
The following paper was originally published in the

Proceedings of the 8th USENIX Security Symposium
Washington, D.C., USA, August 23–26, 1999

S Y N T H E S I Z I N G F A S T I N T R U S I O N
P R E V E N T I O N / D E T E C T I O N S Y S T E M S F R O M

H I G H - L E V E L S P E C I F I C A T I O N S

R. Sekar and P. Uppuluri

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Synthesizing Fast Intrusion Prevention/Detection Systems from

High-Level Speci�cations�

R. Sekar P. Uppuluri

State University of New York at Stony Brook, NY 11794.

fsekar,premg@cs.sunysb.edu

Abstract

To build survivable information systems (i.e., systems

that continue to provide their services in spite of coor-

dinated attacks), it is necessary to detect and isolate in-

trusions before they impact system performance or func-

tionality. Previous research in this area has focussed

primarily on detecting intrusions after the fact, rather

than preventing them in the �rst place. We have devel-

oped a new approach based on specifying intended pro-

gram behaviors using patterns over sequences of system

calls. The patterns can also capture conditions on the

values of system-call arguments. At runtime, we inter-

cept the system calls made by processes, compare them

against speci�cations, and disallow (or otherwise mod-

ify) those calls that deviate from speci�cations. Since

our approach is capable of modifying a system call be-

fore it is delivered to the operating system kernel, it is

capable of reacting before any damage-causing system

call is executed by a process under attack. We present

our speci�cation language and illustrate its use by de-

veloping a speci�cation for the ftp server. Observe that

in our approach, every system call is intercepted and

subject to potentially expensive operations for matching

against many patterns that specify normal/abnormal

behavior. Thus, minimizing the overheads incurred for

pattern-matching is critical for the viability of our ap-

proach. We solve this problem by developing a new,

low-overhead algorithm for matching runtime behaviors

against speci�cations. A salient feature of our algorithm

is that its runtime is almost independent of the number

of patterns. In most cases, it uses a constant amount

of time per system call intercepted, and uses a constant

amount of storage, both independent of either the size or

number of patterns. These bene�ts make our algorithm

useful for many other intrusion detection methods that

employ pattern-matching. We describe our algorithm,

and evaluate its performance through experiments.

�This research is supported in part by Defense Advanced
Research Agency's Information Technology O�ce (DARPA-
ITO) under the Information System Survivability program,
under contract number F30602-97-C-0244.

1 Introduction

Our increasing reliance on networked information
systems to support critical infrastructures (e.g,
telecommunication, commerce and banking, power
distribution, and transportation) has prompted in-
terest in making the information systems survivable,
so that they continue to perform their primary func-
tions even in the face of coordinated attacks. In or-
der to build survivable systems, it is necessary to
detect and isolate attacks before they impact sys-
tem performance or functionality. Thus a num-
ber of recent research e�orts have focussed on the
problem of intrusion prevention [GWTB96, SBS99,
CPMWBBGWZ98, MLO97, FBF99].

Many known approaches for intrusion prevention
(including the one described in this paper) are
based on the following observation about attacks:
regardless of the nature of an attack, damage can
ultimately be caused only via system calls made
by processes running on the attacked host. It is
hence possible to prevent damage due to attacks if
we can monitor every system call made by every
process, and prevent damage-causing calls from
being executed. Actions to contain or respond
to the attack could be launched at this point,
e.g., terminating the process. Some of the cen-
tral problems in the context of these approaches are:

� e�cient interception of system calls

� pattern languages to characterize nor-
mal/abnormal system call sequences for
any given program/process

� e�cient matching of actual system calls made
by a process against such patterns

Several techniques for system call interception
have already been proposed in [GWTB96, MLO97,
GPRA98, FBF99]. This paper addresses the re-
maining two issues, focusing particularly on an ex-
pressive and easy-to-use speci�cation language, and
pattern-matching algorithms that are fast enough
to be invoked on every system call.

1.1 Summary of Results

� In Section 2 we present a new and expres-
sive language for capturing patterns of normal
or abnormal behaviors of processes in terms
of sequences of system calls and their argu-
ments. As compared to the language described
in [SCS98, SBS99], this paper focuses on a core
language that we call regular expressions for
events (REE). REEs extend regular expressions
to model system calls that are characterized by
a name as well as argument values. Response ac-
tions can be associated with patterns, and these
will be launched automatically when our system
observes a match for the pattern.

� In Section 3 we illustrate our language with sev-
eral simple examples. We then detail the process
of developing a complete speci�cation for the
ftpd server. This example, together with simi-
lar speci�cations for httpd and telnetd forms
the basis of our experimental results in later sec-
tions.

� REE have much higher expressive power than
regular expressions. The presence of variables
makes them comparable to attribute grammars
in terms of expressive power. The examples in
Section 3 illustrate that in practice, REE lan-
guage provides the capabilities needed to de-
scribe program behavior as needed for intrusion
detection or prevention.

� In Section 4 we present our runtime model for
fast pattern-matching, based on extended �nite-
state machines (EFSA). Just as REE's extend
the power of regular expressions to permit vari-
ables, EFSA extend traditional �nite-state au-
tomata to be able to assign or examine values of
a �nite set of variables. As in the case of regu-
lar expressions, every REE can be matched by
a non-deterministic EFSA (NEFA) whose size
is linear in the size of REE. But simulation
of a NEFA at runtime can be very ine�cient.
We then examine the properties of determinis-
tic EFSA (DEFA) which can be simulated e�-
ciently. However, we show that the size of de-
terministic EFSA can be far too large (super-
exponential in the size of NEFA) for the ap-
proach of using DEFA to be viable.

� Ideally, we would like an approach that achieves
a balance between the space explosion implied by
DEFA with the runtime ine�ciency imposed by
NEFA. We propose an algorithm to accomplish
this in Section 5. Given an REE of size N , our
algorithm produces an EFSA with a worst-case

size that is O(2N). We show that this EFSA
is deterministic for a subclass of REE's called
REE(0) patterns.

� We present an implementation of our techniques
in Section 6 and report its performance. In prac-
tice, our algorithm uses much less than exponen-
tial amount of space. This means that we can
perform intrusion prevention/detection in essen-
tially constant time per system call for most pat-
terns. Our current implementation introduces
about 1 to 2% overhead due to the pattern-
matching operations.

The applicability of the techniques developed in this
paper extends well beyond our system. For in-
stance, many intrusion detection techniques (e.g.,
[Kumar95, PK92, Ko96]) are formulated using sig-
nature patterns that characterize attacks. In con-
trast with our approach, the performance of match-
ing algorithms developed in these approaches wors-
ens linearly with the number of patterns. By using
the techniques developed in this paper, the perfor-
mance of these approaches can be improved signi�-
cantly.

2 Approach Overview

We model security-related behaviors in terms of
sequences of (security-related) events. In general,
events may be internal to a single process, e.g., a
function call made by the process; or they may be
externally observable, e.g., a message delivered to
a machine, or a system call made by a process.
We are particularly interested in the system call
events, since it is possible to enforce secure behav-
iors if we can intercept and modify system calls. Our
speci�cations characterize normal and/or abnormal
behavior of programs as patterns over system call
sequences. These speci�cations are compiled into
optimized programs for e�cient detection of devia-
tions from the speci�ed behavior. When discrepan-
cies are detected at runtime, defensive actions are
initiated to contain or isolate the damage.

Our intrusion detection/prevention system consists
of an o�ine and a runtime component. The o�ine
system generates detection engines from speci�ca-
tions, while the runtime system provides the execu-
tion environment for these engines. The input to
the o�ine component is a speci�cation SP for each
program P to be defended1. The o�ine component

1This speci�cation may be developed based on known in-
formation about P , obtainable from such sources as manual
pages, security advisories etc.

Operating System Kernel

System Call Interceptor

Pn

Mn

M2

M1

P2

Coordinating

Monitor

System
Calls

P1

Figure 1: System Model

translates SP into a C++ class de�nition CP . This
C++ class simulates an extended �nite state ma-
chine for matching the patterns in SP and initiating
appropriate responses to intrusion attempts. This
code is compiled and then linked with a runtime
infrastructure to produce a detection engine.

Figure 1 shows the runtime operation of our system.
When P executes as process Pj, it is monitored us-
ing the detection engine Mj , which incorporates an
instance of CP . System calls made by Pj are in-
tercepted by the system call interceptor just before,
and just after the system call's kernel level function-
ality is executed, and the system call information is
passed to Mj . If Mj matches a pattern, it invokes
the action associated in SP with that pattern. This
action would typically utilize the support functions
provided by the runtime system to modify the just-
initiated system call execution so as to prevent it
from causing damage.

The fork system call is given special treatment.
When process Pj executes a fork system call, it re-
sults in two processes Pj and P 0

j. At this point,
the detection engine monitoring Pj also clones it-
self, with one instance monitoring Pj and another
monitoringP 0

j. If one of these processes, say P
0

j, exe-
cutes another program using the execve system call,
we may switch to monitoring the new program with
respect to a new speci�cation as described later.

Frequently, security speci�cations for a process are
completely independent of the actions of other pro-
cesses. However, some speci�cations concern inter-
actions among multiple processes. To monitor the
behavior of concurrent processes, we use a coordi-
nating monitor that communicates with the mon-
itors for di�erent processes to identify deviant be-
haviors. We express speci�cation of process inter-

action using a language construct called an atomic
sequence, described later. The coordinating moni-
tor is used to detect violations of atomic sequences.
While we describe the atomic sequence construct
and discuss a possible implementation to support
it, we have not yet implemented it. As such, we
do not provide experimental results regarding this
construct.

2.1 Speci�cation Language

We provide an overview of the principal components
of our speci�cation language here. The main com-
ponents of a speci�cation include variable declara-
tions and rules. Variables declared in this man-
ner are global, as opposed to local variables whose
scope is limited to a single rule. Such global vari-
ables are referred to as state variables, while local
variables are called temporary variables. State vari-
ables are restricted to be of primitive types, i.e.,
long, integer, boolean, char, and unsigned versions
of these. A rule is of the form pat! actions. Here,
pat denotes a pattern on sequences of system calls.
When a process is monitored using this speci�cation
and the process makes a sequence of system calls
that matches pat, the responsive steps contained in
actions is initiated.

2.1.1 Event Patterns

Event patterns are built from events using se-
quencing operators. Events are of the form
EventName(Arg1; :::; Argn). For each system call,
we identify two events: the entry event which cor-
responds to the invocation of the system call, and
the exit event which corresponds to the return from
the system call. The entry event uses the same
name as that of the system call, while the exit event

is obtained by appending exit to the system call
name. Arg1; :::; Argn denote the system call argu-
ments. An event history is a sequence of events.

We de�ne a special event begin which precedes any
system call made by any process, and the event pat-
tern any that stands for any event.

Sequencing operators are similar to those used in
regular expressions, but operate on events with ar-
guments. We refer to our pattern language as reg-
ular expressions over events (REE) to indicate this
relationship. Elementary patterns in our language
are of the form e(x1; :::; xn)jcond, where cond is a
boolean-valued expression on the event arguments
x1; :::; xn, any temporary variables that may appear
earlier in a pattern, and state variables. The con-
dition component can make use of standard arith-
metic, comparison and logical operations and sev-
eral support functions. The support functions al-
lowed in a pattern correspond to \read" operations
that do not modify the state of the monitored pro-
cess. An example of such a function is realpath()
which translates a �le name into a canonical form
that does not contain \.", \..", or symbolic links.

The meaning of event patterns and the sequencing
operators is best explained by the following de�ni-
tion of what it means for an event history to match
a pattern:

� event occurrence: e(x1; :::; xn)jcond is satis�ed
by the event history e(v1; :::; vn) if cond evaluates
to true when variables x1; :::; xn are replaced by
the values v1; :::; vn.

� event nonoccurrence: !e(x1; :::; xn)jcond
is matched by H if it does not match
e(x1; :::; xn)jcond.

� sequencing: pat1; pat2 is satis�ed by an event
history H of the form H1H2 provided H1 satis-
�es pat1 and H2 satis�es pat2.

� alternation: pat1jjpat2 is satis�ed by an event
history H if either pat1 or pat2 is satis�ed by H.

� repetition: pat� is satis�ed by an event history
H1H2 � � �Hn i� Hi satis�es pat, 8 1 � i � n.

� realtime constraints: pat within t is satis�ed by
an event history H1 if H1 satis�es pat and the
time interval between the �rst and last events in
H1 is less than or equal to t.

� atomicity: nonatomic d in pat denotes that ac-
cesses to data d be atomic in pat, i.e., without
any intervening operations by other processes
that could modify this data.

When a variable occurs multiple times within a pat-
tern, an event history will satisfy the pattern only if

the history instantiates all occurrences of the vari-
able with the same value. For instance, the pattern
e1(x); e2(x) will not be satis�ed by the event history
e1(a)e2(b), but will be satis�ed by e1(a)e2(a).

We relax the de�nition of the sequencing oper-
ators to minimize the need to include both en-
try and exit events in a pattern. For instance,
when two system call entry events occur in se-
quence, we implicitly insert an exit event in the
middle, e.g., (openjC1); (closejC2) is treated as
equivalent to (openjC1); open exit; (closejC2). If
the �rst event is an entry event while the sec-
ond is an exit event for a di�erent system call,
then an exit event for the �rst call and the entry
event for the second call are implicitly added, e.g.,
(openjC1); (close exitjC2) is treated as equivalent to
(openjC1); open exit; close; (close exitjC2).

The value of a temporary variable should be de�ned
before its �rst use via a binding that takes the form
tvar = expr. Note that binding di�ers from assign-
ment in that there can be at most one binding to
any temporary variable, as subsequent conditions of
the form tvar = expr are treated as comparisons.

2.1.2 Response Actions

The response action associated with a rule p ! a
is launched if a su�x of the event history matches

p. The action component consists of a sequence of
statements, each of which can either be an assign-
ment to a state variable or invocation of a support
function provided by the runtime system2.

A typical response is to prevent a system call from
executing and/or return a fake return value. This is
accomplished using a support function fail, which
takes an argument that corresponds to the value to
which the variable errno should be set to. Some-
times, it is necessary (or just convenient) to switch
to a new speci�cation using the support function
switch(f), where f is the name of the new speci�-
cation.

If multiple patterns match at the same time, all of
the associated actions are launched. This leads to a
problem when some of these actions con
ict with
each other. It is possible to address such inter-
actions by (a) de�ning a notion of con
ict among
operations contained in the reaction components of

2Knowledge about these support functions are not inte-
grated into the speci�cation language, but are declared in
header �les that can be included in the speci�cation. Due
to space constraints, we do not treat these declarations in
detail.

rules, whether they be assignments to variables or
invocation of support functions provided by the run-
time system, and (b) by stipulating that there must
not exist two patterns with con
icting operations
such that for some sequence of system calls, they
can match at the same point. Potential con
icts
can be identi�ed by the automaton construction al-
gorithms developed in this paper | if there is any
state in the automaton that corresponds to a �nal
state for two such patterns, then there is a poten-
tial con
ict. However, we have not implemented
this approach yet, instead relying on the speci�ca-
tion writer to deal with such con
icts.

3 Example Speci�cations

We begin this section with a few simple examples
and then proceed to give a complete speci�cation
for the FTP daemon.

3.1 Simple Examples

To restrict a program from making a set of system
calls, we can create a simple pattern that matches
any of these disallowed system calls and then in-
voke an action that causes these calls to fail. For
instance, we may wish to prevent a server program
such as fingerd from executing any program, mod-
ify �le permissions, create �les or directories or ini-
tiate network connections. We use the shorthand
notation of omitting some of the trailing (and some-
times, all of the) variables of a system call when we
are not interested in their values.

execvejjconnectjjchmodjjchownjj
creatjjtruncatejjsendtojjmkdir

! fail(EINV AL)

We may also wish to restrict the �les accessed for
reading or writing. For a program such as fingerd,
we may use the following rule to prevent the pro-
gram from writing any �le, and reading any �les
other than those mentioned in admFiles de�ned be-
low.

admFiles = {"/etc/utmp",

"/etc/passwd", datadir/*}

open(f;mode)j(realpath(f) 62 admFiles
jj (mode 6= O RDONLY)

! fail(EPERM);

To illustrate the use of sequencing operators, con-
sider the following pattern that asserts that a pro-
gram never opens and closes a �le without reading
or writing into it. Before de�ning the pattern, we

de�ne abstract events that denote the occurrence
of one of many events. Occurrence of an abstract
event in a pattern is replaced by its de�nition, after
substitution of parameter names, and renaming of
variables that occur only on the right-hand side of
the abstract event de�nition so that the names are
unique.

openExit(fd) ::=
open exit(f; fl;m; fd)jjcreat exit(f;m; fd)

rwOp(fd) ::= read(fd)jjreaddir(fd)jjwrite(fd)
openExit(fd); (!rwOp(fd))�; close(fd) ! � � �

Although regular expressions are not expressive
enough to capture balanced parenthesis, the pres-
ence of variables in REE enables us capture the close
system call matching an open. This issue of expres-
sive power is discussed again later.

The example below illustrates the use of atomic se-
quence patterns. A popular attack uses race condi-
tions in setuid programs as follows. Since the setuid
process runs with e�ective user root, any open op-
eration by the process will always succeed. If the
process is running on behalf of a user, and wishes
to open a �le with the permissions of this user (i.e.,
with privileges corresponding to the real userid), it
may do so by �rst using the access system call which
determines if the real user has access to a �le, and
if so, it goes ahead and opens the �le. The attacker
exploits the time window between the access and
open system calls as follows. The attacker uses a
symbolic link as the name of the �le in question,
and changes the target of the link between the ac-
cess and open system calls. To prevent this attack,
we ensure that the object referred by the access and
open system calls is accessed atomically:

nonatomic(f:target) in
(access(f); (!open(f))�; open(f))

! fail(EACCES);

3.2 Case Study: Speci�cation for ftpd

Our starting point in developing a speci�cation of
ftpd is the documentation provided in its manual
pages. Speci�cally, we identi�ed the following prop-
erties for wu-ftpd by examining its manual page and
based on our knowledge of UNIX. These properties
are captured in our speci�cation language in Fig-
ure 2. Although it is possible to turn the English
descriptions directly into speci�cations in our lan-
guage, it is usually necessary to cross-check (or \de-
bug") the speci�cations by monitoring ftpd under
typical conditions. We have therefore used a hy-
brid approach, where we �rst manually inspected
system call traces produced by ftpd, and used it to

/* De�ne useful constants. */

1. ftpAdmFilePrefixes ::= f/etc/,/lib/,/usr/lib/,/dev/null/,/var/run/ftpg
2. ftpInvalidUsers ::= f0,BINUID,SYSUID,MAILUIDg
3. ftpInvalidPutDirs ::= f/, /bin/, /sbin/, /usr/, /etc/g

/* De�ne useful abstract events. We assume that certain abstract events such as privileged (which denotes */

/* certain privileged system calls that are not used by most programs) and wrOpen (which denotes */

/* any �le open operation that can create or modify the �le). */

4. ftpInitBadCall ::= (wrOpen(f)|(f != /dev/null) && !isExtension(/var/run/ftp,f))||permChange()||

rename()||link()||delete()||mkdir||rmdir||admin()||execve||clone||

bind||listen||connect||accept||recvfrom||recvmsg||sendto||sendmsg

5. ftpAccessBadCall ::= admin||accept||recvfrom||recvmsg||sendto||sendmsg||clone

6. ftpPrivCalls ::= close||uidgidops||socket||setsockopt||(bind(s,sa)|port(sa)=FTPDATAPORT)

7. ftpValidExecs ::= f/bin/ls,/bin/tar,/bin/gzipg
8. ftpAccessedSvcs ::= fNAMESERVERg

/* Use a state variable to remember the uid of user logging in and client host name */

9. int loggedUser := NOBODYUID

10. int clientIP := 0

11. begin();(!setreuid)*;setreuid(r,e) ! loggedUser := e

12. begin();(!getpeername)*;getpeername exit(fd,sa,l) ! clientIP := getIPAddress(sa)

/* Host authentication phase must precede user authentication. */

13. begin();(!getpeername)*;open(/etc/passwd) ! term()

/* User authentication must precede before userid changed to that of the user. */

14. begin();(!open(/etc/passwd))*;setreuid() ! term()

/* Access limited to admin-related �les before user login is completed. */

15. begin();(!setreuid())*;open(f)|(!isExtension(ftpAdmFilePrefixes, f)) ! term()

/* Access limited to certain system calls before user login. */

16. begin();(!setreuid())*;ftpInitBadCall() ! term()

/* Certain system calls are not permitted after user login is completed. */

17. setreuid();any()*;ftpAccessBadCall() ! term()

/* Anonymous user login: must do chroot before setreuid. */

18. begin();(!(setreuid||chroot(FTPHOME)))*;setreuid(r,FTPUSERID) ! term()

/* Userid must be set to that of the logged in user before exec. */

19. begin();(!setuid(loggedUser))*;execve ! term()

/* Resetting userid to 0 is permitted only for executing a small subset of system calls. */

20. setreuid(r,0);ftpPrivCalls*;

!(setreuid(r1,loggedUser)||setuid(loggedUser)||ftpPrivCalls) ! term()

/* Any �le opened with superuser privilege is either explicitly closed before an exec, or has close-on-exec
ag set. */

21. (open exit(f, fl, md, fd)|geteuid()=0);(!close(fd))*; (execve|!closeOnExec(fd)) ! term()

/* Site-speci�c: ensure that ftp cannot be used to write �les into certain directories. */

22. wrOpen(f)|(f 2 ftpInvalidPutDirs) ! term()

/* Site-speci�c: ensure certain users cannot login using ftpd. */

23. begin();(!setreuid)*;setreuid(r,e)|(e 2 ftpInvalidUsers) ! term()

/* Site-speci�c: ensure ftp cannot execute arbitrary programs. */

24. execve(f)|(f 62 ftpValidExecs) ! term()

/* Site-speci�c: ftp cannot connect to arbitrary hosts or services. */

25. connect(s, sa)|((getIPAddress(sa) != clientIP)&&(getPort(sa) 62 ftpAccessedSvcs)) ! term()

Figure 2: A speci�cation for ftpd.

further narrow down the actions/behaviors that the
ftpd server may exhibit. In most cases, we have not
attempted a sophisticated response, instead opting
for a simple action such as terminating the process
using a support function named term().

� ftpd attempts to authenticate a client host be-
fore proceeding to user authentication phase.
Precisely identifying the sequence of system calls
that correspond to client authentication is hard,

as it involves a large number of steps that may
vary from installation to installation. As such,
we treat getpeername as a marker that indicates
host authentication related processing. Sim-
ilarly, we treat opening of =etc=passwd as a
marker for user authentication related process-
ing. Rule 13 captures this English description
by stipulating that an open of the password
�le should never happen before invocation of
getpeername.

� users need to be �rst logged in before most �les
can be accessed. Rule 14 uses setreuid as an
indicator for completion of user login process.

� after user authentication is completed, ftpd sets
the userid to that of the user that just logged in.
We remember this userid for later use (rule 11).

� prior to user authentication, only �les be-
ginning with names identi�ed in the set
ftpAdmFilePrefixes can be accessed (rule 15).

� certain system calls are never used before user
login, and certain others are never used after lo-
gin process (rules 16, 17). Let ftpInitBadCall
denote a pattern that matches system calls
not used prior to user login. Similarly, let
ftpAccessBadCall match system calls that are
not used after login3.

� for anonymous login, the userid FTPUSERID is
used; moreover, the chroot system call is used to
restrict access only to the subtree of the �lesys-
tem rooted at ~ftp (rule 18).

� ftpd resets its e�ective userid to root in order
to bind certain sockets to ports numbered below
1024. The userid is reverted back to that of the
logged in user immediately afterwards (rule 20).

� to eliminate possible security loopholes, ftpd

must execute a setuid system call to change its
real, e�ective and saved userid permanently to
that of the logged in user before executing any
other program; otherwise, the executed process
may be able to revert its e�ective userid back to
that of superuser (rule 19). In addition, we make
sure that any �le that is opened with superuser
privilege is closed before exec (rule 21).

� �nally, we model certain site-speci�c policies
that override any access policies con�gured into
ftpd. These policies are captured by rules 22
through 25.

3.3 Discussion

We make the following observations about the spec-
i�cation for ftpd.

� In order to reduce clutter, we have delib-
erately abbreviated some of the lists (e.g.,
ftpInvalidUsers), while leaving out de�nitions
of some abstract events (e.g., wrOpen) in the
speci�cation for ftpd.

� Typical speci�cations need not be as comprehen-
sive as for ftpd { we have made it comprehensive

3We note that it may be hard to obtain a complete list of
the system calls in either of these cases.

in order to better illustrate what sorts of prop-
erties can be captured in our language.

� The speci�cation was developed using the prin-
ciple of least privilege, without really paying at-
tention to known vulnerabilities. Nevertheless,
it does address most known ftp vulnerabilities
(many of which have since been �xed) such as
FTP bounce (rule 25), race conditions in signal
handling (rules 20, 19) and site-exec (rule 24)
[CERT].

� Availability of fast matching algorithms de-
scribed in the subsequent sections enables us to
focus on developing these rules independent of
each other, as opposed to worrying about how
they may be modi�ed to enable more optimal
checking, e.g., rules 11, 15, 16, and 23 have pre-
�xes in their pattern component that are similar,
and we can in fact combine them into a single
rule. But this will lead to a speci�cation that
is much less clear, so we avoid this. Since the
matching algorithms give us the bene�t of such
combination for free, there is no cost to pay for
the clarity of speci�cations.

� We can develop a more concise language that
gives us the ability to specify dependencies
among events e1 and e2 more directly, rather
than using a pattern such as begin(); (!e1)�; e2.
However, the focus here is on a core language
that has the necessary expressive power.

� The examples illustrate that the expressive
power of REE is far beyond that of regular ex-
pressions. For instance, rules 20 and 21 capture
associations among events that are beyond what
can be captured even by context-free grammars.
(The associations are similar to checking that a
variable is de�ned before use, and can be cap-
tured by attribute grammars.)

4 Runtime Model

Our runtime model for the detection engine is based
on extended �nite-state automata (EFSA). EFSA
are simply standard �nite state automaton that are
augmented with the ability to store values in a �xed
number of state variables. Every transition in the
EFSA is associated with an event, an enabling con-
dition involving the event arguments and state vari-
ables, and a set of assignments to state variables.
The �nal states of the EFSA may be annotated with
actions, which, in our system, will correspond to the
response actions given in our speci�cations. For a
transition to be taken, the associated event must

q q
0 1> t :=x 1 1t =x

a(x) b(x)

b

 > q q
0 1

a(x)
t :=x1

b(x)|t =x1

b(x) |t !=x

b(x)|t =x1

1

(x)|t1 !=xb

Figure 3: A NEFA and its equivalent DEFA

occur and the enabling condition must hold. When
the transition is taken, the assignments associated
with the transition are performed.

An EFSA is normally nondeterministic. The notion
of acceptance by a nondeterministic EFSA (abbre-
viated as NEFA) is similar to that of an NFA: a
NEFA accepts an event history e1e2 � � �en if there is
a sequence of states s0; s1; : : : sn such that s0 is the
start state, sn is a �nal state, and 8 1 � i � n, there
exists a transition from si�1 to si that can be taken
on ei. A deterministic EFSA (DEFA for short) is
an EFSA in which at most one of the transitions
is enabled in any state of the EFSA. A NEFA for
the pattern a(x); b�; b(x) is shown in Figure 3. The
equivalent DEFA is also shown in the same �gure.
We summarize some of the key properties of REE
and EFSA, stated without proof. Let the REE be
of size N , and use k variables X1; :::; Xk where Xi

can assume ni distinct values, for 1 � i � k.

� there exists a NEFA of size N corresponding to
the REE and it uses state variables X1; :::; Xk

� this NEFA can be simulated with at most O(N �
n1 � n2 � � � � � nk) cost per event at runtime

� every NEFA can be transformed into an equiva-
lent DEFA with the same set of state variables

� in the worst-case, the smallest DEFA for the
above REE will have 2N�n1�n2�����nk states

The �rst and third properties are among those that
carry over from regular expressions to REE. The
second property shows that the overhead for simu-
lating NEFA at runtime can be signi�cantly higher
than that for simulating NFA, the latter being just
O(N). Similarly, the fourth property shows that the
size explosion due to NEFA to DEFA conversion can
be signi�cantly worse than NFA to DFA conversion,
the latter explosion being limited to O(2N) in the
worst case, and much smaller in practice. In fact,
the explosion for NEFA to DEFA construction is un-

acceptably large, making such conversion impracti-
cal. Before we proceed to tackle this problem in the
next section, we �rst develop an algorithm for using
NEFA for matching event histories at runtime.

procedure NEFAtrans(HashTable curStats, Event e)
foreach state S � (c; v1; :::; vn) 2 curStates do

delete S from curStates

foreach transition T from c to a state c0 enabled
on e with value vi for state variable xi do

Let v01; :::; v
0

n be the new values of state
variables after making the assignments in T

foreach S0 2 epsilon((c0; v01; :::; v
0

n)) that is
not already in curStates do

add S0 to curStates

end

end

end

procedure NEFAsim(EventHistory H)
Let Si � (ci; vi0; :::; v

i
n) denote the initial state

Let H be of the form e1; e2; :::; em

Initialize a HashTable curStates to contain Si

for 1 � j � m do

NEFAtrans(curStates; ej)
end

end

The algorithm uses a hash table to store all of the
possible states in which the NEFA could be in. On
receipt of an event, we compute the new states of
the NEFA by making a transition from each of the
current states. A state of the NEFA is represented
by a tuple (c; v1; :::; vn) where c denotes the control
state of the NEFA and v1; :::; vn denote the values of
the state variables. The algorithm uses a function
epsilon to compute the set of states reachable from
a state S while only following �-transitions.

We remark that our NEFA model has some sim-
ilarities with the colored Petrinet model used in
[Kumar95]. In particular, the notion of a token
in their Petrinet corresponds to our notion of a
NEFA state. Their semantics of matching di�ers
from ours in some ways, and as a result, their al-
gorithm for simulating a nondeterministic Petrinet
results in cloning of tokens at each step of the sim-
ulation algorithm. This can result in unbounded
increase in the number of tokens, whereas the num-
ber of distinct states of the NEFA is bounded as
discussed above.

5 Translation of REE to NEFA

We propose an algorithm that achieves a balance be-
tween the space explosion implied by DEFA and the

runtime ine�ciency imposed by NEFA in this sec-
tion. The key point is that the explosion due to state
variables (2n1�n2�����nk) is unacceptable, whereas the
explosion due to the size of REE (2N factor) does
not usually pose a problem in practice. Our algo-
rithm is thus geared towards avoiding size explo-
sion due to state variables. This is achieved by
permitting nondeterminism in the automata on a
subset of transitions where state variables are being
assigned new values. This approach results in an
EFSA that is deterministic for a subclass of REEs
called REE(0) patterns. For non-REE(0) patterns,
the EFSA produced may not be deterministic, but
our experimental results show that the performance
of the algorithm is very good even for such patterns.
Regardless of the nature of the patterns, the EFSA
size is O(2N). We present an overview of our al-
gorithm here, leaving out the details due to space
constraints. (See [SU99] for a more complete de-
scription.)

5.1 Translation Algorithm

Our algorithm has an initial preprocessing phase
that includes the following steps:

� strip the leading begin from patterns; if a pat-
tern does not start with a begin, pre�x any�, so
that the augmented pattern will match an event
history i� the original pattern matched a su�x
of the history.

� introduce an end-marker # to every pattern, and
then combine them into one pattern using jj.

� express realtime or atomicity using �; ; ; jj and
constraints on argument values

� rename event arguments so that ith argument
to any event is named $i. For arguments that
need to be remembered for later, we assign their
values to state variables using notation =tj = $i.
A pattern that does not use a state variable after
this step is known as an REE(0) pattern.

� number the positions in the REE from left to
right, indicating the positions as superscripts

Given the patterns begin(); (a(x; x)jjb); (ajjb)�; b(x)
and begin(); (a(y; 3)jjc(y)); (ajjc)�; c(y), the prepro-
cessing steps result in the following pattern:

(a1j$1 = $2)=t1 := $1; (a2jb3)�; b4=$1 = t1;#
5 jj

(a6j$2 = 3jjc7)=t2 := $1; (a8jjc9)�; c10j$1 = t2;#
11

The purpose of numbering the REE positions is sim-
ilar to that of earlier algorithms for constructing
DFA from regular expressions [Aho90, MY60]. Each
state S in the NEFA is associated with a subset PS

of positions in the REE as follows: a position p 2 PS
i� there is a path from the start state of the NEFA
to S that matches the pre�x of the REE up to posi-
tion p. Intuitively, PS denotes that set of positions
in the REE up to which we may have matched an
input event history that took the NEFA from its
start state to the state S.

The construction of the NEFA for an REE R be-
gins with the start state S0. The positions PS0 as-
sociated with the start state is de�ned as first(R),
where first is the function de�ned below.

first(ejC) = fpos(ejC)g

first(A;B) = first(A) [first(B) if empty(A)

first(A;B) = first(A) otherwise

first(AjB) = first(A) [first(B)

first(A�) = first(A)

Here, the notation pos(e) denotes the position num-
ber associated with the event e. empty(A) is true
if A matches the empty string. The first of the
example REE would be the positions f1, 6, 7g.

The next step in construction is to identify the dis-
tinct events e1; :::; em that occur at one of the po-
sitions in PS . We create m transitions from S to
dummy states as shown with dotted lines in Fig-
ure 4. The set of positions PSi associated with each
of these dummy states is given by:

PSi = fj 2 PS jei occurs at j in Rg

Let Cj be the condition associated with a position

C1: $1=$2

{1}

a

c

C1

!C1

C2

!C2

C2S

A2: t :=$2
A1: t :=$11

2

A1

A2

S

S

S3

2

1

{1,6,7}

{1,6}

{7}

{1,6}

{6}

C2: $2=3 {1,6}

 {6} {8,9,10}

{2,3,4}

A2

A1, A2
{2,3,4,8,9,10}

Figure 4: Partially constructed NEFA

j 2 PSi . As the next step, we select a k 2 PSi and
create two transitions from Si to dummy states Si1
and Si2, the �rst one to be taken when Ck holds and
the second to be taken otherwise. PSi1 and PSi2 are
given by:

PSi1 = fj 2 PSi jCj ^Ck 6= falseg
PSi2 = fj 2 PSi jCj ^ :Ck 6= falseg

3

S

a

5

4

S0

S

S

S

S

2

1

1

1t := $1, t := $2

22

2t := $1

2c, a| ($1!=$2 & $2=3)

a| ($1=$2 & $2 =3)
a| ($1=$2 & $2 !=3)

a, c| ($1 != t

t :=
 $1 b|

 ($
1

!=
 t

)
1

a, b| ($1 != t

b| ($1 != t

b| ($1 = t)

c| ($1 != t)

)

1

)1

c| ($1 != t)

c| ($1 = t)

2

b| ($1 = t)1

2

2

2
c| ($1 = t)

1

1)

)2

c| ($1 = t)

b| ($1 = t

. .Figure 5: NEFA (also a DEFA) for the example patterns

We note that the correctness of the algorithm is not
a�ected even if we included a j in PSi1 such that
Cj^Ck = false, but the size of NEFA may increase.
A similar comment applies to PSi2 as well. (The
size increase will likely be reversed by an optimizing
compiler that may be used to compile the code gen-
erated by our NEFA construction algorithm.) This
process is repeated at Si1 and Si2 recursively, while
ensuring that each condition is tested at most once.
The dashed lines in Figure 4 show these transitions.

When we reach a dummy state Sd where all con-
ditions have been tested, we are ready to create
new (non-dummy) states. Let A1; :::; Ar be the dis-
tinct assignment actions among the positions PSd .
Then we create a total of r states S01; :::; S

0
r, with

�-transitions from Sd to S0k labeled with assign-
ment actions An, for 1 � n � r. PS0

k

is de-
termined as follows. Let Pk denote the subset of
PSd where assignment actions Ak appear. Then
PS0

k
= [p2Pkfollow(p), where follow is de�ned by:

follow(p) � first(Q), if p is rightmost for
a subexpression Q� in R

follow(p) � first(Q), if p is rightmost
within Q' where Q0;Q is in R

follow(p) � follow(q), if p and q are rightmost
in Q and Q0, where QjjQ0 is in R,
or Q;Q0 is in R and empty(Q0)

A position p0 is included in follow(p) only if re-
quired by the conditions above. We can reduce
the number of � transitions by merging states cor-
responding to assignments from di�erent patterns.

(The set of positions of the merged state is given by
the union of these sets for the original states.) We
can also avoid creating a new (non-dummy) state
S0n if PS0

n
is identical to PS00 for another state S00 in

the NEFA. Figure 4 shows the partially constructed
NEFA after these optimizations.

After the above algorithm, a post-processing phase
merges sequences of dummy transitions into a single
one, eliminating the dummy states in the process.
It also marks any state that includes an end-marker
position as a �nal state for the corresponding pat-
tern. The NEFA constructed by the algorithm for
our example is shown in Figure 5.

5.2 Properties of NEFA

Matching REE(0) Patterns As mentioned ear-
lier, REE(0) patterns are those that cannot refer to
values of event arguments except immediately af-
ter the occurrence of the event. With our variable
renaming scheme in place, this means that there
would be no need for state variables, and hence no
assignments. Note that the only source of nonde-
terminism in the above algorithm arises because of
�-transitions associated with each group of assign-
ments. Therefore, the NEFA generated is a DEFA
for REE(0) languages.

Size It is easy to see from our algorithm that af-
ter the elimination of dummy states, there can be
at most 2n states, where n is the size of the REE,
because each state is associated with a subset of po-
sitions in the REE, and there are at most 2n such

subsets. It is interesting to note that although we
are dealing with a more complex language than RE,
our bound for number of states is the same as the
corresponding bound for RE.

To get an idea of the size of the NEFA, one has to
consider the states as well as the space required for
storing the transitions. If maxp denotes the maxi-
mum number of positions where the same event oc-
curs in an REE, then we can show that the total
space requirements for the states and transitions is
bounded by O(2n+maxp).

We note that as in the case of the DFA construc-
tion algorithm from [Aho90], the worst case space
requirements do not re
ect the space usage in prac-
tice. Often, as in the case of the above example and
in the examples studied Section 6.3, we end up with
an automaton whose size is much smaller than the
exponential upper bound.

6 Implementation and Performance

Our system implementation consists of a compiler
and a runtime system.

6.1 Compiler

The front-end of the compiler is responsible for
parsing a speci�cation. Its implementation is rou-
tine, based on standard compiler construction tools
Flex and Bison. Type-checking is performed sub-
sequently, and then we translate the pattern com-
ponents of our speci�cations into a NEFA using the
algorithm described in the previous section. The re-
action components of the rules are attached to those
states that accept the pattern corresponding to the
respective rules.

The NEFA is then translated into a C++ class
NEFA as follows. At runtime, the state of the
NEFA is maintained in a structure called FSM,
which stores the control state as well as the state
variables. To support nondeterminism, multiple in-
stances of an FSM can be created using a clone func-
tion that makes identical copies of an FSM. At any
point during runtime, zero, one or more copies of
the FSM may be active.

The transitions of the NEFA are captured in the
C++ code as follows. A system call sc is delivered to
the NEFA class by invocation of a member function
on the NEFA class with the name sc. The code
for this class sequences through the list of FSM's
that are currently active. For each FSM, its state

is updated to re
ect a transition that it would have
made on the event sc and its arguments. If multiple
transitions are possible, suitable number of copies
of the FSM are made and each copy follows one of
the transitions.

6.2 Runtime System

The output code produced by the compiler is linked
with a runtime support system that provides the
infrastructure for intercepting and delivering sys-
tem calls to the detection engine. Events are deliv-
ered by invoking the corresponding member func-
tions on the NEFA class described above. The run-
time system also provides the functions needed by
the detection engine to alter the behavior of sys-
tem calls. With regard to data access, it provides
support functions to access system call argument
values.

The runtime system has been implemented by mod-
ifying the system call interface within the operating
system. We do not provide a detailed explanation of
the runtime system here, as our focus in this paper
is on e�cient runtime matching operations. Our
results indicate that the overhead for interception
is more or less constant per system call, and adds
about 30% overhead to the cost of a system call
[Bow99]. However, since system calls account for
only a small fraction of the CPU time used by an
application, the increase in CPU time (counted as
the sum of user and system time on UNIX) is in
the range of 2% to 30%. Most applications, espe-
cially those that are CPU-intensive, impose over-
heads at the bottom of this range, while I/O inten-
sive applications such as tar and ftp lead to higher
overheads. [FBF99], which employs an interception
mechanism similar to ours, reports overheads in the
range of 2% to 4% for a di�erent set of applications,
namely, gcc and httpd.

We remark that the overheads for system call inter-
ception are nontrivial. In fact, our fast matching
algorithm reduces the checking time to the point
where system call interception accounts for the the
dominant portion of the total overhead imposed by
our approach. In particular, this implies that there
is no penalty to be paid due to the use of sophisti-
cated pattern-matching based approach such as ours
over a method that uses simpler rules that are trig-
gered on individual system calls.

TestCase Time to Time to match Overhead
run(s) all sysCalls

(s)
ftpd 2.2s 0.03 1.5%

telnetd 3.1s 0.04 1.3%
httpd 5.8 0.09 1.5%

Figure 6: Overhead due to system call pattern match-
ing. Results taken on 350MHz Pentium II Linux PC
with 128MB memory and 8GB EIDE disk.

6.3 Performance Results

We studied the performance of our system with
three server programs, namely, ftpd, telnetd and
httpd. The speci�cation for ftpd was as described
earlier. The speci�cation for telnetd and httpd

are not shown, but are comparable in size and com-
plexity to that of ftpd. Our experiments were de-
signed to evaluate the runtime overhead for moni-
toring (both in terms of time and space) and the size
of the pattern-matching automata. In measuring
the runtime overhead, we omitted the cost of inter-
cepting system calls since our primary interest is in
evaluating the performance of the pattern-matching
algorithms. Moreover, the overhead for interception
remains essentially a constant independent of the
size of the patterns or length of the execution trace.

6.3.1 Timing Results

The best indicator of runtime overheads is the fact
that only two of all the patterns in these three spec-
i�cations were non-REE(0). This implies that the
runtime matching e�ort consists of performing a
transition on a deterministic automaton, which is
about as expensive as the cost of the tests involved
in the applicable transitions. As compared to the
cost of a typical system call, this is indeed very low.
The non-REE(0) patterns did not contribute much
to the overhead either, as they led to very few cases
where cloning was required. Speci�cally, the num-
ber of clones active at any point at runtime was less
than �ve, with each FSM requiring several bytes
of storage. Thus the runtime storage requirements
were very low. Simulating such a small number of
FSMs at runtime is also very fast.

Figure 6 summarizes our experimental results. They
show that in fact, the overheads due to the moni-
toring are almost imperceptible for all three appli-
cations. The runtime data storage requirements for
the FSM are too small to be measured.

Figure 7 shows the overhead for matching each sys-
tem call, averaged across the three programs. The

0.5

0.6

0.7

0.8

0.9

1

1.1

1000 2000 3000 4000 5000 6000 7000 8000 9000

M
at

ch
in

g
tim

e
pe

r s
ys

te
m

 c
al

l

Number of System Calls

’pmtime.dat’

Figure 7: Matching time per system call (in mi-
croseconds).

graph indicates a slight increase with increase in
number of system calls, which is to be expected
due to the presence of non-REE(0) rules. However,
the rate of increase is extremely small, at about 5%
when the number of system calls has increased by
about 2000%. Thus, it is meaningful to talk about
overhead as a percentage of the total runtime, as
was done in Table 6. To obtain the results in the ta-
ble and the �gure, we exercised the three programs
with a random combinations of valid commands of
di�erent lengths.

6.3.2 Automaton Size

To evaluate the increase in size of the automaton
when the number or complexity of patterns is in-
creased, we have plotted the automaton size as a
function of the size of the patterns. The size mea-
sure we use is given by the number of REE events
and operators, taken over all of the patterns. Event

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250

N
um

be
r o

f s
ta

te
s

Pattern size

’automaton size’

Figure 8: Increase in automaton size with speci�ca-
tion size.

arguments and conditions are not included, as the
number of states is not very much a�ected by their
presence or absence. The REE patterns of interest
were those corresponding to our three benchmark
programs, ftpd, telnetd and httpd. Randomly
chosen subsets of these patterns were compiled and
the corresponding size of the automaton was identi-
�ed. These were then plotted as shown in Figure 8.

Although the worst-case size is exponential in the
size of REE, we �nd that in practice, the size in-
creases more or less linearly with the total REE size.
Although it is not readily apparent from the graph,
the rate of increase in number of states tended to
decrease after a while in our examples. The reason
for this is that existing patterns had already cre-
ated many states that could already represent some
of the stages of matching the new pattern, and thus
only fewer additional states were required. However,
we must exercise caution in generalizing from these
three programs, as the relationship between pattern
size and automaton size can vary greatly from one
set of patterns to another.

7 Related Work

7.1 Intrusion Detection

Techniques for prevention of intrusions draw on
previous research on (post-attack) intrusion detec-
tion. Intrusion detection techniques can be broadly
divided into misuse detection [PK92, Kumar95],
anomaly detection [ALJTV95, FHS97, GSS99], and
speci�cation-based detection [Ko96, SBS99].

Among misuse-based approaches, a state-transition
diagram based approach is used in [PK92] to cap-
ture signatures of intrusions. [Kumar95] uses col-
ored petri nets to specify intrusive activity. This
language is more expressive than ours in some ways
(e.g., ability to capture occurrence of two concurrent
sequences of actions), and less expressive in some
other ways (e.g., ability to capture atomic sequences
or the occurrence of one event immediately follow-
ing another). Nevertheless, most intrusion signa-
tures expressed in [Kumar95] can be easily captured
in our language as well and hence our compilation
techniques are applicable to their approach.

Among anomaly detection approaches, one of the
�rst works based on program behaviors (as opposed
to user behaviors) was that of [FHS97]. Recently,
these results have been improved by [GSS99] using a
neural network based approach that produces very
accurate anomaly detectors. All these approaches

deal only with system call names, not with argu-
ments. This simpli�es the problem of learning nor-
mal behaviors of processes, which is the main focus
of their work. However, for intrusion prevention or
con�nement, argument values are indeed important,
e.g., we cannot otherwise distinguish an action to
write a log �le from one to modify the /etc/passwd
�le. Thus a language like REE is more appropriate
in this context.

A speci�cation-based approach achieves the accu-
racy of misuse detection, while addressing one of its
de�ciencies, namely, the inability to deal with un-
known intrusions. It was �rst proposed in [Ko96].
They use a pattern language based on context-free
grammars extended with variables, and formulate
the intrusion detection problem as one of parsing
the audit logs with respect to these grammars. In
contrast, our language is based on an extension of
regular languages with variables. While context-
free languages are more expressive than regular lan-
guages, this is not necessarily true when variables
have been added to these languages. On the other
hand, a regular language based formulation lends
itself more readily to an automaton based pattern-
matching approach that can be implemented e�-
ciently.

7.2 Preventive Approaches

Some of the preventive approaches are based on
protecting systems against underlying software er-
rors that are exploited by attackers. For instance,
malicious code detection techniques [BD96, GM96,
LLO95] employ program analysis techniques to de-
tect security-related errors in the source code. Sim-
ilarly, [CPMWBBGWZ98] developed compilation
techniques that add additional checks into the code
generated to identify (and prevent) attacks that ex-
ploit bu�er over
ows to overwrite the return ad-
dresses stored on a process stack.

Interception of system calls, followed by interposi-
tion of arbitrary code at this point, has been pro-
posed by many researchers as a way to con�ne appli-
cations. The Janus system [GWTB96] incorporates
a user-level implementation of system call intercep-
tion. It is aimed at con�ning helper applications
(such as those launched by web-browsers) so that
they are restricted in their use of system calls. Their
language is tailored to restrict individual system
calls without any regard for the context in which
they appear. This approach is well-suited for �ne-
grained access control and sandboxing. The kernel
hypervisor [MLO97] approach is similar to the Janus

approach, but is implemented within an operating
system kernel using loadable modules. A more com-
prehensive set of system call interposition capabil-
ities was developed in [GPRA98]. Their approach
is geared for a broad range of applications aimed at
augmenting software functionality in areas such as
security and fault-tolerance. [FBF99] focuses on the
related problem of developing languages customized
for writing interposition code (also known as wrap-
per code), and runtime infrastructure for their in-
stallation and management. Unlike the preceding
approaches, their language can more easily capture
sequencing relationships among system calls. But
they do not focus on pattern-based techniques for
intrusion detection. Moreover, computational issues
in e�cient matching of system call sequences are not
addressed.

7.3 Other Work

There has been a signi�cant amount of earlier work
in regular languages and pattern-matching. In par-
ticular, our algorithm for NEFA construction is
based in part on some of the ideas developed in
[Aho90, MY60] for direct construction of DFA from
regular expressions. The language design has been
in
uenced by previous pattern-matching based lan-
guages such as Lex and Awk [AWK88].

Regular languages and !-regular languages, to-
gether with their automata-equivalents, have been
used widely in formal speci�cation and veri�cation
of concurrent systems [Kurshan94]. In the related
area of program analysis, [OO90] develops an ap-
proach for expressing sequencing constraints as reg-
ular expressions, and compile-time checking of these
constraints using data
ow analysis. [Schneider98]
proposes to use Buchi automata for monitoring se-
curity properties of programs. The main di�erence
between these works and ours is that they operate
on regular or !-regular languages, while our lan-
guage is REE. Another di�erence is that in the
context of veri�cation, we are often interested in
properties of in�nite sequences, while our interest is
in behaviors that manifest themselves in �nite se-
quences.

Describing properties of event sequences is an im-
portant problem in building, prototyping, debug-
ging and monitoring distributed systems. Lan-
guages such as CSP [Hoare78], LOTOS [BB89] and
Esterel [BCG87] support very simple patterns, per-
mitting no sequencing or closure operators. The
task sequencing language developed in [LHMBH87]
and its successor Rapide [LV95] support an expres-

sive pattern language that is signi�cantly more ex-
pressive than ours. Moreover, they support a par-
tially ordered set model of event histories, whereas
our current model is a linear sequence. However, it
is not clear whether this language is amenable to ef-
�cient pattern matching at runtime, as they do not
address the problem of automata-based techniques
for e�cient matching of these patterns.

8 Conclusions

In this paper we presented an approach for build-
ing survivable systems. Our approach is based on
monitoring system calls made by processes (running
on the system to be protected), comparing them
against patterns characterizing normal (or abnor-
mal) system call sequences, and initiating appropri-
ate responses when (potentially) damaging system
calls are made. These responses may preempt intru-
sion, or otherwise isolate and contain any damage.
Since attacks can be prevented and/or contained,
our approach can satisfactorily address intrusions
arising due to software errors in otherwise trustwor-
thy programs, as well as malicious programs (e.g.,
Trojan horses) from untrusted sources. Moreover,
when new vulnerabilities (not protected by existing
speci�cations) are identi�ed, we can protect against
them using appropriate speci�cations, instead of
disabling vulnerable software until the vendor pro-
vides a patch.

One of the main challenges in making our approach
practical is the ability to perform runtime preven-
tion/detection that is fast enough to be included as
part of processing every system call made by every
process. We proposed a solution to this problem in
this paper by developing an algorithm that compiles
patterns in our speci�cation language into an ex-
tended �nite state automaton (EFSA). Our imple-
mentation results demonstrate that detection can be
performed very fast (1 to 2% overhead to program
execution time) using our approach. A key ben-
e�t of our approach (supported by theory as well
as performance experiments) is that the detection
time is insensitive to the complexity or number of
patterns used in the speci�cation. In most cases,
our algorithm takes a constant time per system call
intercepted, and uses a constant amount of storage.
These advantages make our algorithm attractive for
any other approach that performs intrusion detec-
tion by some form of pattern-matching.

We showed that for a class of patterns (speci�cally,
REE(0) patterns) the automata constructed by our

algorithm are deterministic. A more precise char-
acterization is desirable, since in practice, our al-
gorithm builds deterministic automata for a much
larger class of patterns. Such a characterization
may also enable us to restrict the speci�cation lan-
guage so that patterns that can lead to very large
overheads (associated with simulating a large num-
ber of NEFA instances at runtime) can be avoided.
Another area of future research is the application
of techniques presented in this paper to the larger
problems of distributed system monitoring and soft-
ware debugging.

References

[Aho90] A.V. Aho, Algorithms for Finding Patterns
in Strings, Handbook of Theoretical Com-
puter Science Vol A, Elsevier Science Publish-
ers B.V., 1990.

[AWK88] A.V. Aho, B.W. Kernighan, and P.J. Wein-
berger, The AWK Programming Language,
Addison-Wesley, Reading, MA, 1988.

[ALJTV95] D. Anderson, T. Lunt, H. Javitz, A.
Tamaru, and A. Valdes, Next-generation In-
trusion Detection Expert System (NIDES): A
Summary, SRI-CSL-95-07, SRI International,
1995.

[BCG87] G. Berry, P. Couronne and G. Gonthier, Syn-
chronous Programming of Reactive Systems:
An Introduction to Esterel, Technical Report
647, INRIA, Paris, 1987.

[BD96] M. Bishop, M. Dilger, Checking for Race Con-
ditions in File Access. Computing Systems
9(2), 1996, pp. 131-152.

[BB89] T. Bolognesi and E. Brinksma, Introduction to
the ISO Speci�cation Language LOTOS, The
Formal Description Technique LOTOS. Ams-
terdam: North-Holland, 1989.

[Bow99] T. Bowen et al, Operating System Support for
Application-Speci�c Security, under review for
Symposium on Operating Systems Principles,
1999.

[CERT] CERT Coordination Cen-
ter Advisories 1988{1998,
http://www.cert.org/advisories/index.html.

[CPMWBBGWZ98] C. Cowan, C. Pu, D. Maier, J.
Walpole, P. Bakke, S. Beattie, A. Grier, P.
Wagle and Q. Zhang, StackGuard: Automatic
Adaptive Detection and Prevention of Bu�er-
Over
ow Attacks, 7th USENIX Security Sym-
posium, 1998.

[Denning87] D. Denning, An Intrusion Detection
Model, IEEE Trans. on Software Engineering,
Feb 1987.

[FHS97] S. Forrest, S. Hofmeyr and A. Somayaji, Com-
puter Immunology, Comm. of ACM 40(10),
1997.

[FHRS90] K. Fox, R. Henning, J. Reed and R. Simo-
nian, A Neural Network Approach Towards

Intrusion Detection, National Computer Secu-
rity Conference, 1990.

[FBF99] T. Fraser, L. Badger, M. Feldman, Hardening
COTS software with Generic Software Wrap-
pers, IEEE Symposium on Security and Pri-
vacy, 1999.

[GPRA98] D. Ghormley, D. Petrou, S. Rodrigues, and
T. Anderson, SLIC: An Extensibility System
for Commodity Operating Systems, USENIX
Annual Technical Conference, 1998.

[GM96] B. Guha and B. Mukherjee, Network Security
via Reverse Engineering of TCPCode: Vulner-
ability Analysis and Proposed Solutions, Proc.
of the IEEE Infocom, March 1996.

[GSS99] A.K. Ghosh, A. Schwartzbard and M. Schatz,
Learning Program Behavior Pro�les for In-
trusion Detection, 1st USENIX Workshop on
Intrusion Detection and Network Monitoring,
1999.

[GWTB96] I. Goldberg, D. Wagner, R. Thomas, and E.
Brewer, A Secure Environment for Untrusted
Helper Applications, USENIX Security Sym-
posium, 1996.

[Hoare78] C. Hoare, Communicating Sequential Pro-
cesses, Comm. of the ACM, 21(8), 1978.

[Jones93] M. Jones, Interposition Agents: Transpar-
ently Interposing User Code at the System In-
terface, 14th ACM Symposium on Operating
Systems Principles, December 1993

[Ko96] C. Ko, Execution Monitoring of Security-
Critical Programs in a Distributed System: A
Speci�cation-Based Approach, Ph.D. Thesis,
Dept. Computer Science, University of Cali-
fornia at Davis, 1996.

[Kumar95] S.Kumar, Classi�cation and Detection of
Computer Intrusions, Ph.D Dissertation, De-
partment of Computer Science, Purdue Uni-
versity, 1995.

[Kurshan94] R. Kurshan, Computer Aided Veri�cation
of Coordinating Processes: The Automata-
Theoretic Approach, Princeton University
Press, Princeton, NJ, 1994.

[LLO95] R.W. Lo, K.N. Levitt, R.A. Olsson, MCF: a
Malicious Code Filter, Computers and Secu-
rity, Vol.14, No.6, 1995.

[LV95] D. Luckham and J. Vera, An Event-Based Ar-
chitecture De�nition Language, IEEE Trans-
actions on Software Engineering, 21(9), 1995.

[LHMBH87] D. Luckham, D. Helmbold, S. Meldal, D.
Bryan, and M. Haberler, Task Sequencing
Language for Specifying Distributed Ada Sys-
tems: TSL-1, PARLE: Conf. on Parallel Archi-
tectures and Languages, LNCS 259-2, 1987.

[Lunt92] T. Lunt et al, A Real-Time Intrusion Detec-
tion Expert System (IDES) - Final Report,
SRI-CSL-92-05, SRI International, 1992.

[MY60] R. McNaughton and H. Yamada, Regular ex-
pressions and state graphs for automata, IRE
Trans. on Electronic Comput., EC-9(1), 1960.

[MLO97] T. Mitchem, R. Lu, R. O'Brien, Using Ker-
nel Hypervisors to Secure Applications, An-
nual Computer Security Application Confer-
ence, December 1997.

[OO90] K. Olender and L. Osterweil, Cecil: A Se-
quencing Constraint Language for Automatic
Static Analysis Generation, IEEE Transac-
tions on Software Engineering, 16(3), 1990.

[PK92] P. Porras and R. Kemmerer, Penetration State
Transition Analysis:A Rule based Intrusion
Detection Approach, Eighth Annual Com-
puter Security Applications Conference, 1992.

[Schneider98] F. Schneider, Enforceable Security Poli-
cies, TR 98-1664, Department of Computer
Science, Cornell University, Ithaca, NY, 1998.

[SCS98] R. Sekar, Y. Cai and M. Segal, A Speci�cation-
Based Approach for Building Survivable Sys-
tems, NISSC, October 1998.

[SBS99] R. Sekar, T. Bowen and M. Segal, On Prevent-
ing Intrusions by Process Behavior Monitor-
ing, USENIX Intrusion Detection Workshop,
1999.

[SU99] R. Sekar and P. Uppuluri, Synthesizing Fast
Intrusion Prevention/Detection Systems from
High-Level Speci�cations, Technical Report
99-03, Department of Computer Science, Iowa
State University, Ames, IA 50014.

