i

The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop
San Diego, California, September 14-18, 1998

Using Content-Derived Names for Package Management in Tcl

Ethan L. Miller and Kennedy Akala
University of Maryland Baltimore County
Jeffrey K. Hollinsworth
University of Maryland, College Park

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Using Content-Derived Names for Package Management in Tcl

Ethan L. Miller & Kennedy Akala Jeffrey K. Hollingsworth
Computer Science & Electrical Engineering Departme@omputer Science Department
University of Maryland Baltimore County University of Maryland
1000 Hilltop Circle College Park, MD 20742
Baltimore, MD 21250 hollings@cs.umd.edu

{elm,kakalal}@csee.umbc.edu

ABSTRACT applications to automatically download needed pack-
ages over the network, even from untrusted hosts, and
Managing different versions of library routines has longjnsert them into running code. Using this package,
been a problem, both for Tcl and for other languagegppjication distribution changes fromtar file with
that permit code reuse and modification (i.e., all comygzens of Tcl files and READMEist of required pack-
puter languages that the authors are aware of). Thigyes to a single “root” Tcl file. All of the remaining

problem is particularly difficult for Tcl because it allows ¢ode can be dynamically fetched as needed.
libraries (in the form of packages) to be dynamically

loaded as needed. While this feature is very conveniedf additional to making distribution of applications
— users need only keep a single copy of each library tfluch easiericdn permits many versions of packages

use it in many programs — it can lead to code compatit® Coexist peacefully on a single machine. The Tcl
bility and distribution problems. package mechanism currently allows this, but only

) i . _ supports “exact” or “later than” testing for package ver-
This paper presents a solution for this problem — usingjon numbers. In our experience, however, the “later

content-derived names (CDNs) to name Tcl packagesgnan approach is dangerous: often, changes in a library

Using. this solutio_n, a program can simultaneousl)_/.useﬁ,om version 2.x to 2.(x+1) break some applications that
two different versions of a single package. In addition,,seq the earlier version. In such a case, the application

the Tcl interpreter can easily find instances of a missi”%esigner is deluged with requests to squash bugs. Using
package over the network and download them, making,a tcdn system, however, a developer can supply an

them a\{ailable to a running applicatilon. Because CONzhlication and specifgxactlywhich packages and files
tent-derived names are computed using a cryptographj st be used with it. Since the developer controls the

cally strong hash over the text of a package, this procegs,ironment more precisely, she is better able to test the
is safe from spoofing and other attacks based on prov'%pplication’s behavior.

ing the wrong library. Thus, a user may download miss- _ _ _ _
ing packages from any server willing to provide themThe tcdn package provides a third benefit: security.

without fear of virus or trojan horse attacks. Content-derived names are computed by hashing the
contents of a Tcl package using a secure hash such as
1 Introduction MD5 [6] or SHA-1 [1] and recording the (relatively

) i , . short) result in the file that uses the package. It is a sim-
The proliferation of complex software libraries hasp|e matter for a Tcl file to recompute the hash value

made developmept ea_sier in Tcl as yvell as in othe_r larsefore importing a file, guaranteeing that the application
guages by providing high-level functionality to applica- is indeed using the appropriate file.
tion programmers. However, these libraries also

complicate matters by introducing potential incompati-

bilities between an application and the packages that % Background

wants to use. While Tcl can use tj;m;kage statement While the idea of using content-derived names (CDNS)
to deal with this problem, there are still many shortcomfor configuration management of executable code is
ings that need to be addressed. This paper discussesngy, there has been previous work in the areas of using
extension to traditional Tcl packages that eases the digxplicitly managed version numbers to provide configu-
tribution of large Tcl applications and allows the inclu-ration management. Thedn package builds on this
sion of two different versions of the same library, aswork as well as research in secure hash functions.

may be required by large applications that include pack-

ages that themselves require packages. Additionally, the

tcdn (Tcl Content-Derived Name) mechanism permits

2.1 Configuration Management package provide statements. The index file is con-

structed by looking through files in the order specified

Most of the research in configuration management haﬁ i . .
. . . by a Tcl specific variable, and it must be constructed
concentrated on managing the construction of applica-

. . ; statically (though it could be run automatically when an
tions from a source code repository. This approach can . .
X) . . : unknown function is encountered). Nonetheless, the

work well with object code binaries, producing a single . .

- . L2 tandard Tcl approach requires that a user install all
monolithic executable object that may be distributed. IfrS uired packages before running an application
this is the case, there is no need for further managemer%atq P 9 9 P '
of multiple versions of the same code. While the softWhile this approach can work with “well-behaved”
ware developer must keep track of many versions opackages, it presents several difficulties. First, users
code, the end user need not. As a result, much commenust make sure that all files are available before run-
cial software is distributed this way. ning the application. While attendees at the Tcl/Tk con-
. . ference may have no difficulty doing this, average users
Increasingly, however, software developers are provid-

. . o ; . will have somewhat more trouble. Package availability
ing their applications as a collection of code objects,

The use of dynamically linked libraries in Unix, is only the start, though. Another issue is version man-

MacOS, and Windows facilitates programs’ use of stanggement. Use of versions greater than the one with

dard code. With script-based languages such as Tc\i\lhlch the application was tested can cause bugs in a

though, distribution of applications as dozens or hun_p’rogram. While developers would like to think that ver-

dreds of individual files is practically guaranteed. Man—SIOn 2.2 is fully backward compatible with version 2.1,

aging these files can cause big problems, as the authotpsIS Is often not the case.

have experienced when installing programs on their perfFo address this problem, developers who care about
sonal computers. Each application provides the librarietheir code working should use tegact option to the

that it needs in the versions that it prefers, overwritingpackage require statement, allowing them to test
any existing versions of the libraries. Of course, thigheir code with all of the files that it will use. This
approach causes some existing programs to fail becauapproach introduces another problem, however. With
their preferred version of the library has been erased byomplex code, it is possible that a single application
a later installation. Tcl provides a mechanism to avoidnay require two versions of a single package. The high-
this, but its use requires detailed knowledge of packagevel code may not even be aware of this conflict if two
search paths. Additionally, file names can become packages themselves each require a different version of
problem because different versions usually use the santke same lower-level package, as shown in Figure 1. In
file names, and package search paths can beconiel, this conflict cannot be easily resolved because only
exceedingly long. van der Hoek, et. al. [3] addressedne of thepackage require statements will be able
this problem of “software release management” by sugto load the desired package. The developer of “root
gesting a system to support software acquisition bybject” may not even know of the conflict if she
ensuring that the correct versions of dependent packagesceived the code for the two top-level packages from
are acquired with the primary package. However, theidifferent sources. This can also introduce naming prob-
approach relies on a centralized software repository anleéms for unwary code designers because it requires that
explicit administration of version numbers for all pack- every version of a package have a unique file name. Of
ages. In contrast, our approach is completely decentratourse, this can be done by appending the version nhum-
ized and allows anyone to install a new application byber to every file in a package, leading to the problem of
simply entering a short (less than 50 characters) strindeleting old files when the package using them is gone.

of hexadecimal digits and a location from which to
retrieve the object. 2.3 Secure Hash Functions

A key feature otcdn is the use of a secure hash func-
tion to assign a unique name to an object based solely on
Tcl has a mechanism to accommodate packages wiits content. Digital signature algorithms such as MD5
different version numbers that permits applications td6] and SHA-1 [1] are one-way functions that take arbi-
request a package with a specific version number or antyary data and produce a result that is very likely to be
version number “later than” a specific version. A piecedifferent from that of any other (different) input
of code may request a package usingackage sequence. Our implementation uses MD5 to generate
require statement; this causes Tcl to search througi€DNs, but other algorithms could easily be substituted.

the package.inQex fiIe_ for an entry that .provi.des theBecause it is NP-hard to find another object that pro-
package. This index is built by searching files forduces the same digital signature as a given object, it is

2.2 Package Versions in Tcl

Root object

Package Foo v-1. 2

Package Z v-3. 1) C Package Z v-4.0

Package Bar v-2. O

Figure 1. Package requirement conflicts in a complex application.

unlikely that two objects will have the same signaturedeveloper into a content-derived name that ca n be used
either by chance or by malicious construction of anto check package integrity and support secure remote
object. For the 128-bit signature provided by MDS5, theretrieval. Since this hame is probabilistically guaranteed
not to conflict with other package names, it may be
shared between different computers without fear of
nature is approximatel;to_9 . By increasing the signaname duplication.

ture length to 256 bits, the chance of collision drops to
3.1 High-Level Design

chance of two objects out ab™ having the same sig"

% for 10 unique objects [4].
The goal of tcdn is to convert a directed package graph
N&lich as that in Figure 1 into a package graph using con-
tent-derived names, such as that shown in Figure 2.
Bnlike the graph in Figure 1, which might have two
z.tcl files (one for version 3.1 and one for 4.0), the
aph in Figure 2 has uniqgue names for all packages.
oreover, the code fofoo-1.2 includes tcdn-

fit beyond conflict-free naming, however. It allows
applications to ensure that the code they are loading
authentic, preventing the introduction of trojan horses
This concept is also discussed in [5]. If a developer has
virus-free environment (and we hope that they do), th

hash values that they compute will be those for CorreCtl)backage require statements that reference the
working code. If a virus later infects any piece of code ackages that it uses — in this case

the secure hash will change and the loader will be abl ee91c2024d8dbe901a33bf3b3200afe
to reject the package, instead choosing to download &nd

new version from the network. 42faca939af96{68ac164858cffdbc6
d . Because the content-derived name flmr-1.2 is a
3 Tedn Design cryptographic hash over its entire code, including the

The basic concept underlyirigdn is that a complex statements that reference the packages usdddsy
software installation can be thought of as a directed.2 , it is impossible for a malicious user to change the
graph of procedure calls, and that procedures arteferences to the two packages without changing the
grouped together into Tcl packages. The user does nbash, and thus the CDN, fofo-1.2

care about internal package names; names are for th
convenience of developers only. While external func-
tion names are important to those using a package, the
name of the package itself is still largely irrelevant —
just a word to be typed into @ackage require
statement.

Wfore generally, the user need only trust a single Tcl
ackage, that which contains the routine that is called to
fart the whole application. If the name for that object is
" obtained from a trusted source (perhaps as part of a
financial transaction in which a user purchases the soft-
ware), the user can obtain the root object itself, as well
Tcdn provides all of its benefits by converting packageas all objects it requires, from any computer willing to
names from a name and version number meaningful toprovide them. If the user does not trust other servers (a

Root object
405a625358bb111cd1a0e2c774748058

Package Foo v-1.2 Package Bar v-2.0
d433ae84aa08ef40483e97591c8eab8b 369d24597e3104eb353404d8dc4bblas

\

Package X v-2.2 Package Y v-1.0
1ee91¢2024d8dbe901a33bf3b3200afe 53f2f70276ef70c63f21c9199575bf4a
Package Z v-3.1 Package Z v-4.0
42faca939af96f68ac164858cffdbcI6 df29ffcdd7f1c49f716df798084c72f4

Figure 2. Packages convertedddn format. Note that each package has a unique 32 character name.

wise precaution today), she can check the cryptographiand place dozens of files, some of which may overwrite
hash of a downloaded object against the name she prprevious files, he simply requests a single object that

vided. If they do not match, the object is faulty. automatically fetches other objects over the Web. There
is no longer a need to add a new directory to the package
3.2 What the Developer Sees search path for the new application, and users who pre-

A developer need not radically change the way Shéer the old package may continue to use it with no nam-

writes code to benefit from tcdn. Instead, she needs 99 conflicts.
follow a few simple rules. First, each package must have .
its own namespace. This namespace must be named 4ol cdn Details

that its name is different from that of every other pack-Thetcdn package includes two pieces: code run by an
age, including different versions of this package. If twoapplication developer to generate the content-derived
version of a package share the same namespace, th@mes and rewrite packages, and runtime functions nec-
cannot each use different versions of underlying CDNessary to locate and load packages named by content.
identified packages in a single program. Giving differ-
ent versions of a package each a unique namespace4id Developing Code fotcdn
not difficult, however, because the version information . .
Packages to be turned into tcdn packages are in largely
can be appended to the namespace name to guarantet% &same way as “normal’ packages. There are. how-
unigue name. yas P ges. '
ever, a few restrictions that must be followed to allow
The second restriction on developers is that packagg3DNs to work. The restrictions are:
may not use mutual recursion. In other words, if packs All package require statements must be placed
age A requires package B, package B may not in turn in the appropriate namespace.
require package A. The simplest way around this probs Each package must be contained in a single file. As a
lem is to break up one of the packages into two pieces, result, each file must havepackage provide
removing the cycle in the package graph. An alternative statement.
solution would be to combine packages A and B into @ There cannot be any circular dependencies between
single, larger package. packages.
All package code should be enclosed in a namespace
with a unique name. This can be done by appending
the version number to the “original” namespace
name. If this is not done, most of tteeln function-
ality will still be available, including the ability to
3.3 What the User Sees fetch mis_sing packages from a remote server. How-
ever, a single program will not be able to simulta-

The user’s view of a large Tcl application is greatly sim- neously use different versions of a particular
plified using tcdn . Rather than having to download package.

If the programmer follows the above guidelines, she
may use the tools described in Section 4.1 to convert her
code into tcdn packages, making them available over the
Web.

Once the code is complete, a tool is used to rewrite all of
the package names into content-derived names. This is
accomplished using a Tcl procedure with similar seman-
tics to pkg_mkindex . The routine to perform name
conversion is called as follows:

tcdn::tednify <destination> <source files...> 3

Root object

This call operates on all of the source files named in the Package Foo v-1.2 6
command, and places the resulting CDN files into the 9 ' Package Bar v-2.0
directory named bydestination> 4

After converting files withtcdnify , packages may 4

then be distributed to other developers who can use the

package withicdn::tcdnpackage require or to end
users. Of course, this distribution may include all of the

files if desired, and this option is necessary if the desti- 1
nation will not have Web access. A much more attrac-
tive option, however, is to distribute the package by
simply providing the content-derived name (the entire
object can be sent, but is not necessary) to the user. Figure 3. Sample package dependency graph.
Future invocations will then automatically fetch the

desired objects from either your Web server or any otheresult, a developer need only nwanify on an entire
Web server that has a copy of the file. The user iproject to prepare it for distribution. Once this has been
assured of receiving the correct file because her condone, the resulting files can be made available for distri-
puter can compute an MD5 hash over the downloadeldution viahttp or ftp , with only the root object dis-
file; only if the file matches is it used. tributed to potential users.

Package Y v-1.0

Package Z v-4.0

Package Z v-3.1

4.2 Thetcdnify ~ Process 4.3 File System Independence

Packages icdn are named using a secure hash rurBy assigning content-derived names, we guarantee that
over the entire body of the package. This name is theeach version of each package has a unique name. Thus,
embedded into all files that require the package. we can store all packages in a single directory with no
fear of name conflicts. Of course, the efficiency of a file

Thetcdnify procedure has three steps. First, it cre- : . . d
ates a list of packages, resolving any source stateme gstem may drop whgn handling .d|rector|es with poten-
! rhally thousands of files, but this problem has been

it finds. Next, it orders the packages by their dependen-olved in the SGI XFS file system [7] and elsewhere.

cies on each other. If package A requires package B, . .
: his arrangement eliminates the need for users to spec-
then package B must be converted first because thg g .
ify information about where the software packages will
secure hash for package A depends on the content?

derived name for package B. A sample dependencreside, and makes it simpler for a designer to test the
graph for the packages listed in Figures 1 and 2 is shown(.)ﬁwa.re because she no longer has to worry about users
. with different package search paths. The authors have

in Figure 3. The orgler in which f!les are processed "had difficulties with Tcl software that refuses to work
noted next to each file. Note that, in all cases, a packane . .) :
is processed after all of its children have been process dm.II the order!ng of a search path is ghap ge.d, we
Believe that this approach to software distribution is
Once the files have been ordereddnify runs flawed because it limits usage to those who are rela-
through a loop for each package in order. For each packively good at software installation.
age, all package require statements are converted to tcg- ' S : .
: . X ecause all package files reside in a single directory, the
npackage require statements with the appropriate CDNs,~ ~. " . . .
N . . application will work regardless of what that directory is
and then the entire file is hashed with MD5. The result is ! .
. " S . actually named. There is no need to embed directory
stored in the specified destination directory. . . . A : -
information directly or indirectly into programs; instead,
Perhaps the most difficult part of this process is orderinghetcdn system has a single directory (or list of direc-
the packages by their dependencies. While this coultbries, if desired) in which it looks for components. This
have been left out by simply requiring the user to condirectory (list) is stored itcdn::tcdndirs , but it is
vert a single package at a time, we felt that it was imporrelatively immune to user error. Should the user specify

tant to make the process as automatic as possible. Asaa incorrect (but readable and writable) directtrgn

will merely download “missing” packages, even if they Another advantage of this scheme is that it is not strictly
are stored elsewhere in the local system. necessary to even be able to store the file in order to use

. it. Instead, Tcl can dynamically load in the downloaded
Unfortunately, this approach does not work for softwareﬁle but never store it on disk. This approach is poor for

developers who need to be able to modify packages achines with disks that can cache the file locally.
because it forces hame changes when the contents oﬁa

. Oowever, it may be advantageous for Tcl interpreters
package change. Howevercanbe used for developers = . .
) with no persistent local storage, such as those that run
who wish to use other packages unchanged, and works .
o ; Inside a Web browser.
very well for the majority of users who simply want

their application to work without the need for painful

installation. 5 Using TCDN
. This section describes the actual installation and usage
4.4 Locating Packages of thetcdn package. Because the package is simple,

Perhaps the best feature of thdn package is that it and places relatively few limitations on its use, it should

permits automatic downloading of missing packages. P€ Straightforward to use it with existing code. How-
a required package is not found in the single directoryVer: it will work best if developers follow a few simple
that holds CDN-named packages, it may be fetcheguidelines for writing packages.

from a remote Web server usifntp . This can be
done without the user’'s knowledge; the only evidenc
that the network was consulted is the increased delay. Thetcdn package was written so that it can coexist and
When tcdn attempts to load a package, it first looks i orklyv Lth tEe existing lpdackag(;a .Syitew(;m pECk'
the directories specified by tcdndirs. If the package i$9¢ i s the two worlds, and is botftean package

not found there, it proceeds to query each of the URI_gnd a regular package. In fact, it is necessary to use the

: . : . o fegular package mechanism to install and uséctihe
contained in the list variabledn: tcdnservers ' ackage. Usually, a system wide installation will entail
This list is searched in order, so it is likely that a site” ge- Y, asy

) . lacing the package in directories where writing is
may put its own package cache server first before th . . :
“ . . . estricted, much as with any other normal package. This

home” site or more comprehensive, but more distan

o T s only required for the initial installation dtdn .
caches. Additionally, the application itself can appendSince thecdn package is itself a CDN-based package
values totcdnservers , enabling an application to '

: LY all later updates can be made automatically. Any pack-
specify a Web server from which its component pack- L

. age or application that uses ticeln package needs to
ages may be obtained. . .

include apackage require tcdn command. Fol-

By using this two-level approach, a site may maintain dowing this, the package or application can use an
cache of Tcl packages for use by many machines at theogradedcdn package if it is available by including a
site. If the object is not available there, tcdn can go tacdnpackage require statement. The semantics
either a public server with many packages (the equivasf using a CDN-named package will be covered shortly.
lent ofsunsite , perhaps) or to the developer’s site to For now, the important thing to know is that the original

download the object directly from its source. version of thécdn package can be replaced at run time

The integrity of packages found on the Web is of u'[mos?y any newer version if one is available.

concern because it is far too easy to implement a Tcl troFhe initial installation will also require a small amount
jan horse. Thus, tcdn checks the integrity of any downef setup. The most important (and so far only) step of
loaded package (and, optionallsgny tcdn package this setup is deciding where the downloaded CDN-
including those found locally) by hashing it and com-named packages will reside. The surprising answer here
paring its hash to its name. Files that do not hash progs that the CDN-named packages should be stored in a
erly are simply discarded, though it would be a simplecompletely public directory, readable and writable by
extension to add Tcl code to send mail to a systemall. Usually, this would be a problem because it would
administrator noting that a “batdn package file” open the end user up to all manner of trojan horse
was received, alerting her of potential dangers. Note thatttacks. Iftcdn were not in use and packages were
if an integrity check fails, the package is treated as if istored in this manner then any user would be able to
were never there. Thus, tcdn can go on to other serversplace a package with whatever they wanted. This
listed intcdnservers and check them to find a good would be like makingbin world writable!Tcdn pro-
package. If no valid package is found locally or on anytects against this by making sure that the package an
servertcdn throws an error. application is loading really is the right one. With

eS.l Installing tcdn

tcdn , the offending package would simply be deleteding user options, and in fact just adds global options.
and replaced with the correct one. The details of thighetcdnlinit command should check for this config-
process are covered in the next two sections. uration information before creating it or asking for it.
Keeping packages in a public directory is an immensézrhe package programmer should make sure that this
information will not take up too much space, and should

advantage because it allows the end user to use an app lsoi C . . .
also insure that any errors in its creation or reading will

cation without having to get the access required t . . o .
download and install all of the packages required by th((%a)e handled without crashing the application. This

o . . requirement is not unique todn , since no one would

application. It also allows the installation process to be o

. .- . want to use a regular package that caused applications to

more completely automated, thus making d|str|but|onCrash
much easier. '

Using another regular package in a CDN-named pack-

5.2 Creating a CDN-named Package age is simple. Here the programmer should just use

Thetcdn library was designed so that it would be easyP@ckage require as usual. Of course, the package
for new CDN-named packages to be created. The go&€iNd requested must exist on the system where the
here is to make things simple so that the programméiackage is used or tipackage require command

will not have to go to unreasonable lengths to create Wil fail- Using a package in this way may be necessary
CDN-named package. sometimes, especially since not all packages may be

_ available as CDN-named packages. If CDN-named
There are _several conventions that must be followe@ackages were used all around then the normal package
when creating a package. CDN-named packages showflechanism could be replaced completely, but until then

contain a singlepackage provide statement. The CDN-named packages may require a regular package
name of the package does not matter because it will hg/ery now and then.

removed. This is necessary to allow for the conversion) o]
of multiple packages with multiple files each at the©Of course, using a CDN-named package is just as sim-

same time. Global variables should, of course, b&!€-Tcdn provides dcdnpackage require state-
avoided. Namespaces are not required, but they are ré@€nt that handles the loading of CDN-named packages.
ommended. If no namespaces are usedy cannot In this case the requested package_ dqes not need to exist
ensure that the correct version of required packages af® the system at all, becausein will find and down-
loaded for the same reason that vanilla Tcl cannot do si?2d it when it is needed. This frees the programmer
Care must be taken when naming namespaces, J9M having to specify what packages are needed in
namespace collisions can still occur. The easiest methdJder to be able to use their package. Watn the

of assuring a unique namespace is to append the versi§Ad user does not have to manually download the
number of the package to its name and use that as tf§eded packages or even install them.

namespace name. Following this short list of rulesonce written, a CDN-named package must be con-
should be easy, as it allows the programmer to creaigerted. Tcdn was written as a library, so anyone can
packages in a more normal fashion. create an application that does the actual “conversion.”

CDN-named packages should also contain a commanthis was done so that the process could be as flexible as
namedtcdninit . This command should exist in the POsSible.Tcdn provides acdnify — command to do

global namespace. The purpose of this command is 1S conversion. Thecdnify ~ command works on
allow the package to do initialization if it needs to. ProPerly written regular packages that are to be con-

Remember, a package may not have existed on a syst&fited ©0 CDN-named packages. It strips the package of
prior to the first time it is used. Thedninit ~ com- Package provide statements and resolves any

mand will allow the package to perform any setup that iPackage interdependencies which may exist between
needs to. If the package does not need to perform arRﬁckages being converted at the_same time. It then out-
special setup then the command can be left out. ThRuts the CDN-named package with the correct content-

command is executed right after the package is loadedfrved name as the file name. The current version of
and before control returns to the application. It is veryicdn does this because it is assumed that programmers

important that the command be as unobtrusive as pos&i/ll b€ more comfortable with creating packages in the
ble, because it will be running in the context of themanner they have been used to. Future versions will

application. provide a mechanism for simply generating the name of

a package that has been written as a CDN-named pack-
CDN-named packages should store their configuratiogge from the beginning.

information in the user’s directory. This is just like stor-

5.3 Distributing CDN-named Code ated CDN matches the requested CDN then the package

One of the primary design goalstofin was to make file is usable and can be saved. If not, the package is dis-
carded and the process continues.

distribution much easier. The current package mecha-
nism requires users to manually find and install pack- . .
ages as needeticdn will automatically find and install 6 Future Directions

CDN-named packages on demahddn can be config- Having demonstrated the usefulness of CDNs in Tcl, we
ured with the location of CDN-named package servershope to extend our work to other languages. In particu-
When a CDN-named package is requested and nddar, we plan to build similar functionality into the
found on the local system these servers are searcheddgnamic library loaders for Windows and Linux, allow-
turn. The package is then downloaded from the servang them to reap the benefits of automatic installation of
and installed. This means that in order to distribute @oftware packages. Doing so will also provide an addi-
package the programmer needs to upload it to a servédonal benefit: the ability to dynamically load binary
or several servers. The programmer must also maléraries into Tcl.

public the content-derived name of the package. Thisf‘his technology should also be applicable to Java
name is all anyone else needs to know in order to be

able to use the package. Application programmers dgpplets .[2]’ proyldmg additional security for comp!ex
applications at little overhead. Rather than authenticate
not even need to know the names of the servers o L . .
. all applets, requiring a relatively expensive check for
which the package has been stored. The end user doesn’t . .
. each small piece of code, our system requires only that a
need to know anything at all. Once the package has been : : L
. oot object be authenticated. Once this is done, the
uploaded and the content-derived name has been publi-
! . . . integrity of the objects immediately below the root is
cized, the entire process is automatic.

ensured because their names are embedded in the
authenticated objects. This can transitively be applied to
the entire dependency graph, allowing a computer to

Using a cdn package is easy. Becagse is not the check most applet code locally without relying on exter-
primary package mechanism the application will need tga| certificate providers.

have apackage require tcdn command. This
will load tcdn and all of its commands. From here all 7 Conclusions
that is needed is @npackage require statement
for each CDN-named package that will be used. Afte
this the process is automatic.

5.4 Using a CDN-named Package

Jhis paper has presented a Tcl packagén , that
allows Tcl developers to create distributions of their
code that have several advantages over current Tcl dis-
If the CDN-named package is located on the system it i§ibution methods: freedom from version conflicts,
checked and then loaded. The check involves regeneragtegrity checking for packages, and the ability to
ing the content-derived name. The generated name inamically download needed modules from remote
then compared with the requested name. If the twgijtes. It is our hope that this package will enable Tcl-
match then the package has been located and verifigghsed applications to reach a wider audience by simpli-
and can be loaded. If the two do not match then it i$ying the installation process as well as the upgrade pro-
assumed that the package file is corrupt and it is throwBess. All that is necessary to install an entire application
away. If there are other directories to search then thig the content-derived name of its root object and a loca-
process is repeated for each of them. If not, the packaggn from which to get it; from there, everything is han-
must be retrieved from a server. dled automatically. If the software is upgraded, the user

The loading process for remote CDN-named package@eed only get a new roo_t object from the developer, and
is similar to the loading process for local packages. Eaci{!® Package dependencies are updated automatically.

server is queried in turn for the desired packdgeln Becausdcdn provides integrity checking and the abil-
has been written so that different protocols can be USQ@/ to fetch missing packages from remote server sites,
for each server. If none of the available servers returnge believe it will be essential for developers who wish
the desired cdn package then tlcenpackage to make Tcl software available via the Web. By provid-
require command fails. This is not a normal situa- jng both integrity and ease of usedn enables even
tion, and would only happen if the network was unavailmovice users to run complex Tcl applications without

able or some other occurrence somehow preventefie need for complex installations or the fear of trojan
access. Usually, at least one server will return th@orse packages.

requested package. The content-derived name is then
verified, just as it would be if it were local. If the gener-

Code Availability

Further information about content-derived naming is
available on the Web at:
http:/AMww.csee.umbc.edu/~elm/Projects/CDN/

This page contains references to other work on content-
derived names as well as the Tcl source code and docu-
mentation fortcdn .

References

[1]

(2]

[5]

[7]

Secure Hash StandardFIPS-180-1, National
Institute of Standards and Technologies, U.S.
Department of Commerce, April 1995.

J. Gosling, B. Joy, and G. Steeldhe Java Lan-
guage Specificatiqri996 (Addison-Wesley).

A. van der Hoek, R. S. Hall, D. Heimbiger, and A.
L. Wolf, “Software Release Management,” CU-
CS-806-96, University of Colorado, August 1996.

J. K. Hollingsworth and E. L. Miller, “Using Con-
tent-Derived Names for Configuration Manage-
ment,” 1997 Symposium on Software Reusability
(SSR '97), Boston, MA, May 1997.

J. W. Moore, “The Use of Encryption to Ensure

the Integrity of Reusable Software Components,”
International Conference on Software Reuse, Rio
de Janeiro, November 1994, pages 118-123.

R. L. Rivest, “The MD5 Message-Digest Algo-
rithm,” RFC 1321, Network Working Group,
April 1992.

A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck, “Scalability in the
XFS File System,” Proceedings of the Winter
1996 USENIX Conference (San Diego, CA), Jan-
uary 1996, pages 33-44.

	akala.pdf
	Using Content-Derived Names for Package Management in Tcl
	ABSTRACT
	1 Introduction
	2 Background
	2.1 Configuration Management
	2.2 Package Versions in Tcl
	2.3 Secure Hash Functions

	3 Tcdn Design
	3.1 High-Level Design
	3.2 What the Developer Sees
	3.3 What the User Sees

	4 Tcdn Details
	4.1 Developing Code for tcdn
	4.2 The tcdnify Process
	4.3 File System Independence
	4.4 Locating Packages

	5 Using TCDN
	5.1 Installing tcdn
	5.2 Creating a CDN-named Package
	5.3 Distributing CDN-named Code
	5.4 Using a CDN-named Package

	6 Future Directions
	7 Conclusions
	Code Availability
	References

