
ill
is

s to

ck-
se
e
the

ry
 be
ed
age
en
age

im-

es.
exist

er
 in

the

n-
n
n.”
 as

n-
 of
y
en

out-
nt-
 of
ers
e

will
 of
ck-
tcdn , the offending package would simply be deleted
and replaced with the correct one. The details of this
process are covered in the next two sections.

Keeping packages in a public directory is an immense
advantage because it allows the end user to use an appli-
cation without having to get the access required to
download and install all of the packages required by the
application. It also allows the installation process to be
more completely automated, thus making distribution
much easier.

5.2 Creating a CDN-named Package

The tcdn library was designed so that it would be easy
for new CDN-named packages to be created. The goal
here is to make things simple so that the programmer
will not have to go to unreasonable lengths to create a
CDN-named package.

There are several conventions that must be followed
when creating a package. CDN-named packages should
contain a single package provide statement. The
name of the package does not matter because it will be
removed. This is necessary to allow for the conversion
of multiple packages with multiple files each at the
same time. Global variables should, of course, be
avoided. Namespaces are not required, but they are rec-
ommended. If no namespaces are used, tcdn cannot
ensure that the correct version of required packages are
loaded for the same reason that vanilla Tcl cannot do so.
Care must be taken when naming namespaces, as
namespace collisions can still occur. The easiest method
of assuring a unique namespace is to append the version
number of the package to its name and use that as the
namespace name. Following this short list of rules
should be easy, as it allows the programmer to create
packages in a more normal fashion.

CDN-named packages should also contain a command
named tcdnInit . This command should exist in the
global namespace. The purpose of this command is to
allow the package to do initialization if it needs to.
Remember, a package may not have existed on a system
prior to the first time it is used. The tcdnInit com-
mand will allow the package to perform any setup that it
needs to. If the package does not need to perform any
special setup then the command can be left out. The
command is executed right after the package is loaded
and before control returns to the application. It is very
important that the command be as unobtrusive as possi-
ble, because it will be running in the context of the
application.

CDN-named packages should store their configuration
information in the user’s directory. This is just like stor-

ing user options, and in fact just adds global option
The tcdnInit command should check for this config
uration information before creating it or asking for i
The package programmer should make sure that
information will not take up too much space, and shou
also insure that any errors in its creation or reading w
be handled without crashing the application. Th
requirement is not unique to tcdn , since no one would
want to use a regular package that caused application
crash.

Using another regular package in a CDN-named pa
age is simple. Here the programmer should just u
package require as usual. Of course, the packag
being requested must exist on the system where
package is used or the package require command
will fail. Using a package in this way may be necessa
sometimes, especially since not all packages may
available as CDN-named packages. If CDN-nam
packages were used all around then the normal pack
mechanism could be replaced completely, but until th
CDN-named packages may require a regular pack
every now and then.

Of course, using a CDN-named package is just as s
ple. Tcdn provides a tcdnpackage require state-
ment that handles the loading of CDN-named packag
In this case the requested package does not need to
on the system at all, because tcdn will find and down-
load it when it is needed. This frees the programm
from having to specify what packages are needed
order to be able to use their package. With tcdn the
end user does not have to manually download
needed packages or even install them.

Once written, a CDN-named package must be co
verted. Tcdn was written as a library, so anyone ca
create an application that does the actual “conversio
This was done so that the process could be as flexible
possible. Tcdn provides a tcdnify command to do
this conversion. The tcdnify command works on
properly written regular packages that are to be co
verted to CDN-named packages. It strips the package
package provide statements and resolves an
package interdependencies which may exist betwe
packages being converted at the same time. It then
puts the CDN-named package with the correct conte
derived name as the file name. The current version
tcdn does this because it is assumed that programm
will be more comfortable with creating packages in th
manner they have been used to. Future versions
provide a mechanism for simply generating the name
a package that has been written as a CDN-named pa
age from the beginning.
- 7 -

age
dis-

we
u-

-
 of
di-

va
x
ate
or
at a
the
is
the

 to
 to
r-

ir
dis-
,

to
te
cl-
pli-
ro-
ion
ca-
-
er
nd
.

-
es,
h

d-

ut
n

5.3 Distributing CDN-named Code

One of the primary design goals of tcdn was to make
distribution much easier. The current package mecha-
nism requires users to manually find and install pack-
ages as needed. Tcdn will automatically find and install
CDN-named packages on demand. Tcdn can be config-
ured with the location of CDN-named package servers.
When a CDN-named package is requested and not
found on the local system these servers are searched in
turn. The package is then downloaded from the server
and installed. This means that in order to distribute a
package the programmer needs to upload it to a server
or several servers. The programmer must also make
public the content-derived name of the package. This
name is all anyone else needs to know in order to be
able to use the package. Application programmers do
not even need to know the names of the servers on
which the package has been stored. The end user doesn’t
need to know anything at all. Once the package has been
uploaded and the content-derived name has been publi-
cized, the entire process is automatic.

5.4 Using a CDN-named Package

Using a cdn package is easy. Because tcdn is not the
primary package mechanism the application will need to
have a package require tcdn command. This
will load tcdn and all of its commands. From here all
that is needed is a cdnpackage require statement
for each CDN-named package that will be used. After
this the process is automatic.

If the CDN-named package is located on the system it is
checked and then loaded. The check involves regenerat-
ing the content-derived name. The generated name is
then compared with the requested name. If the two
match then the package has been located and verified
and can be loaded. If the two do not match then it is
assumed that the package file is corrupt and it is thrown
away. If there are other directories to search then this
process is repeated for each of them. If not, the package
must be retrieved from a server.

The loading process for remote CDN-named packages
is similar to the loading process for local packages. Each
server is queried in turn for the desired package. Tcdn
has been written so that different protocols can be used
for each server. If none of the available servers returns
the desired cdn package then the cdnpackage
require command fails. This is not a normal situa-
tion, and would only happen if the network was unavail-
able or some other occurrence somehow prevented
access. Usually, at least one server will return the
requested package. The content-derived name is then
verified, just as it would be if it were local. If the gener-

ated CDN matches the requested CDN then the pack
file is usable and can be saved. If not, the package is
carded and the process continues.

6 Future Directions
Having demonstrated the usefulness of CDNs in Tcl,
hope to extend our work to other languages. In partic
lar, we plan to build similar functionality into the
dynamic library loaders for Windows and Linux, allow
ing them to reap the benefits of automatic installation
software packages. Doing so will also provide an ad
tional benefit: the ability to dynamically load binary
libraries into Tcl.

This technology should also be applicable to Ja
applets [2], providing additional security for comple
applications at little overhead. Rather than authentic
all applets, requiring a relatively expensive check f
each small piece of code, our system requires only th
root object be authenticated. Once this is done,
integrity of the objects immediately below the root
ensured because their names are embedded in
authenticated objects. This can transitively be applied
the entire dependency graph, allowing a computer
check most applet code locally without relying on exte
nal certificate providers.

7 Conclusions
This paper has presented a Tcl package, tcdn , that
allows Tcl developers to create distributions of the
code that have several advantages over current Tcl
tribution methods: freedom from version conflicts
integrity checking for packages, and the ability
dynamically download needed modules from remo
sites. It is our hope that this package will enable T
based applications to reach a wider audience by sim
fying the installation process as well as the upgrade p
cess. All that is necessary to install an entire applicat
is the content-derived name of its root object and a lo
tion from which to get it; from there, everything is han
dled automatically. If the software is upgraded, the us
need only get a new root object from the developer, a
the package dependencies are updated automatically

Because tcdn provides integrity checking and the abil
ity to fetch missing packages from remote server sit
we believe it will be essential for developers who wis
to make Tcl software available via the Web. By provi
ing both integrity and ease of use, tcdn enables even
novice users to run complex Tcl applications witho
the need for complex installations or the fear of troja
horse packages.
- 8 -

Code Availability
Further information about content-derived naming is
available on the Web at:
http://www.csee.umbc.edu/~elm/Projects/CDN/ .
This page contains references to other work on content-
derived names as well as the Tcl source code and docu-
mentation for tcdn .

References
[1] Secure Hash Standard, FIPS-180-1, National

Institute of Standards and Technologies, U.S.
Department of Commerce, April 1995.

[2] J. Gosling, B. Joy, and G. Steele, The Java Lan-
guage Specification, 1996 (Addison-Wesley).

[3] A. van der Hoek, R. S. Hall, D. Heimbiger, and A.
L. Wolf, “Software Release Management,” CU-
CS-806-96, University of Colorado, August 1996.

[4] J. K. Hollingsworth and E. L. Miller, “Using Con-
tent-Derived Names for Configuration Manage-
ment,” 1997 Symposium on Software Reusability
(SSR ‘97), Boston, MA, May 1997.

[5] J. W. Moore, “The Use of Encryption to Ensure
the Integrity of Reusable Software Components,”
International Conference on Software Reuse, Rio
de Janeiro, November 1994, pages 118-123.

[6] R. L. Rivest, “The MD5 Message-Digest Algo-
rithm,” RFC 1321, Network Working Group,
April 1992.

[7] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck, “Scalability in the
XFS File System,” Proceedings of the Winter
1996 USENIX Conference (San Diego, CA), Jan-
uary 1996, pages 33-44.
- 9 -

	akala.pdf
	Using Content-Derived Names for Package Management in Tcl
	ABSTRACT
	1 Introduction
	2 Background
	2.1 Configuration Management
	2.2 Package Versions in Tcl
	2.3 Secure Hash Functions

	3 Tcdn Design
	3.1 High-Level Design
	3.2 What the Developer Sees
	3.3 What the User Sees

	4 Tcdn Details
	4.1 Developing Code for tcdn
	4.2 The tcdnify Process
	4.3 File System Independence
	4.4 Locating Packages

	5 Using TCDN
	5.1 Installing tcdn
	5.2 Creating a CDN-named Package
	5.3 Distributing CDN-named Code
	5.4 Using a CDN-named Package

	6 Future Directions
	7 Conclusions
	Code Availability
	References

