
Proceedings of the 7th USENIX Tcl/Tk Conference
Austin, Texas, USA, February 14–18, 2000

U S I N G T C L T O B U I L D
A B U Z Z W O R D * C O M P L I A N T E N V I R O N M E N T T H AT
G L U E S T O G E T H E R L E G A C Y A N A L Y S I S P R O G R A M S

Carsten H. Lawrenz and Rajkumar C. Madhuram

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association. All Rights Reserved. For more information about the USENIX Association: Phone: 1 510 528 8649; FAX: 1 510 548
5738; Email: office@usenix.org; WWW: http://www.usenix.org. Rights to individual papers remain with the author or the author's employer. Permission is
granted for noncommercial reproduction of the work for educational or research purposes.This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

Using Tcl To Build A Buzzword* Compliant Environment That Glues
Together Legacy Analysis Programs

Carsten H. Lawrenz, Rajkumar C. Madhuram,
 Siemens Westinghouse Power Corporation, Orlando, Florida
{Carsten.Lawrenz,Rajkumar.Madhuram}@swpc.siemens.com

Abstract. The Siemens Integrated Design (SID) Environment is a system that allows engineers to link together many
legacy computer programs. This capability provides significant reduction in effort for defining the conceptual
design of electrical generators. The SID environment is a generic tool for running all types of analysis programs
(methods) as well as managing their associated data. Methods are plugged into the environment in a simplified
fashion by using a well-defined interface. Any features that are added to the environment immediately benefit all
methods. Data can be shared between remote sites through an in-house developed, java based, replication server.
This paper discusses how Tcl was used to develop the SID Environment and why it was the best choice for our
application.

* Buzzwords: Scalable, Multi User, Client Server, Distributed, Cross Platform, Customizable.

1. Introduction

1.1 Business Case

Siemens Westinghouse relies on various complex
computer calculations for designing electrical
generators. Various computer programs (methods)
written in FORTRAN and other languages have been
used over time. Because each method addressed
specific aspects of generator design, they existed as
standalone entities. Running each method required the
manual creation of input files and the manual extraction
of output data to prepare it as the input for other
methods. More complications arose when trying to
incorporate the more contemporary functionality of
spreadsheets. This process, and its many iterations,
when performed by several different design teams,
resulted in several manual hand-offs of information.
Furthermore, this created an immense paper trail, data
integrity issues, and time and effort spent trying to keep
the design teams synchronized.

There was an effort to reduce the time required to
conceptually design an electrical generator from 180
Days and 10 engineers to 18 Days and 3 engineers. The
project was incrementally funded; therefore quick turn
around time was required.

Although most of our user platform was UNIX based,
we knew we may want to use the Windows platform
some time in the future. The computer languages with
GUI support that ran at the time (1995) on both

platforms were limited. We evaluated a third party GUI
library (Galaxy) which was C based. We found its use
of coding too difficult to develop a prototype quickly.
Java was still only known as Coffee. By chance, the
authors discovered Tcl/Tk. Although Tcl was not
officially available on Windows at the time, various
Windows versions did exist.

Siemens Westinghouse designed an architecture that
enabled methods to be easily plugged in, instantly
sharing data among other methods. Using Tcl lent itself
to fast prototyping and development. Six months into
development, engineers were able to start using the
newly created environment.

Run Server Variables
 Server

Xess Server

SID Environment

Desktop

File Agent
Fortran
codes

File Server

Distributed Data
Server

Replication
Server

Mini SQL
Database

Variables
Data
Method
Output

Tcl blend
SQL Server

JDBC

CORBA

Xess

TCL Code

JAVA Code

RPC Calls

Processes

Remote
Distributed

Data
Servers

 Figure 1: SID Architecture

1.2 Basic Usage

The SID Environment simplifies the conceptual design
process by automating and linking manual tasks. Users
attend a one day training class during which theyÕre
IDÕs are registered in the SID database. Once
registered, typing ÔsidÕ in a command window launches
the environment.

Each user works in their own unique data set that we
call a case. These cases are collected in folders and are
presented in a hierarchical format similar to a file
manager. The folders and cases also mimic UNIX type
file access permissions, which the user can modify.
Any a number of methods are associated with each
case. The user opens a case by selecting a method. The
case is then locked to disable access by other users.

The case is displayed to the user as a window. Within
this window the input screens for each associated
method may be displayed. A method screen, by
default, is a table of variable names. The environment
allows customized input screens for each method as
well. Users can select on any variableÕs entry box and
change its value. Validations of input data for each
variable are provided. A popup menu provides
descriptions for each variable. The variablesÕ
descriptions, units and type are all defined in a global
variable file.

The scope of each variable is global within the case,
which allows methods to communicate. The user may
select to run one method or several methods in series.
As each method runs, the environment automatically

updates the variables within the scope of the case. This
transfer of data is accomplished by the use of input and
output forms which are detailed below.

The environment also provides many utilities for
viewing the various output types (PDF, postscript,
plots, HTML) created by the methods. All output
viewing is launched from a data viewer tool. This
allows the less computer savvy users to be very
productive.

2. Architecture

The architecture of SID Environment is outlined in
Figure 1. The SID environment is a collection of
servers and the desktop client. The desktop client
(shown in Figure 2) handles most of the user
interactions with the system. It communicates with
several other servers for performing various functions.

Figure 2: Snapshots of the SID Environment
(Left: Case Manager, Input Screen, and Variable table. Right: Dynamic Input Screen, Data Flow and Process Maps)

Variables are the most widely used logical entities in
the system. They are stored in a data file in key-value
ordered pairs. Each method takes input from a set of
variables and generates output that is returned. For
every design calculation or analysis, engineers use a set
of methods, which we group as a case. In essence, a
case is the set of methods and their related variables.

Cases have to be managed in a reliable and fail-safe
manner, especially in a multi-user environment. Hence,
we employed a mini sql (mSQL) database [Hugh99] to
hold the information about the cases, methods, users
and the relationships between them. Cases are
organized in the fashion of a UNIX file system, with a
hierarchy of folders and permissions to control access.
Each case and each method in a case are uniquely
identified by an object id (oid) and its parents oid. The
relations between these entities are shown in Figure 3.
As the need for exchanging data between engineers in
remote sites surfaced, we wanted some of the folders to
be shared between all the sites. In order to implement
such a distributed system, we decided to use CORBA
because it has established itself as a reliable and robust
way to build distributed applications [Wolf98]. A
replication server was coded in Java, which uses JDBC
to communicate with the database. Tcl blend was used

with the data server to access the replication server
objects.

It was also required to port the system to Windows NT.
In order to give uniform access to the case data, a file
agent was required. It handles data movement to and
from a case on behalf of the user into the central data
repository. This mechanism also provides an added
level of security, since all the data is owned by the file
agent and access is only allowed through this file agent.

3. Software Development

3.1 Debugging

The fact that Tcl is as fully interpreted language lends
itself well to software development. Many
programmers fault Tcl because it does not provide
syntax checking like other languages such as C.
However, in the Tcl mode of programming the
developer is able (with tools like TkInspect) to
dynamically modify the code while the program is
running. Furthermore, modified code can easily be
reloaded into the interpreter by re-sourcing the code
without having to exit the program. Also, bug fixes can
be copied out to the production area without having to
take the whole environment down. We found this
approach to programming to be much quicker than the
code, compile and debug method.

TclÕs error handling is more graceful than C or Java
also. Most errors arenÕt fatal, i.e. the environment
usually does not crash when errors are encountered.
We overrode the error handler with a dialog box, that
allows the user to email the developer a description of
what caused the bug and a stack trace. This usually
provides the developer enough information to
determine the cause of the error.

3.2 Coding

SID requires relatively few lines of Tcl code. This is
advantageous because the development team is only
allotted 1_ man years per year for environment
maintenance. The SID environment contains over 115
thousand lines of code and is maintained by only two
developers. This smaller body of code also lends itself
to utilities such as Concurrent Versioning System
(CVS). Much of the coding is almost self-
documenting; understanding code logic comes quickly.
It's conceivable that to achieve this same functionality
using C or Java could require about ten times as many
lines of code.

The Tcl auto loading of methods also helps developers
organize their source files in a comprehensive manner

metho case folder

case metho

oid
mname
caseid
É

object
oid
É

name
type
É

mname =

oid = parent

caseid = oid

oid = oidoid = oid

Figure 3: E-R diagram for case and
method tables

oid
parent
name
É

either by components or functionality. In the SID
environment, our source directories are several levels
deep.

3.3 Ease of Learning

The development team relied on contract labor to help
meet the demands of the project in the early stages.
The developers that were hired to program the
environment did not have any prior knowledge of
Tcl/Tk. However, it was easy to get motivated
programmers up to speed quickly and start
development. One observation is that experienced C
programmers do not necessarily make good Tcl
programmers. Strings and lists manipulations are so
powerful and easily handled in Tcl. Tcl programming
requires users to accept a paradigm shift while solving
problems.

3.4 Reusability

Adding a method to the environment requires insertion
of a record in the method table (Figure 3) and the
creation of a file (method.screen) that lists all of the
input and output variables used by that method. SID
parses the list, and by default, a generic input screen is
created for that method (See input screen in Figure 2).
Several other applications source this same file. For
example, there is a web server script that reads this file
to create an input/output dictionary the methods online
documentation. There is also an administrative
application that reads every methods screen file and
creates a matrix of all variables and how they are used
by each method. This matrix allows SID to determine
if other method's data has been invalidated due to the
change of a variable's value. This simplifies method
administration because all information is kept
consistent and concurrent.

4. Most used Features of Tcl

4.1 Graphical User interface

The SID environment relies heavily on GUI
components. The environment creates a large number
of entry widgets, which are used for data entry. There
are also a lot of bindings attached to these widgets to
handle data validation. The GUI commands blend well
with the source code because of their simplicity
compared to other languages such as Java [WeFr97].
Very complicated and large input screens are easily
handled by the Tk extension, as also witnessed in other
large applications [Angel98] [DeCl97]. Our own
experience has shown that dynamically creating an
input screen with over 100 entries in Java required
minutes compared to seconds in Tcl.

Some methods are preprocessors to complex Finite
Element Analysis (FEA) models. These methods have
customized input screens with simplified graphics of
the various model components. These graphic elements
may be adjusted manually to modify variables or they
can redraw themselves to reflect the value of variables
(See graphic input screen in Figure 2).

We also created our own Multiple Document Interface
(MDI) widgets on top of the Tix framework. The MDI
system consists of the MDI widget and the
MDIWindow widget (Figure 4). The MDI widget is a
container widget that contains MDIWindow widgets.
All the tools within SID environment are built using the
MDIWindow widget. The advantages of such a scheme
are many: 1. It enforces uniformity in all the windows
and provides access to features provided by the MDI
system and 2. It provides a compact environment where
all SID related components are held together.

Users can create new customized input screens. By
placing local versions of the screen files in a pre-
defined directory. These files override the production
version of the files. This allows developers to test
functionality without having to check out a entire local
copy of the environment. Once the new screen has been
tested it can be copied out to the production area to be
shared by all users.

The user can customize the look and feel of the
environment. There are many configurable options like
wallpaper, fonts, background color etc. In addition to

MDI

create, tile, cascade,

wallpaper, É

MDIWindow

close, iconify, restore, print,

move, É

1

*

Figure 4: Tix MDI classes used in SID

GUI, many options like viewers, sound etc., can be
customized.

4.2 Strings and List Processing

We use the string processing capabilities of Tcl in SID.
It is easy to create meta-languages for various purposes.
For example, we developed a "forms" language, which
is Tcl with a few abstractions that provide a generic
interface to the legacy codes. An input form (iform) is a
template for creating input (Figure 5) and an output
form (oform) is used to get the output values back into
SID. It is an easy and yet very powerful method of
parsing the input and output.

Another example where the string processing
capabilities were heavily used was in creation of a

macro language. A macro is a sequence of SID actions
that an engineer can use for design work. We created an
environment where macros can be edited and run,
complete with debugging options like stepping, watch
and breakpoints. The language of choice for the macro
was obviously Tcl and we supplemented it with some
commands like RUN, GRAPH, CALL etc., to provide
some higher level abstraction. For this, we used regular
substitutions (regsub command). We avoided using
slave interpreters since a tight integration with the data
in the environment was necessary.

In order to perform dynamic highlighting when a macro
is run and also for debugging, a parser is needed.
Conventionally, one would use lex and yacc to specify
the grammar and then compile it with C to get a parser.
However, we decided to use the powerful regsub
command in an iterative fashion. Whenever a macro is
run, it is first pre-processed in a two-phase method. We

first substitute markers of the form @@Mark[nn]@@
instead of newline characters, where nn stands for the
current line number. We also handle line continuations
by introducing special markers. In the next phase, all
the markers of the above form are substituted with a
macroPhase2 command and a check to see if it was
halted. The command macroPhase2 is called with the
current line number and a pointer to the macro
environment. It handles things like highlighting the
current line in the editor, handling break points and also
acts as a state machine to put the macro engine to the
next state based on the user action (stop, reset, run etc.).
Since a macro is typically a small script (less than 100
lines), the pre-processing is fast (~0.5 secs/100 lines of
code) and hardly noticeable. Tcl enabled us to create a
fairly robust macro system within a matter of days,
which would not be possible had we chosen a different
language.

Large lists are handled efficiently in Tcl from version
8.0 onwards. Consequently, we found a tremendous
increase in performance of SID. The number of
variables in a typical case can go above 5000. We store
these variables in global arrays using array set

command, which is many times faster than iterating
through the list and storing them individually.

4.3 Global Variables

Many of the routines in SID rely on pointers, which are
actually references to global arrays. Pointers are useful
in creating complex data structures. They also provide
an extremely convenient and clean way of keeping
track of state information within an environment as
large as SID. We use a single global variable GV that
provides pointers to all the information about the
current state of the environment. This makes it easy to
organize the data in a hierarchical structure. For
example, in order to determine if a module named
tgs8000 has valid data in the active case, we could
traverse like this

deref $GV(active_case) case;

deref $case(module_ptr) module_list

deref $module_list(TGS8000) module

if $module(valid) {

 É...

}

Figure 5: Mapping of SID data to Input File

MVA=150
PF=0.89
Q=173.22
V(1)=89.22
V(2)=67.27

var PF
var
Ðcomma\
MVA Q
varray V
É.
É.

IFORMSID Input File

0.89
150,173.22
89.22
67.27
É

The pointer mechanism comprises commands struct,
alloc, free and deref. The struct command can
be used to create data types similar to that in C.
Whenever the alloc routine is called, it creates a
global variable of the form _mem<nn> where nn stands
for a sequence number generated using a counter. A
pointer is returned, which is of the form
<level>#_mem<nn>. The deref command creates an
alias for the global variable referenced by the pointer.
In the absence of object oriented constructs (i.e, without
Itcl), the pointer mechanism provided a way of neatly
packaging different components inside SID. Also, we
wrote a simple script that would go through all the
struct definitions and create html documents. It
serves as a good reference document to the internal data
structures of the system.

Variable tracing is another aspect of Tcl that we used in
SID. We use it in macros to associate the pseudo
variable names with the real variables so that the
internal mechanisms are hidden from the user. It is used
in several places when we need to fill certain lists so
that it remains consistent with the context of the
application. One interesting lesson that we learned was
to avoid variable tracing if it is needed only in certain
instances when the variable in question is accessed.
Trying to have a global variable that flags the tracing on
and off creates problems that are hard to debug. One
instance is when an error causes the interpreter to spiral
out of a routine before the flag is not restored to its
proper state.

4.4 Graphics Capability

The canvas widget is the only one that provides
drawing capabilities. Nevertheless, it is very powerful

and we used it in components like process maps, data
flow diagrams and custom methods. Process maps are
basically flowcharts that represent an engineering
process. The goal was to create and represent these
processes inside the SID environment. First we
investigated commercial charting programs, but these
did not suit our requirements. Also, the Slate package
[RL98] was not available at that time. Therefore, we
decided to use the canvas widget to create one. We
developed a set of primitives such as decision box,
process box, sub-process box, etc. The whole process
chart is represented as a flow chart structure. The sub-
process primitives have pointers to the graphs of the
corresponding sub-processes. Thus, the result was a
hierarchy of graphs for a given process. All of these
were neatly handled by the pointer mechanism that was
discussed earlier.

Another interesting aspect of the process charts is the
links that connect the different primitives. We
introduced the notion of connection points, which are
pre-defined positions around the primitive from which a
link could be drawn. When a user drags the mouse to
create a link, we search for the nearest connection point

deref [set OBJ(junc) [alloc array]] JUNC
ÉÉÉ
set JUNC(connPoints) {{0.5 0.35 v} {0.425 0.5 h} {0.5 0.65 v} {0.575 0.5 h}}
set JUNC(connRules) {
 {{in <= 3} {a maximum of only 3 inputs are allowed}}
 {{out <= 1} {you can have only one output from a junction box}}
}

Figure 6: Specification of a process chart primitive

(0.575,0.5)

(0.5,0.35)

(0.425,0.5)

(0.5,0.65)

(0,0)

(0,1)

X

Y

Figure 7: Snapshot of Graphical Input Screen

that is available. Also, every primitive has constraints
on the connection points. For example, the start/end
box could have only one output or one input and the
decision box can have only one input and two outputs.
Again, the scripting nature of Tcl Òcame to the rescueÓ
in describing and checking the constraints. For
example, the junction box object has a description
similar to the one shown in Figure 6.

The co-ordinates of the connection points are relative to
a hypothetical 1.0x1.0 bounding box of the primitive.
The v and h indicates that only a vertical or horizontal
connection is allowed at that point respectively. While
parsing the rules, "in" is substituted with the number of
total inputs (+1 if the current connection point is being
considered for an input) and "out" is substituted
correspondingly. The rule engine goes through each
rule and evaluates the rule expression. If it fails, it
displays the corresponding error message and returns.
Tcl makes the process very generic and simple. One
could even have rules such as "in+out <= 1" (in case of
start/end box).

Each of the primitives and links has a pointer to an
array that contains information about the object. The
tags for each are also named accordingly. The tag for a
primitive may look like obj_0#_mem72 and that of a
connection, like con_0#mem66. Using regexp and
deref commands, we get a quick access to the
properties of the object when it is selected for various
reasons like cut/paste, delete etc. The editor also
provides powerful features like cut/copy/paste and
undo/redo operations.

Once we got the process map editor in place,
incorporating it into the environment was simple. Next,
we were also able to make the process "run". A flashing
circle beside the primitive indicates that it is currently
executing. The handling of multiple charts in each case
was done using our MDI window widget.

We use the BLT graph widgets for plotting graphs
within the environment. The package PlPlot [PL99] is
used to generate high quality engineering graphs
without having the need to display on the screen.

We also provide graphical input screens, which are
entry widgets overlaid on a gif image of a drawing
(Figure 7). This provides an intuitive interface,
especially for the novice users to enter values for
various input variables in the method.

4.5 Networking/Communications

Communication between the various networked
components is done using the Tcl-Dp package. The
RPC mechanism is robust and provides a simple
interface for servers and clients.

The servers within the SID environment are spawned
on every invocation. It is not possible to assign fixed
port numbers to each server since more than one user
can be using SID (with remote displays) on a same
machine. In order to solve this problem, whenever a
server is spawned, it searches for a free port and stores
the port number information in a registry file. This file
serves as a directory for the various network
components.

Interactions between the servers can be quite complex.
Figure 8 shows the events that take place when the user
clicks on the RUN button. Communications between
servers take place through RPC and the status of other
processes are monitored by the UNIX signal trapping
commands provided by extended Tcl.

The data server provides replication services. Because,
replicating all the cases involves huge network traffic
and is largely unnecessary, we identified a subset of
folders that would be replicated. There are two

Figure 8: Sequence of events during a method run

1. Run tgs8000
7. Done

2. Spawn run
file for tgs8000

6. Done

5. Process
Output
variables

3. Run method
(exec)

4. Done
(SIGTERM,
SIGKILL,,,)

Run Server

Run File
Variable Server

tgs8000

8. Fetch output
variables

Desktop

replication modes, synchronous and asynchronous. In
synchronous replication, the action has to be completed
in all sites before proceeding. For example, when
someone tries to open a case, it needs to be locked. The
sql command to lock the record is passed on to all the
sites. In each site, the command is supplied to the msql
daemon, via JDBC. Only when it is successful in all
sites, the locking is valid. On the other hand,
asynchronous replication passes on the command and
simply returns. Each site holds a command queue (java
layer) which keeps trying until the operation succeeds.
Replication of case data is handled using FTP. We
tested the replication between three sites (Orlando and
Charlotte in the U.S and Muelheim in Germany). We
found that the network bandwidth, which we hope will
improve, was the only bottleneck. It works
exceptionally well and as planned, a testimony to Tcl's
claim as a glue language. We use xess spreadsheets
[Ais99] for some of our methods. There is a Tcl
interface for the xess spreadsheets that we use to
communicate between the spreadsheets and the SID
environment in the unix platform. We communicate
with Microsoft Excel spreadsheets on NT using the
package tcom that exposes COM interfaces. We use a
Tcl implementation of SMTP that we found in the
newsgroup for all our mail purposes within the system.
It works across platforms and is reliable.

4.6 Cross Platform Deployment

We recently started porting the SID environment to NT
after all of the required extensions were available.
Surprisingly, there were few coding changes required to
bring up the environment. All GUI components
worked extremely well on the first attempt. Early in the
development, we made a conscious effort to remove as
many exec commands with in the Tcl code. The
majority of changes were related to file permissions and
sharing between UNIX and NT. This problem was
tackled by using SAMBA and by writing a small File
Agent that handles most file duties on behalf of the
user. This gave us an added benefit, the File Agent
becomes the owner of all files in the repository thereby
restricting access by general users.

We did notice some reduced performance when
creating large input screens running on a Pentium II
Windows machine. Also, some of our input forms
would not display properly unless we added a few well
placed update commands.

5. Conclusion

Our experience has been that weÕre able to add any
desired feature into SID with Tcl. Most of our design
was incremental and Tcl provided the flexibility to meet

our goals. We could create prototypes quickly and
incorporate them into the environment. Relying on
many extensions can be a setback at times, especially
when migrating to new versions of Tcl. But it certainly
was not a showstopper since source code was freely
available. SID was started with version 7.3 and now
runs under 8.0.4. If we were to embark on another
project of this scale today, itÕs our opinion that we
would use Tcl again as opposed to the current trend
towards JAVA.

Acknowledgements

We thank the open source community, the various tcl
extension authors and Scriptics, who laid the
foundations on which we could build a successful
project of this magnitude.

References

[Ais99] Applied Information Systems home page
http://www.ais.com
Valid as of 09/01/1999.

[Angel98] Angelovich, Kenny and Sarachan, "NBCs
Genesis Broadcast Automation System:
From Prototype to Production", Proc. Sixth
Annual Tcl/Tk Conference, pp. 1-9, San
Diego, Calif.:USENIX, 1998.

[DeCl97] De Clarke, "Dashboard: A Knowledge-
Based Real-Time Control Panel", Proc.
Fifth Annual Tcl/Tk Workshop, pp. 9-18,
Boston, Mass.:USENIX, 1997.

[Hugh99] The mSQL Home Page,
http://www.hughes.com.au
Valid as of 09/01/1999.

[PL99] The PLPlot Home Page,
http://emma.la.asu.edu/plplot
Valid as of 09/01/1999.

[RL98] Reekie H.J. and Lee E.A, "The Tycho
Slate: Complex Drawing and Editing in
Tcl/Tk", Proc. Sixth Annual Tcl/Tk
Conference, pp. 37-46, San Diego,
Calif.:USENIX, 1998.

[WeFr97] Webster T. and Francis A., "Tcl/Tk for
Dummies", pp. 324, IDG Books, 1997.

[Wolf98] Hans K.Wolf, "Java, CORBA, and Archit-
ecture", Component Strategies, September
1998, pp. 58-64.

